
Model-Based MR Parameter Mapping with Sparsity Constraints:
Parameter Estimation and Performance Bounds

Bo Zhao [Student Member, IEEE],
Department of Electrical and Computer Engineering and Beckman Institute for Advanced Science
and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
bozhao1@illinois.edu

Fan Lam [Student Member, IEEE], and
Department of Electrical and Computer Engineering and Beckman Institute for Advanced Science
and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
fanlam1@illinois.edu

Zhi-Pei Liang [Fellow, IEEE]
Department of Electrical and Computer Engineering and Beckman Institute for Advanced Science
and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. z-
liang@illinois.edu

Abstract

MR parameter mapping (e.g., T1 mapping, T2 mapping,  mapping) is a valuable tool for tissue

characterization. However, its practical utility has been limited due to long data acquisition times.

This paper addresses this problem with a new model-based parameter mapping method. The

proposed method utilizes a formulation that integrates the explicit signal model with sparsity

constraints on the model parameters, enabling direct estimation of the parameters of interest from

highly undersampled, noisy k-space data. An efficient greedy-pursuit algorithm is described to

solve the resulting constrained parameter estimation problem. Estimation-theoretic bounds are also

derived to analyze the benefits of incorporating sparsity constraints and benchmark the

performance of the proposed method. The theoretical properties and empirical performance of the

proposed method are illustrated in a T2 mapping application example using computer simulations.
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I. Introduction

Magnetic resonance (MR) parameter mapping (e.g., T1 mapping, T2 mapping and 

mapping) provides useful quantitative information for characterization of tissue properties

[1]. It has demonstrated great potential in a wide variety of practical applications, including
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early diagnosis of neuro-degenerative diseases [2], measurement of iron overload in livers

[3], evaluation of myocardial infarction [4], and quantification of labeled cells [5].

This work addresses one major practical limitation that often arises in MR parameter

mapping, i.e., long data acquisition time. MR parameter mapping experiments often involve

acquisition of a sequence of images  with variable contrast-weightings. Each

contrast-weighted image Im(x) is related to the measured k-space data by

(1)

where nm(k) denotes complex white Gaussian noise. The conventional approach samples k-

space at the Nyquist rate in the acquisition of each sm(k), from which the Im(x) are

reconstructed, followed by parameter estimation from . This approach usually

suffers from lengthy data acquisition, in particular when a large number of contrast weighted

images are acquired in high resolution. Furthermore, the accuracy of estimated parameter

values can be considerably affected by measurement noise, especially when the number of

contrast weighted images is small.

To alleviate these limitations, a number of model-based reconstruction methods have

recently been proposed to enable accurate parameter mapping from undersampled data.

They can be roughly categorized into two approaches. One approach is to reconstruct

 from undersampled data using various constraints (e.g., sparsity constraint [6],

low-rank constraint [7], [8], or joint low-rank and sparsity constraints [9], [10]), which is

followed by voxel-by-voxel parameter estimation. Several successful examples of this

approach are described in [11]-[23]. The other approach is to directly estimate the parameter

map from the undersampled k-space data, bypassing the image reconstruction step

completely (e.g., [24]-[26]). This approach typically makes explicit use of a parametric

signal model, and formulates the parameter mapping problem as a statistical parameter

estimation problem, which allows for easier performance characterization.

In this paper, we propose a new model-based method for MR parameter mapping with

sparsely sampled data. It falls within the second approach but allows sparsity constraints to

be effectively imposed on the model parameters for improved performance. An efficient

greedy-based algorithm is described to solve the resulting constrained parameter estimation

problem. Estimation-theoretic bounds are also derived to analyze the advantages of using

sparsity constraints and benchmark the proposed method against the fundamental

performance limit. The theoretical characterizations and empirical performance of the

proposed method are illustrated in a spin-echo T2 mapping example with computer

simulations. The improved performance of the proposed method are shown, both

theoretically and empirically, over the method [26] that only utilizes the parametric signal

model to enable sparse sampling. A preliminary account of this work was present in our

early conference paper [27].

For easy reference, we summarize the key notation and symbols used in the paper. We use ℝ

and ℂ to denote the field of real and complex numbers, respectively. For a matrix A, we use

AT and AH to denote its transpose and Hermitian, respectively. We use Re {A} to denote the
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real part of A. For a vector a, we use supp(a) to denote its support set. We use the following

set operations for a set  : 1) set cardinality: , and 2) complementary set: . We use the

following vector norms (or quasi-norm): 1) ℓ0 quasi-norm: , 2) ℓ|1 norm:

, and 3) ℓ|2 , where [a]i denotes the ith element of a.

The rest of the paper is organized as follows. Section II presents the proposed method,

including problem formulation, solution algorithm and performance bounds. Section III

demonstrates the characteristics and performance of the proposed method using a T2

mapping example. Section IV contains the discussion, followed by the conclusion in Section

V.

II. Proposed Method

Throughout this paper, we use a discrete image model, in which Im is a N×1 vector denoting

a contrast weighted image. For each image, a finite number of measurements, denoted as

, are collected. In this setting, the imaging equation (1) can be written as1

(2)

for m = 1, …, M, where  denotes the undersampled Fourier measurement

matrix, and . denotes the complex white Gaussian noise with variance σ2.

A. Formulation

1) Signal model—In parameter mapping, the parameter-weighted images Im(x) can be

written as

(3)

where ρ(x) represents the spin density distribution, θ(x) is the desired parameter map (e.g.,

T1-map, T2-map, or -map), φ(θ(x), γm) is a contrast weighting function, ψm(x) denotes the

phase distribution, and γm contains the user-specified parameters for a given data acquisition

sequence (e.g., echo time TE, repetition time TR, and flip angle α). The exact mathematical

form of (3) is generally known for a chosen parameter mapping experiment [24]-[26]. For

example, for a variable flip angle T1-mapping experiment, (3) can be written as follows [28]:

(4)

where T1(x) is the parameter map of interest, αm and TR are pre-selected data acquisition

parameters. We can, therefore, assume that φ is a known function in (3). Furthermore, we

assume that the phase distribution  is known or can be estimated accurately

prior to parameter map reconstruction (e.g., [17], [24]-[26]). Although both ρ(x) and θ(x) are

1In this model, we ignore the time-varying relaxation effects between different k-space samples from the same Im.
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unknown parameters in the model, θ(x) is used mainly for tissue characterization in many

applications. In the remainder of the paper, we assume that θ(x) is of primary interest, and

ρ(x) is treated as a nuisance parameter.

After discretization, (3) can be written as

(5)

where  contains the parameter values of interest,  contains the spin density

values,  is a diagonal matrix with [Φm]n,n = φ(θn,γm), θn denotes the parameter

value at the nth voxel, and  is a diagonal matrix containing the phase of Im.

Note that in (5), Im linearly depends on ρ, but nonlinearly depends on θ.

Substituting (5) into (2) yields

(6)

Based on (6), we can determine θ and ρ directly from the measured data  without

reconstructing . Under the assumption that  are white Gaussian noise,

the maximum likelihood (ML) estimation of ρ and θ is given as follows [24]-[26]:

(7)

From (7), it can be seen that by introducing the explicit signal model, the number of

unknowns reduces from MN to 2N. A necessary condition for (7) to be well-posed is that

 Pm ≥ 2N, i.e., the total number of measurements is no less than the total number of

unknowns in the model [24].

2) sparsity constraints—It is well known that in parameter mapping, the values of θ are

tissue-dependent. Since the number of tissue types is relatively smaller compared to the

number of voxels, we can apply a sparsity constraint to θ with an appropriate sparsifying

transform to incorporate this prior information. Similarly, we can also impose a sparsity

constraint on the spin density vector ρ. Enforcing the sparsity constraints on θ and ρ leads to

the following constrained ML estimation:

(8)

where W1 and W2 are two chosen sparsifying transforms (e.g., wavelet transforms) for θ

and ρ, respectively, and K1 and K2 are the corresponding sparsity levels. For simplicity, we

assume that both W1 and W2 are orthonormal transforms.2 Under this assumption, we can

solve the following equivalent formulation:

2Since both θ and ρ are real, for simplicity, W1 and W2 are assumed to be real-valued orthonormal transforms.
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(9)

where c = W1θ and u = W2ρ contain the transform domain coefficients for θ and ρ,

respectively. Note that (9) is a constrained ML estimation problem with explicit sparsity

constraints. Later in the paper, we will demonstrate the benefits of incorporating sparsity in

this formulation, both theoretically and empirically.

B. Solution algorithm

Note that (9) is a nonlinear optimization problem with a smooth, non-convex cost function

and explicit sparsity constraints. For this problem, it can be shown that there exists at least

one optimal solution based on the Weierstrass extreme value theorem [29], although the

uniqueness of the solution can be generally difficult to establish. With respect to solving this

type of problems, a number of greedy pursuit algorithms have been recently developed (e.g.,

[30]-[32]). These algorithms are mostly generalizations of greedy algorithms for

compressive sensing with nonlinear measurements. Here, we adapt the Gradient Support

Pursuit (GraSP) algorithm [32] to solve (9). GraSP is an extension of compressive sampling

matching pursuit (CoSaMP) [33] or subspace pursuit (SP) [34]. It is an iterative algorithm

that utilizes the gradient of the cost function to identify the candidate support of the sparse

coefficients, and then solves the nonlinear optimization problem constrained to the identified

support.

Specifically, the procedures of GraSP for solving (9) can be summarized in Algorithm 1. We

denote the cost function in (9) as Ξ(c, u), and the solution at the nth iteration as c(n), u(n). At

the (n+1)th iteration, we first compute the partial derivative of Ξ with respect to c and u
evaluated at {c(n), u(n) (see Appendix A for the gradient calculation). We denote the values

of these partial derivatives as  and .

Secondly, we identify the support sets  and  that are associated with the 2K1 largest

entries of gc and the 2K2 largest entries of gu, respectively, i.e.,  and

. Intuitively, under the assumption that  and ,

minimization of Ξ(c, u) over  and  would lead to the most effective reduction in the

cost function value.

Thirdly, we merge  with supp(c(n)) to form a combined support set  for c. Similarly, we

merge  with supp(u(n) to form a combined support set  for u. It is easily shown that

, and . We then minimize Ξ(c, u) over  and . This optimization

problem is a support-constrained nonlinear optimization problem, i.e.,

(10)
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(10) can be easily converted into an unconstrained optimization problem by variable change.

More specifically, let c = Ecct and u = Euut where  and  contain the

coefficients on the support  and , respectively, and  and  are

two submatrices of the N × N identity matrix whose columns are selected according to 

and , respectively. The resulting unconstrained optimization problem becomes:

(11)

Note that (11) is a nonlinear least-squares problem. Since the cost function of this

unconstrained optimization problem is continuous and coercive, there exists at least one

optimal solution [29], although the optimal solution may not be unique. To solve this

problem, a number of numerical algorithms can be used. Here, we apply the quasi-Newton

limited memory Broyden-Flecher-Goldfarb-Shanno (L-BFGS) algorithm [35]. This

algorithm only needs the gradient evaluation, and the Hessian matrix is approximated by the

gradient information (see Appendix A for the gradient of the cost function in (11)). Note that

in our case, the scaling of two variables u and c can be quite distinct. With proper scaling

compensation (e.g., through a similar procedure as used in [25], [26]), it has been

empirically observed that the accuracy and convergence speed of the L-BFGS algorithm can

be significantly improved.

Finally, after obtaining the solution  and  to (10), we only keep the largest K1 entries of c

and the largest K2 entries of u, and set other entries to zero, i.e.,  and

. The above procedure is repeated until the relative change of Ξ between two

consecutive iterations is smaller than some pre-specified threshold, or the number of

iterations exceeds a pre-specified maximum number of iterations.
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Computationally, the algorithm is relatively efficient: at each iteration it only involves

gradient evaluation, support detection and solving a support-constrained optimization

problem. For the support-constrained optimization problem, its computational complexity is

smaller than (7) due to the reduced number of unknowns. It has been shown in [32] that

under certain theoretical conditions (generalized restricted isometry property for linear

measurement model), GraSP has guaranteed performance. However, note that verifying

these theoretical conditions in the context of this problem can be very difficult.

Due to the non-convex nature of the optimization problem, the solution of the GraSP is

dependent on the initialization {c(0), u(0)}. In Section III, we will discuss the initialization

used in the algorithm, which is closely related to the applied data acquisition scheme. This

initial condition consistently yields good empirical results, although other initializations may

potentially yield better performance.

C. Estimation-theoretic bounds

We have also derived a constrained Cramér-Rao bound (CRB) to characterize the proposed

estimator (8) (or (9)). The constrained CRB provides a lower bound on the covariance of

any locally unbiased estimator under constraints [36], [37]. It has been widely used to

characterize various constrained parameter estimation problems (e.g., [38]-[41]).

Specifically, for this work, we calculate the sparsity constrained CRB [38] to analyze the

benefits of incorporating the sparsity constraints into the parameter estimation problem. We

can also use it as a benchmark to evaluate the performance of the proposed method.

In the rest of this section, we first derive the CRB on the estimated parameter map  in the

unconstrained setting,3 then extend it to consider the incorporation of the sparsity

constraints, and finally we use these bounds to characterize the performance of the ML
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estimator or sparsity constrained ML estimator. Considering the consistency between the

unconstrained and constrained case, we derive both bounds on the sparse coefficients in the

transform domain.

1) Unconstrained CRB—Note that since ,  can be written as

(12)

To obtain the bounds on , it suffices to derive the bounds on .

Given the data model, i.e.,

(13)

the unconstrained CRB on  can be written as follows [42]:

(14)

where

(15)

EN is the N × N identity matrix, J is the Fisher information matrix (FIM) (see see Appendix

B for a detailed derivation of the FIM) for the model in (13), and † denotes the Moore-

Penrose pseudo-inverse. Substituting (14) into (12) yields the following unconstrained CRB

on :

(16)

Taking the diagonal entries of the matrices on the both sides of (16), we can obtain a lower

bound for the variance of each voxel in 

(17)

Due to the large dimensionality of u and c, it is much computationally efficient to evaluate

J† in (15) using the inversion of its submatrices. Let the partitioned J be

(18)

3It is worth noting that we can also obtain the performance bounds on ρ by using a similar procedure. We omit such derivations here,
since ρ is the nuisance parameter of the model.
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Using the pseudo-inverse of the partitioned Hermitian matrix [43], J† can be written as

follows4:

(19)

where . By substituting (19) into (15), we can obtain the simplified

expression for Z:

(20)

2) Constrained CRB—With the sparsity constraints on c and u, i.e.,

(21)

(assuming K1 and K2 are given), and the data model (13), the sparsity constrained CRB for

any locally unbiased estimator  can be expressed as follows [38]:

(22)

where

(23)

 Ec and Eu are two sub-matrices of ENwhose columns are selected based on

the support of c and u, respectively. Based on (12) and (22), the constrained CRB on  can

be expressed as

(24)

and the corresponding voxelwise variance bound can be expressed as:

(25)

Similar to the unconstrained case, we can further simplify the calculation of Zs using the

block matrix pseudo-inversion. Let the partitioned AT JA be

4The formula here has already taken into account the case that the FIM is singular. This can happen when the null signal intensity
appear in the background. In such case, only the parameter values within the support of the imaging object are estimatable [44], [45].
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where , ,  and . Again, with the

pseudo-inverse of the partitioned Hermitian matrix [43], (AT JA)† can be expressed as

(26)

where . Substituting (26) into (23) yields the following simplified

expression for Zs:

(27)

where .

3) Performance Characterization—Under the assumption that there is no model

mismatch in the data model (13), and that the ML estimator  is unbiased, the

unconstrained CRB can provide a lower bound on the covariance, or mean-squared-error

(MSE), of  in (7) [46]. Note that this bound can also be asymptotically achieved by the

ML estimator [42], i.e., when Σm=1 Pm → ∞. Similarly, under the assumption that there is

no model mismatch in either the data model (13) or the sparsity model (21), and that the

constrained ML estimator  is locally unbiased, (24) can also be used to characterize the

covariance, or the mean-squared error (MSE), of  in (8).

Furthermore, under no mismatch in the signal model and data model, it can be shown [36],

[38] that

(28)

which confirms the benefits of the sparsity constraints. In the next section, we will calculate

the above bounds in a specific application to further illustrate this point.

III. Results

In this section, representative simulation results from T2 mapping of the brain are shown to

illustrate both the estimation-theoretic bounds and the empirical performance of the

proposed method.

The following metrics are used to evaluate the performance of different reconstruction

methods: 1) normalized error (NE) at the nth voxel:
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(29)

where  denotes the reconstructed parameter value at the nth voxel, 2) ROI normalized

error (rNE):

(30)

where θROI and  respectively denote the averaged parameter values within the ROI from

the ground truth and estimator, 3) normalized root-mean-squared-error (NRMSE) at the nth

voxel:

(31)

and 4) ROI normalized root-mean-squared-error (rNRMSE) in a ROI:

(32)

The first two metrics are used to evaluate the accuracy for one noise realization in a

simulation, whereas the last two metrics are used to evaluate the accuracy in Monte Carlo

simulations.5

A realistic numerical brain phantom from the Brainweb database [47] was used to simulate a

single-channel, multi-echo spin-echo T2 mapping experiment. For this experiment, the

contrast weighting function is φ(θ, γm) = exp(−TEmR2), where θ = R2 is the transverse

relaxation rate (i.e., the reciprocal of T2), and γm = TEm denotes the mth echo time. For the

spin-echo imaging sequence, the phase distribution matrix Ψm can be assumed to be an

identity matrix [26], for m = 1, ⋯, M. The spin density map and R2 map of the phantom are

shown in Fig. 1.

The imaging sequence consists of M = 16 equally spaced echoes with the first echo time TE1

= 12.5ms and the echo spacing ΔTE = 9.5ms. The acquisition matrix is 256 × 256, and the

spatial resolution is 1 × 1 mm2. We performed retrospective undersampling with a sampling

pattern that acquires full k-space samples for the first echo time and sparse k-space data

(with a unform random sampling pattern) for the remaining echo times. The acceleration

factor (AF) is defined as  Pm, i.e., the total number of voxels in the image

sequence divided by the total number of measurements, to measure the undersampling

levels. The SNR is defined as 20 log10(s/σ), where s denotes the average signal intensity

within a region of the gray matter in the T2-weighted image with the longest echo time, and

σ denotes the noise variance.

5In Monte Carlo simulations, the expectations in (31) and (32) are replaced by the empirical mean.
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Simulations were performed in the following two settings. In the first setting, we used a data

set that has 1) a monoexponential T2 relaxation, and 2) ρ and R2 maps that are sparse in the

wavelet domain. Specifically, we synthesized the ρ and R2 maps using their largest 20%

wavelet coefficients with the Daubechies 4 wavelet transform and three-level

decomposition. The T2-weighted image sequence  was then generated using the

monoexponential T2 relaxation model. This scenario is referred to as the simulation setting

without model mismatch. In the second setting, we used the original brain phantom from the

Brainweb database. This phantom was simulated in a way that both signal model mismatch

(multiexponential relaxation caused by partial volume effect [47]) and sparsity model

mismatch (the wavelet coefficients are just compressible) exist. This scenario is referred to

as the simulation setting with model mismatch.

A. Without model mismatch

We evaluated the performance of the following three methods: the ML estimator in (7), the

proposed estimator in (8), and an oracle estimator that assumes complete knowledge of the

support of the wavelet coefficients of θ and ρ. Mathematically, the oracle estimator 

can be defind as  and  with

(33)

where  and  represent the true support sets of the wavelet coefficients of θ and ρ,

respectively. Although the oracle estimator is generally impossible to implement in practice,

its performance can indicate the best performance that the proposed estimator could achieve.

It can be shown that the oracle estimator asymptotically achieves the constrained CRB, and

that it is asymptotically unbiased (see Appendix C).

For the ML estimator, ρ was initialized with the image reconstructed from the fully sampled

data at the first echo, and R2 was initialized with zero. For the oracle estimator, uo was

initialized with the largest 0.2N wavelet coefficients of the reconstructed image from the

first echo, and co was initialized with zero. For the proposed method, the same initializations

as the oracle estimator were used. It was observed empirically that the above initializations

consistently yielded good reconstruction results, although other initializations may result in

further improvement. In terms of sparsity level, we set K1 = K2 = 0.2N, i.e., the proposed

estimator knows the true sparsity level, but it does not have any knowledge of the support

sets of the sparse wavelet coefficients.

To numerically determine the ML estimator and the oracle estimator, the L-BFGS algorithm

was used, in which the maximum number of iterations was set to be 150 for both estimators.

For the proposed estimator, we used the GraSP algorithm as described in Section II-B.

Specifically, for the subproblem (11) in GraSP, we applied the L-BFGS algorithm as well,

for which the maximum number of iteration was also set to be 150. With respect to the

stopping criterion of GraSP, we terminated the algorithm, when either 1) the maximum
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iteration is larger than 20, or 2) the relative change of the cost function value between two

consecutive iterations is less than 1e−4.

We performed reconstructions using the three methods for AF = 4 and SNR = 30 dB. The

reconstructed R2 maps and their corresponding NE are shown in Fig. 2.6 As can be seen

qualitatively, the proposed method reduced noise corruption, comparing to the R2

reconstructed by the ML estimator. Quantitatively, the proposed method also has better

accuracy than the ML estimator that only takes advantage of the contrast-weighting signal

model, although the proposed method is inferior to the oracle estimator, as expected. For a

ROI in the white matter (labeled in Fig. 1), the rNEs are 2.13%, 1.17%, 1.50% for the ML,

oracle, and proposed estimators, consistent with the comparison shown in Fig. 2.

We conducted MC simulations (with 200 trials) to investigate the statistical properties of the

three estimators empirically. Fig. 3 illustrates the empirical bias and variance of each

estimator. The bias from the ML estimator and the oracle estimator are almost negligible,

confirming that these two estimators are asymptotically unbiased in theory. The proposed

estimator has larger bias than the ML. Compared to the oracle, it has also larger bias due to

its error in support detection. In terms of variance, the proposed estimator has much smaller

values than the ML estimator, due to the sparsity constraints. Furthermore, we see that for

all three estimators, their variances are much larger than their corresponding squared biases,

which implies the MSE is dominated by the variance component in the current simulation

setting.

In addition to the above MC study, we calculated the estimation-theoretic bounds using (17)

and (25) to analyze the benefits of sparsity constraints. The two bounds also inform the

performance limits of the ML estimator and the proposed estimator in the absence of

modeling errors. We also calculated the NRMSE of the three estimators from the MC study.

To compare the performance bounds with the NRMSE at the right scale, we use the

following normalized CRB and CCRB:

(34)

Fig. 4 shows the performance bounds and NRMSE maps. As can be seen, the normalized

CRB predicts the NRMSE of the ML estimator well, while the normalized CCRB accurately

captures the NRMSE of the oracle estimator. Both theoretical results and empirical study

clearly demonstrate the benefits of incorporating the sparsity constraints. Take a square ROI

in the white matter (labeled in Fig. 1) for example. From the normalized CRB and CCRB

maps, it can be seen that by incorporating the sparsity constraints with K1 = K2 = 0.2N, the

reconstruction error at best decreases from 4.17% to 1.27%. As one practical estimator, the

proposed method attains the reconstruction error at around 2.78%, which is better than the

ML estimator.

6Note that the background, skull, and scalp are not region of interest for our study, and thus they were set to zeros for all the results
shown in this section.
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We studied the performance bounds and empirical performance of the three estimators at

different undersampling sampling levels. The MC simulations were performed for AF =

2.67, 3.2, 4, and 5.33, all with SNR = 35 dB. The rNRMSE (with the ROI labeled in Fig. 1)

was computed. We also calculated the performance bounds at the above undersampling

levels. Fig. 5(a) shows the plot of the rNRMSE and the normalized performance bounds

with respect to AF. As expected, both performance bounds and the empirical performance of

the three estimators become worse when AF increases. Consistent with the previous results,

the two performance bounds well predicts the empirical performance of the ML and oracle

estimators, respectively. The proposed estimator improves over the ML estimator at all AFs.

Note that the rNRMSE of the proposed estimator at AF = 5.33 is smaller than that of the ML

estimator at AF = 2.67, i.e., the proposed estimator achieves even better performance than

the ML estimator when it only uses half amount of k-space data as the ML estimator.

We also studied the performance bounds and empirical performance of the three estimators

at different SNR levels, i.e., SNR = 25, 30, 35, and 40 dB, all with AF = 4. The plot of

rNRMSE (with the same ROI) and the normalized performance bounds with respect to SNR

are shown in Fig. 5(b). It can be seen that the proposed estimator has improved noise

robustness over the ML estimator, both theoretically and empirically, at all tested SNR

levels. Note that the proposed estimator achieves a similar rNRMSE at SNR = 35 dB to what

the ML estimator does at SNR = 40 dB.

B. With model mismatch

We also performed simulations to study the performance of the proposed method with

model mismatch. In this simulation setting, the proposed estimator and the oracle will be

affected by the modeling errors from both the monoexponential model and sparse

approximation, while the ML estimator is only influenced by the monoexponential model

mismatch.

For the proposed method, we empirically set the sparsity level K1 = K2 = 0.2N, which is the

same as the previous simulations. For the oracle estimator, we set  and  as two support

sets that contain the largest 0.2N wavelet coefficients of ρ andθ, respectively. Furthermore,

for the numerical solvers of three estimators, we followed the same implementation as

described for the simulations without model mismatch.

We performed reconstructions using the three methods under AF = 4 and SNR = 30 dB. The

reconstructed R2 maps, along with the corresponding NE maps, are shown in Fig. 6. This

figure demonstrates the improvement of the oracle and the proposed estimator over the ML

estimator. For the ROI in the white matter, the rNEs are 2.41%, 1.47%, and 1.71% for the

ML, oracle, and the proposed estimator.

Fig. 7 shows the bias-variance analysis of the three estimators from the MC simulations

(with 200 trials) under AF = 4 and SNR = 30 dB, and Fig. 8 shows the corresponding

NRMSE maps. With the sparsity constraints, the oracle and proposed estimators have

significantly reduced variance and NRMSE than the ML estimator. Compared to the case

without modeling error, the three estimators exhibit similar level of variance. However, in

terms of biases, the three estimators all have increased values. It is worth noting that the
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squared bias of the ML estimator exhibits an aliasing-like pattern, which is different from

those of the oracle and the proposed estimator. This is due to the different modeling errors

that they have.

We again performed MC simulations to evaluate the three estimators at different

undersampling levels, i.e., AF = 2.67, 3.2, 4, and 5.33, with SNR = 35 dB. We also

performed the MC simulations at different noise levels, i.e., SNR = 25, 30, 35, and 40 dB,

with AF = 4. The plot of the rNRMSE (with the same ROI) with respect to AF, as well as

rNRMSE with respect to SNR, is shown in Fig. 9 (a) and (b), respectively. This figure

further demonstrates that the proposed method improves over the ML estimator even in the

presence of modeling errors, at different undersampling levels or noise levels.

IV. Discussion

The proposed method imposes sparsity constraints on both the relaxation parameter map θ

and the proton density map ρ, which extends our early work [27] that only enforces the

sparsity constraint on θ. Although ρ is assumed to be the nuisance parameter, we observed

that imposing the sparsity constraint on ρ slightly improved the reconstruction accuracy for

θ. Furthermore, with the additional sparsity constraint, the computation and memory usage

for calculating the constrained CRB is significantly reduced, since the matrices in (27) have

much smaller sizes.

The proposed estimator needs to specify the sparsity levels K1 and K2 in (9), which will

impact the sparse approximation error and noise amplification of the resulting parameter

maps. It is also directly related to the trade-off between bias and variance of the proposed

estimator. If K1 and K2 are too small, severe sparse approximation error can incur significant

bias that dominates MSE. On the contrary, if K1 and K2 are too large, significant variance

due to noise amplification can diminish the benefit of the sparsity constraints and the

performance of the proposed method can be very close to that of the ML estimator. In the

paper, we manually set K1 and K2, with the reference of the underlying ground truth, to

balance the bias and variance of the proposed estimator. For some specific applications (e.g.,

T2 mapping for brains), the level of sparse approximation error might be roughly known,

which could assist the sparsity level selection. Generally, choosing sparsity levels in a

principled way, in the absence of the ground truth, is still an open problem, which requires

further systematic study.

The parametric signal model that assumes a monoexponential relaxation process has been

used in the proposed method. In some practical applications, a multi-exponential signal

model may be more accurate [48]-[50]. The proposed method, including the algorithm and

performance bounds, can be generalized to multiexponential signal models, although the

optimization problem will be more difficult. Furthermore, in some specific applications

(e.g., variable flip angle T1 mapping), it would be beneficial to take into account of

imperfections in data acquisition [51], such as B1 field inhomogeneity. These imperfections

can also be incorporated into the signal model used in the proposed method, although the

estimation problem could have increased noise sensitivity due to the increased number of

unknowns.
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The proposed method predetermines the phase distribution  and incorporates it

into the signal model in (3). In many applications, the phase distribution can be accurately

pre-estimated from auxiliary data. This way of formulating the problem simplifies the

algorithm and calculation of the performance bounds. However, note that the proposed

method can be generalized such that the phase distribution can be treated as unknown. One

straightforward extension is to reformulate the problem with the separate real and imaginary

components of ρ, and modify the algorithm and performance bound calculation accordingly.

Alternatively, we can also directly deal with complex ρ in the estimation problem. Note that

this extension requires careful complexification in solving the nonlinear least-squares

problem in (11) (see [52] and references therein) and calculating estimation-theoretic bounds

[53], [54].

The propose method imposes explicit sparsity constraints through the ℓ0 quasi-norm.

Alternatively, sparsity constraints can also be enforced using other penalty functions (such

as the ℓ1, or total-variation regularizations). With those sparsity constraints, the

reconstruction problem can be formulated as a penalized maximum likelihood (PML)

estimation problem. In [55], we have presented an investigation along this direction.

Preliminary results demonstrate that these two different methods imposing sparsity

constraints can lead to distinct bias-variance trade-off under different SNR regimes.

Systematic study of the difference will be presented in the future work.

The accuracy of the GraSP algorithm for the proposed method depends critically on the

accuracy of solving the nonconvex subproblem (11), which involves the multiplicative

coupling of two optimization variables u and c. A poor solution from (11) can lead the

GraSP algorithm to an inaccurate reconstruction. However, in our case, we have empirically

observed that with a proper initialization and scaling compensation, the L-BFGS algorithm

can converge to a reasonable stationary point, leading to a fairly accurate final

reconstruction.

Although the proposed method improves over the ML estimation, there is still a relatively

large gap between its empirical performance and the constrained CRB when SNR is low or

the undersampling level is high. There are ways to potentially improve the proposed method,

and drive its performance closer to the constrainted CRB. One possibility is to use a solution

algorithm of better accuracy than the current GraSP algorithm. Viable candidates to be

studied include [30], [31]). Another possibility is to use stronger sparsity constraints (e.g.,

the structured sparsity) on u and c for the estimation problem. For example, the tree

structured sparsity constraints [56] on the wavelet coefficients could be incorporated into

(9). Note that following a similar procedure in [56], the GraSP algorithm could be also

extended to solve the resulting new constrained estimation problem.

Regarding the computational efficiency, it takes about 16 minutes to run the GraSP

algorithm for the data set in Section III on a workstation with a 3.47GHz dual-hex-core Intel

Xeon processor X5690, 96 GB RAM, Linux system and Matlab R2012a. Since, at each

iteration, the running time for the gradient evaluation and support operation is almost

negligible compared to solving the subproblem (11) by the the L-BFGS algorithm, the

overall efficiency of the algorithm may be considerably improved by using faster numerical
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solvers for (11). The majorization-minimization (MM) based algorithms [57] might be a

viable alternative, since these algorithms can decompose the original optimization problem

into a series of simplified problem, which may lead to acceleration. Also, note that (11) is a

separable nonlinear least-squares problem (i.e., when ct is fixed, it becomes a linear least-

squares problem with respect to ut), thus the variable projection algorithm [58] can be

utilized to solve (11), which might result in better convergence.

In this work, the theoretical analysis with the sparsity constrained CRB relies on the

assumption in (21). Note that if the coefficients c and u are only approximately sparse (or

compressible), sparsity constrained CRB is not applicable in theory, although it may still

provide some useful insights in practice. In this case, different types of performance bounds

may be needed, depending on the class of signal models considered. For example, if we

assume certain compressible prior distributions [59] on c and u, the parameter estimation

problem can be posed within the Bayesian estimation framework and the Bayesian CRB

[60]-[62] could be used for performance characterization. Systematic investigation of these

extensions will be carried out in the future work.

For the sake of simplicity, we used the orthonormal wavelet transform as an example to

illustrate the performance of our proposed method. But note that both the algorithm and

theoretical analysis can be extended to incorporate other types of sparse representations,

such as overcomplete sparsifying transforms (e.g., [63]) or learned dictionaries (e.g., [64],

[65]), which may lead to better performance. Also note that if overcomplete sparsifying

transforms are used for θ and ρ, although (8) is no longer equivalent to (9), the synthesis

form of the formulation (9) still applies. Furthermore, extension to analysis-type sparsifying

transforms would also be an interesting problem for future investigation. Some preliminary

work has been done using the finite difference within the ℓ1-PML formulation [55], and it

might also be interesting to explore the extension to the ℓ0 constrained formulation.

It is also worthwhile to note that the proposed method is not restricted to the sampling

scheme described in this paper. It allows for flexible acquisition design in specific

application scenarios, although the initialization and phase estimation schemes need to be

changed accordingly. The estimation-theoretical bounds presented in the paper can also

provide useful tools to assist experimental design (i.e., selection of sampling patterns or

sequence parameters).

In this work, we focus on presenting the algorithmic and theoretical contributions of our

work, and demonstrate the performance of the proposed method using simulations.

Systematic experimental study are needed to further evaluate the practical utility of the

proposed method. In this case, some practical issues also need to be taken into account, such

as the generalization to multichannel acquisitions [66] and compensation of effects from

sequence imperfection [67].

V. Conclusion

This paper presented a new method to accelerate MR parameter mapping with sparse

sampling. It directly reconstructs parameter maps from highly undersampled, noisy k-space
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data, utilizing an explicit signal model while imposing sparsity constraint on the parameter

values. An efficient greedy-pursuit algorithm was presented to solve the underlying

optimization problem. The properties and performance of the proposed method were

analyzed theoretically using estimation-theoretic bounds and also illustrated using a T2

mapping application example with computer simulations. We expect that the proposed

method will prove useful for various MR parameter mapping applications.
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Appendix A

Gradients Calculation

This appendix presents a detailed derivation for the gradients  and , and also the

gradient for the cost function in (11). First, we derive  and . Recall that Ξ(c, u) denotes

the cost function in (9). For simplicity, we introduce an auxiliary variable  defined as

(35)

Using the chain rule of the derivative, we have

(36)

where  is a diagonal matrix with , and

(37)

We then derive the gradient for (11). Denoting the cost function value of (11) by , its

derivative with respect to ct and ut can be written as
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(38)

Appendix B

FIM for the data model (13)

In this appendix, we derive the FIM for the data model (13). Based on the definition of FIM

[42], the partitioned FIM is formed as follows:

(39)

where . In the following, we derive the expression for each submatrix of

J.

Assuming nm is complex white Gaussian noise, i.e., nm ~ N(0, σ2), the log-likelihood

function ln p (d; u, c) can be expressed as

(40)

The first-order derivative of ln p(d; u, c) with respect to ρ and c can be expressed as:

(41)

where

(42)

and also recall that qm is defined in (37).
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Taking the second-order derivatives yields

(43)

where  is a diagonal matrix with , Hm is a

diagonal matrix with , and Diag {a} converts a vector a into a

diagonal matrix such that [Diag {a}]n,n = an.

Evaluating the expectation of the expressions in (43) with respect to nm yields

(44)

In obtaining (44), we use the fact that

(45)

based on the assumption that nm is white Gaussian noise.

Appendix C

Asymptotic Properties of The Oracle Estimator

In this appendix, we establish the following asymptotic properties for the oracle estimator in

(33).

Theorem 1. Assuming that both the data model (13) and sparsity model (21) hold, and that

nm is complex white Gaussian noise, the oracle estimator { , } in (33) is asymptotically
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unbiased. Furthermore, the covariance of { , } also asymptotically achieves the

constrained CRB, i.e., A(ATJA)†AT, where  is defined in (23).

Proof: First, note that the oracle estimator in (33) can be determined by solving the

following unconstrained optimization problem, i.e.,

(46)

through variable change u = Euus and c = Eccs. The optimal solution of (46), { , }, is the

ML estimator with the data model:

(47)

Based on the invariance property of the ML estimation (Theorem 7.4 in [42]), the oracle

estimator, given by

(48)

is the ML estimator of {u, c} for the model (13) and (21), and thus it is asymptotically

unbiased.

Furthermore, it is known that the ML estimator { , } asymptotically achieves the CRB

[42], i.e.,

(49)

where Js is the FIM for the data model (47), defined by

(50)

which can be rewritten as

(51)

Finally, taking the covariance on the both sides of (48) yields

Zhao et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 September 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(52)

which establishes the second half of the theorem.
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Fig. 1.
Numerical brain phantom: a) the spin density map, and b) the R2 map (with a marked ROI in

the white matter).
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Fig. 2.
Reconstructed R2 maps and corresponding NE maps for the simulations without model

mismatch, from the ML estimator, the oracle estimator, and the proposed estimator, at AF =

4 and SNR = 30 dB.
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Fig. 3.
Squared bias and variance of the ML estimator, the oracle estimator, and the proposed

estimator at AF = 4 and SNR = 30 dB for the simulations without model mismatch.

Zhao et al. Page 28

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 September 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 4.
Estimation-theoretic bounds and NRMSE maps for the simulation setting without model

mismatch: a) normalized CRB map, b) normalized constrained CRB map, c)-e) NRMSE

maps of the ML, oracle, and proposed estimators.
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Fig. 5.
The rNRMSE and estimation-theoretic bounds with respect to different AF or SNR: a)

rNRMSE and normalized performance bounds versus AF, b) rNRMSE and normalized

performance bounds versus SNR.
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Fig. 6.
Reconstructed R2 maps for the simulations with model mismatch, from the ML estimator,

oracle estimator, and proposed estimator, under AF = 4 and SNR = 30 dB.
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Fig. 7.
Squared bias and variance for the ML estimator, oracle estimator, and the proposed

estimator from the simulations with model mismatch.
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Fig. 8.
NRMSE maps for the ML estimator, oracle estimator, and the proposed estimator from the

simulations with model mismatch.
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Fig. 9.
The rNRMSE plot at different AF and SNR for the simulations with model mismatch: a) the

rNRMSE versus AF, and b) the rNRMSE versus SNR.
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