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Historical Perspective

Transcriptional coactivators are defined, broadly, as the family of coregulator molecules

which interact with nuclear receptors and other transcription factors to enhance the rate of

gene transcription. The existence of coactivator-like proteins was predicted in early 1970’s,

as some nuclear, nonhistone receptor-associated proteins were found to bind nuclear

receptors and increase their interaction with DNA to enhance their transcription potential

(Spelsberg, et al. 1971). This crude fraction was later shown to contain many diverse

coactivators; the large number of such proteins was unpredicted at the time and prevented

purification. Although it was clear that steroid hormones such as estrogen can rapidly induce

the new synthesis of specific mRNA and proteins (Means, et al. 1972), the importance of

these nuclear-acceptor molecules in ligand-dependent functions was postulated to enhance

NR transcription but the concept was not proven (Yamamoto & Alberts. 1975). In the

interim, a series of sophisticated molecular studies unfolded that indicated that ligand

binding activates conformational changes in the steroid receptor to promote DNA-binding

and transcriptional activity; anti-hormones were shown to effectively oppose such structural

alterations (Allan, et al. 1992). In addition to ligand-dependent functions, the steroid

receptors were also found to be activated in a ligand-independent manner (Denner, et al.

1990, Power, et al. 1991).

In the 1990’s, studies designed to elucidate the functional roles of the corepressors and

coactivators were commenced again, initially in yeast (Baniahmad, et al. 1993, McDonnell,

et al. 1991a, McDonnell, et al. 1991b). An inherent negative regulatory function for the

steroid receptors was identified in steroid receptors, and analyzed first in yeasts by

demonstrating binding of steroid receptors to repressors such as SSN6, which when mutated

allowed receptor activation of gene expression (McDonnell, et al. 1992, Vegeto, et al.

1992). Similar yeast studies were carried out to demonstrate ligand-mediated coactivation.

These proof-of-principle yeast studies led to the definition of two classes of coregulators:

coactivators and corepressors- and were followed by the biochemical discovery of a
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corepressor activity for TR in mammalian cells and the publications of other receptor-

associated proteins in mammals (Baniahmad, et al. 1995, Baniahmad, et al. 1995, Cavailles,

et al. 1994, Halachmi, et al. 1994). In aggregate, these studies set the stage for the first

cloning of a cDNA encoding a mammalian nuclear receptor interacting coactivator protein.

This first authentic NR coactivator, termed Steroid Receptor Coactivator-1 (SRC-1), was

identified using a yeast two hybrid genetic screen employing the ligand-binding domain

(LBD) of the progesterone receptor (PR) (Onate, et al. 1995, Xu, et al. 1998). SRC-1 was

the first member of the p160 family of coactivators cloned, following which two additional

family members SRC-2 (NCOA2/GRIP1/TIF2) (Voegel, et al. 1996) and SRC-3 (NCOA3/

ACTR/pCIP) (Chen, et al. 1997, Torchia, et al. 1997) were identified. The p160 family

members are closely related molecules with ~60% homology, but are functionally distinct.

In addition to the full length SRCs, some shorter forms of SRCs were identified as well.

SRC-3Δ4 is a splice isoform of SRC-3 with a deletion of exon 4 (SRC-3Δ4) and the protein

lacks the N-terminal bHLH (helix-loopl-helix) domain that contains a nuclear localization

signal (NLS) (Long, et al. 2010, Reiter, et al. 2001). More recently, a shorter 70kD isoform

of SRC-1 was identified and found to be highly elevated in human and mouse endometriotic

tissues (Han, et al. 2012). This 70kD isoform of SRC-1 is the C-terminal fragment of the

full-length SRC-1which is proteolytically cleaved by MMP-9. Over the last two decades, we

gained considerable knowledge about the coactivators and their impact on human health and

physiology. These findings together classified a novel family of nuclear receptor

coactivators which become known as the master regulators of gene regulation.

Coactivator complexome

After the discovery of the first authentic coactivator SRC-1, it was predicted that cells may

have around five to ten coactivators and few corepressors to regulate the gene transcription.

Surprisingly, more than 400 coregulators have been reported so far, substantiating their

prevalent and critical role in transcriptional regulation (Lonard & O'malley. 2007).

Molecular analyses by mass spectrometry identified that SRCs work in tandem with other

coregulators in a close association by forming large multi-subunit stable complexes. This

proteomics information concerning a coactivator-protein-complex also known as

‘complexome’ - identified that the complexes are in a dynamic rearrangement in an ordered

manner to facilitate various reactions and sub-reactions in transcription. These reactions

include phosphorylation, ubiquitination, methylation and acetylation of the associated

molecules in the coactivator complex, which further defines the specific affinity of the

coactivators for NR, transcription factors and other associated molecules (Han, et al. 2009).

This multifunctional component of the coactivator-complexome allows them to integrate

different upstream environmental stimuli and to transmit to a variety of enzymatic activities

at the promoter for regulating transcription.

Proteomic investigations identified the dynamic nature of a SRC-3 complex assembled on

estrogen response element (ERE) in a ligand dependent manner (Fig. 1A). The SRC-3

complex consists of several interacting partners with enzymatic activities which include

kinases, ATPases, acetyl-transferases, methyl-transferases as well as ubiquitin-ligases, all of

which contribute to the dynamic functions of the coactivators (Malovannaya, et al. 2010).

Recent studies on coregulator dynamics identified some novel mechanisms for ER-regulated
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gene transcription, and the findings postulated a ‘three-states model’ of coactivator-

dependent complex formation (Foulds, et al. 2013). In the first step, ligand-bound ER on

canonical EREs forms a biochemically stable ‘poised’ complex by attracting a set of

coactivators and certain corepressors. Addition of ATP rapidly converts these complexes

into an ‘activated’ state by the kinetic activity of DNA-dependent protein kinase (DNA-PK)

which mediates phosphorylation events on coactivators and ER. Finally, DNA-PK promotes

ERα-mediated transcription by phosphorylating coactivators SRC-3 and MED1 as well as

dismissing corepressors RIP140 from the complex (Foulds, et al. 2013). These studies

unravel the dynamic events mediated by kinases on a coactivator complexome to fine-tune

transcription.

Integrative mass spectrometric-based analysis of affinity purified endogenous coregulator

complexes identified a hierarchical organization of protein complexes that exists as three

discrete layers in an intrinsically tiered organization of the complexome (Malovannaya, et

al. 2011). These include relatively stable minimal endogenous core modules; these combine

to form the variable core complex-isoforms; and finally, coregulator complex-complex

interactions form networks. Based on the type of protein complexes formed, the coregulators

can be broadly classified into two major types: type I classifies relatively stable multi-

subunit complexes consisting of conserved coactivator molecules, whereas type II represents

context dependent-associated coactivators that are recruited in response to various extra-

cellular stimuli (Malovannaya, et al. 2011). Type I coregulators include mediators, CoREST

(corepressor-repressor element-1 silencing transcription factor) complex, NCOR (nuclear

receptor corepressors), nucleosome remodeling and deacetylase (NURD) complexes and the

SWI/SNF (BAF/P-BAF), whereas SRCs are prime-examples of type II complexes. This

dynamic regulation of coactivator complex assembly by the SRCs is in-turn regulated by

various upstream signaling events that impart post-translational modifications (PTM) onto

the coactivators (Dasgupta, et al. 2014).

Signal specific PTM-codes on SRCs

The molecular recognition of the activity of steroid receptor coactivators depends upon the

PTM codes on them. Phosphorylation, acetylation, sumoylation, ubiquitination, and

methylation of the SRCs (Fig. 1B) intricately coordinate and fine-tune their activity,

localization, protein stability and dictate the interacting partner molecules used to build up

the complexome.

Phosphorylation

In response to multiple upstream signaling events like growth factors, cytokines, hormones

and nutrient signaling, protein kinases phosphorylate SRCs either at a single site or multiple

sites. Depending on the pattern of the phoshorylation code(s) on SRCs they attract select

binding partners; nuclear receptors or transcription factors along with other coregulator

molecules to regulate the gene transcription. In addition to exerting effects on the nuclear

genome by binding directly to the NRs, steroid hormones also activate several kinases such

as MAPK, JNK, AKT and ERK1/2 which then phosphorylate NRs and coactivators to

stimulate gene transcription by non-genomic signaling (Lonard & O'Malley. 2007). Steroid

hormone signaling phosphorylates SRC-3 at multiple residues including N-terminal Thr24,
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several sites in a Serine/Threonine-rich region, and Ser857, Ser860 and Ser867 in the receptor-

interacting domain (RID) (Long, et al. 2012, Wu, et al. 2004, Yi, et al. 2005, Yi, et al.

2008). Similarly, SRC-1 is phosphorylated on Thr1179 and Ser1185, and SRC-2 on Ser736 by

MAPK thereby increasing coactivator-affinity to NRs (Gregory, et al. 2004, Rowan, et al.

2000). SRC-2 has emerged as a major coactivator for glucocorticoid receptor (GR) and

certain phosphorylation events on SRC-2 by casein kinase (CK) and cyclin-dependent

kinase 9 (CDK9) dictate GR actions (Dobrovolna, et al. 2012). Four major phosphorylation

sites Ser469, Ser487, Ser493 and Ser499 in the N-terminal domain of SRC-2 protein promote

GR-dependent transcription by facilitating recruitment of coactivator-complex to native GR

targets (Dobrovolna, et al. 2012). SRC-3Δ4, the splicing variant of SRC-3 also is regulated

by phosphorylation. But instead of a direct role in nuclear-transcription, the SRC-3Δ4 is

localized in the cytosol, and is phosphorylated by PAK kinase, whereupon it then binds to

epidermal growth factor receptor (EGFR) and transduces activity to focal adhesion kinase

(FAK). Thus, phosphorylated SRC-3Δ4 acts as a critical signaling molecule to regulate the

migratory potential of tumor cells by bridging the gap between EGFR and FAK (Long, et al.

2010). In summary, coactivators are molecular integrators of upstream signaling events, and

phospho-coded SRCs direct assembly of specific interacting partners for gene transcription.

Acetylation and Methylation

Histone acetylases and deacetylases, along with methylases and demethylases are essential

components of coactivator complexes responsible for modifying chromatin. Based on their

function of adding or removing histone marks, they are classified as epigenetic ‘writers’ or

‘erasers’. A number of co-coactivators including p300/CBP, GCN5, and PCAF possess

intrinsic histone acetyl transferase (HAT) activity (Couture & Trievel. 2006). SRCs recruit

the HATs and methyl transferases such as peptidylarginine methyltransferases (PRMTs) to

remodel chromatin and regulate gene transcription. Additionally, a coactivator such as

SRC-3 is in turn acetylated by p300/CBP and methylated by coactivator-associated arginine

methyltransferase 1 (CARM1) at Arg1171 (Feng, et al. 2006). Acetylation of SRC-3 by CBP

coincides with the attenuation of hormone induced gene transcription by enforcing the

complex disassembly (Chen, et al. 1997, Chen, et al. 1999). Mechanistically, acetylation

neutralizes the positive charges of two lysine residues adjacent to the ‘LXLLL’ motif of

SRC-3 thereby disrupting the association of HAT complexes with the NR coactivator

complex and terminating the gene transcription (Chen, et al. 1999). CARM1, which

activates transcription by modifying core histone tails, also promotes dissociation of

coactivator complex and terminates hormone-induced transcription by methylating SRC-3

(Feng, et al. 2006). In addition to the acetylases, the family of lysine-deacetylases, histone

deacetylases (HDACs) and sirtuin proteins also regulate gene transcription as coregulators

(Lahue & Frizzell. 2012). HDACs are recruited to the coregulator complex to repress gene

transcription, in particular by corepressors such as NCoR. There are two classes of HDACs,

class I and class IIa, the latter being relatively weak in enzymatic activity. Additionally,

sirtuins, the NAD-dependent deacetylases, also are recruited to the coregulator-complex and

are known to modulate gene transcription.
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Ubiquitination and Sumoylation

Activity and stability of coactivators are regulated by ubiquitination, an enzymatic process

in which 8.5 kDa small molecules named ubiquitin are systematically added by E3 ubiquitin

ligase. Ubiquitination is a highly regulated process, and phosphorylation on coactivators acts

as a priming event for this modification by increasing their affinity towards ubiquitin E3

ubiquitin ligase. Phosphorylation by GSK3β on SRC-3-Ser505 increases the coactivator

affinity towards Fbw7α, a component of E3-ligase complex which then ubiquinates SRC-3

on Lys723 and Lys786 (Lonard & O'Malley. 2007, Wu, et al. 2007). Mono-ubiquitinated

SRC-3 has higher affinity for ERα and stimulates ERα-dependent gene transcription,

whereas poly-ubiquitinated SRC-3 is rapidly degraded, thereby decreasing SRC-3 protein

stability. SRC-3 protein stability and activity also are regulated by specific phosphorylation-

codes that induce degradation of the protein known as “phospho-degron” in the N-terminal

domain of the protein; phosphorylation of Ser102 in the degron by CKI (casein kinase I)

increases coactivator affinity for speckle-type POZ protein (SPOP)-E3 ligase (Li, et al.

2008). On the contrary, certain mutations in the SPOP protein alter the affinity of SPOP for

SRC-3 imposing a SPOP-dependent regulation of SRC-3 activity and gene transcription

(Geng, et al. 2013). Similarly, CUL-3, a member of the family of E3-ligase scaffolding

proteins also modulates SRC-3 activity by binding to the Ser860-phosphorylated SRC-3 in

response to retinoic acid induction (Ferry, et al. 2011). Thus post-translational modifications

on SRC-3 by phosphorylation-coupled-ubiquitination modulate the activity and stability of

the coactivator to control the dynamics of transcription.

In addition to ubiquitination, covalent modifications by addition of small ubiquitin-like

modifier (SUMO) to the lysine-residues of the coactivators have been identified. SRCs are

subjected to sumoylation at two conserved lysine residues in the RID motif, which

functionally enhance their interaction and affinity for NRs (Wu, et al. 2006). However,

sumoylations of SRC-3 on Lys723 and Lys786 were found to have a negative impact on its

activity, most likely due to the competitive inhibition of ubiquitinating in these sites.

Nevertheless, sumoylation of coactivators provides another degree of dynamic regulation to

monitor and manipulate gene transcription.

Coactivators in disease pathophysiology

Coactivators have emerged as cellular integrators of various upstream signaling pathways

that transduce these signals into transcriptional outputs to regulate expression of myriad

gene targets (Fig. 2). Hence, dysfunctions in coregulators are principal drivers of numerous

pathologies (Lonard & O'Malley. 2012). Here we will highlight selected examples of the

clinicopathological conditions affected by the transcriptional coactivators.

Neurological disorders

Mutations in certain coregulator genes alter the epigenetic marks on chromosomes, affecting

brain development and promoting onset of certain neurodevelopmental disorders

(Urdinguio, et al. 2009). These epigenetic dysfunctions cause moderate to severe

perturbations in the transcriptomics, disrupting the neuronal growth and differentiation.

Mutations in the chromatin remodeling protein ATRX (ATP-dependent helicase ATRX, X-
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linked helicase II) confer aberrant DNA methylating patterns in the chromatin leading to a

neurodegenerative disorder named ATRX syndrome (Gibbons, et al. 2008). This syndrome

is an X-linked disorder confined only to the males while the female-carriers manifest limited

symptoms. Symptoms include mental retardation often accompanied with alpha-thalassemia,

unusual facial appearance and urogenital defects (Gibbons, et al. 1995). ATRX is a member

of the Snf2 family of enzymes that maintains nucleosome stability and regulates gene

transcription by modulating the functions of chromatin remodeling transcriptional

regulators, such as the polycomb group protein EZH2 (Eisen, et al. 1995). Patients with

ATRX syndrome have severely comprised genetic defects due to mutated ATRX gene.

Rubinstein-Taybi syndrome (RTS) is another example of a neurological disorder associated

with the dysfunction of a histone acetyltransferase (HAT). The majority of the Rubinstein-

Taybi cases are associated with mutations in the CBP gene located at chromosome 16p13.3

and some in EP300 (E1A binding protein p300) gene at chromosome 22q13.2 (Lonard &

O'Malley. 2012). In 1963, Jack Herbert Rubinstein and Hooshang Taybi described a series

of cases with this syndrome demonstrating some typical features which include mental

disability; distinctive facial features; broad thumbs and toes; and often associated with

cryptorchidism in males. This disease is rare and approximately 1 out of 100,000 to 125,000

children are born with this disorder. CBP is a transcriptional coactivator which has intrinsic

HAT-activity, and binds to the transcription factor CREB (cAMP response element-binding

protein) to regulate gene transcription (Park, et al. 2014). Mutation or deletion in the CBP

gene severely affects HAT activity of CBP and the ability of CBP to transactivate CREB,

indicating that loss of the HAT activity of CBP may cause RTS.

In Huntington's disease transcriptional coactivator PGC-1α expression is severely impaired,

and mouse genetic studies revealed that loss of PGC-1α severely impairs metabolism and

accentuates neurodegeneration. Huntington's disease is an autosomal-dominant disorder

characterized by impaired muscle coordination that leads to cognitive malfunctioning and

psychiatric problems. PGC-1α is a potent suppressor of reactive oxygen species (ROS) by

activating the transcription of ROS defense enzymes superoxide dismutase (SOD1),

manganese SOD (SOD2), catalase, and glutathione peroxidase (Chaturvedi, et al. 2009). In

absence of PGC-1α coactivator, the neuronal cells are extremely sensitive and vulnerable to

neurotoxins leading to apoptotic death of neuronal cells and oxidative damage in the brain.

Studies using SRC knockout animals identified important roles for nuclear receptor

coactivators in the coordination of neurobehavioral functions and brain development. SRC-1

is ubiquitously expressed in the human brain with more prominent presence in hippocampus,

olfactory bulbs and cortex (Meijer, et al. 2000). SRC-1 is a crucial regulator of sexually

dimorphic regions in the brain and coactivates GR functions to coordinate the

hypothalamic–pituitary–adrenal (HPA) axis of the brain. Neurobehavioral tests on SRC-1−/−

animals compared to wildtype littermates discovered some novel roles of SRC-1 in anxiety

response (Stashi, et al. 2013). In comparison, SRC-2−/− females displayed decreased anxiety

responses under certain environmental stimuli, whereas males were found to have deficits in

sensorimotor gating, a neurological process which is important to understand the functional

significance of attentional abnormalities. In contrast, SRC-3−/− males were devoid of any

noticeable neurological abnormalities, however the females exhibit reduced exploratory
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activities and increased anxiety behavior (Stashi, et al. 2013). Collectively, these findings

establish the role of SRCs in the regulation of the central nervous system (CNS) and

coordination of neurobehavioral phenotypes in a gender-specific manner.

Cardiac development and disease

Transcriptional coactivators can play an essential role in cardiac development by regulating

the mitochondrial response of the heart by broadly regulating gene expression from both

nuclear and mitochondrial genomes. PGC-1 has been extensively studied with respect to

cardiac development and bioenergetics of the heart, and its expression was found to be

repressed in numerous models of heart failure with a maladaptive energetic profile (Rowe, et

al. 2010). PGC1-α induces expression of numerous genes in cardiac cells regulating major

metabolic pathways to maintain a steady supply of ATP production. Genes induced by

PGC-1α include the majority of mitochondrial respiratory subunits, ATPase complexes,

enzymes of fatty acid biosynthesis and transport, key enzymes of the glycolytic and

tricarboxylic acid cycle (TCA) (Banke, et al. 2010). In addition to metabolic pathways,

PGC1-α induces angiogenesis in myocytes by directly activating a broad range of

angiogenic factors including vascular endothelial growth factor (VEGF) independent of the

hypoxia-inducible factor (HIF) pathway (Arany, et al. 2008). Overexpressing PGC-1α in the

heart identified univocal roles of the coactivator in mitochondrial biogenesis (Lehman, et al.

2000). PGC-1α activates both mitochondrial as well as nuclear genes by directly

transactivating transcription factors nuclear respiratory factor (NRF) and estrogen-related

receptor (ERR) (Hock & Kralli. 2009). These findings have clearly placed PGC-1 as a prime

regulator of metabolism in heart, both in cardiomyocytes as well as cardiac cells.

In addition to PGC-1, expression of coactivator SRC-2 is found to be repressed in failing

hearts. Genetic ablation of SRC-2 identified an activation of a ‘fetal gene program’ in adult

mice by altering the expression of metabolic and sarcomeric genes (Reineke, et al. 2012).

Mechanistically, SRC-2 depletion reduces the expression of several transcription factors

such as GATA as well as coactivators like PGC-1α indicating that SRC-2 is a prime

regulator of the steady-state adult cardiac transcriptomic profile (Reineke, et al. 2012).

These studies have deciphered the importance of coactivators in cardiac functioning and

how subtle changes in their expression can lead to catastrophic medical conditions.

Inflammatory diseases

The most common lung diseases including asthma, chronic obstructive pulmonary disease

(COPD), cystic fibrosis and acute respiratory distress involve inflammatory responses

coordinated by expression of multiple proinflammatory genes. Several transcriptional

coactivators have been linked as the molecular regulators of inflammatory responses, of

which HDACs deserves special mention (Barnes, et al. 2005). Patients with asthma exhibit

increased expression of HAT with simultaneous reduction in HDAC1 in the brochial and

alveolar macrophages compared to normal airways (Cosio, et al. 2004). In patients with

COPD, there is a significant decrease in HDAC2 expression with a concomitant increase in

HAT activity facilitating activation of NF-κB and transcription of proinflammatory

cytokines (Qu, et al. 2013). The alveolar macrophages in COPD patients display increased

release of TNF-α and IL-8 in response to stimuli thus contributing to the adversity of the
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pathology. Traditional therapy includes corticosteroids which effectively suppresses the

transcription of proinflammatory genes by inhibiting NF-κB and AP1 transcription factors

(Barnes. 2013).

The transcriptional coactivator SRC-3 acts as a protective factor against acute inflammatory

response by repressing translation of inflammatory cytokines. SRC-3−/− animals are more

susceptible to endotoxic shock compared to their wildtype littermates with enhanced levels

of proinflammatory cytokines including TNFα, IL-6 and IL-1β (Yu, et al. 2007). Thus, it is

sufficient to conclude that expression of coactivators delicately balances inflammatory

responses by modulating expression of interleukins and cytokines.

Metabolic disorders and Circadian biology

Coactivators are essential coordinators of whole body energy homeostasis by modulating the

expression of multiple metabolic enzymes. SRC-family coactivators are prime regulators of

metabolic pathways in different tissues, and genetic deletion of their expression corresponds

to various physiological abnormalities and metabolic disorders (Dasgupta, et al. 2014).

SRC-1−/− animals display reduced energy expenditure with an increased risk of developing

obesity as well as a defective gluconeogenic program (Louet, et al. 2010, Picard, et al.

2002). Molecularly, SRC-1 coactivates C/EBPα (CCAAT-enhancer-binding proteins) to

promote transcription of regulatory enzymes in the gluconeogenic pathways such as

pyruvate carboxylase, phosphoenolpyruvate carboxykinase (PEPCK), and fructose-1, 6-

bisphosphatase (FBP1) (Picard, et al. 2002). In contrast, SRC-2−/− animals are protected

from high-fat-induced obesity and exhibit increased insulin sensitivity, higher lipolysis, and

reduced fat uptake (Picard, et al. 2002). Loss of SRC-2−/− also affects the hepatic glucose

release due to decreased expression of glucose-6-phosphatase (G6Pase) simulating the

phenotypes observed in genetic disorder Von Gierke's disease (Chopra, et al. 2008). SRC-2

also stimulates absorption of fatty acids from the gut by activating the expression of bile salt

export pump (BSEP) by coactivating FXR (farnesoid X receptor) under conditions of

reduced energy status, thereby coordinating whole-body energy homeostasis (Chopra, et al.

2011). Even in tumor cells, SRC-2 was found to modulate fatty acid biosynthesis by distinct

reprogramming of metabolic functions (Dasgupta, et al. 2012a). In contrast, SRC-3

participates in white adipocyte development and supports fatty acid metabolism in skeletal

muscle by regulating the expression of the long-chain fatty acid transporter carnitine/acyl-

carnitine translocase (CACT) (York, et al. 2012). Thus, alterations in the expression of

SRCs promote global changes in numerous metabolic pathways in different tissues (York, et

al. 2013) to maintain the energy demands of our body, and genetic loss of their expression

can lead to severe metabolic disorders (York & O'Malley. 2010).

In light of this knowledge, recent studies indicated the importance of transcriptional

coactivators in circadian biology. Our recent findings indicate that SRC-2 is prime

coordinator of circadian activities by regulating the expression of genes that regulate hepatic

metabolism and diurnal rhythmicity (Stashi, et al. 2014). Molecularly, SRC-2 coactivates

transcription factors Brain and Muscle ARNT-Like 1 (BMAL1/ARNTL) and Circadian

Locomotor Output Cycles Kaput (CLOCK), the two core components of the clock

machinery (Asher & Schibler. 2011). Cistromic analyses revealed that recruitment of SRC-2
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to the genome overlaps with BMAL1 during the light phase targeting expression of core

metabolic genes and circadian regulators. In addition, metabolomic profiling of liver

metabolites from SRC-2−/− and wildtype littermates identified severe alterations in core

metabolic pathways including glycolysis, TCA, and fatty acid biosynthesis (Stashi, et al.

2014). Collectively, these findings uncovered the key role of transcriptional coactivator

SRC-2 in circadian biology, and its impact on various metabolic processes.

Coactivators as targets for cancer therapy

Several coactivators including PGC-1, SRC-family members, p300/CBP have been found to

be either amplified or overexpressed in different types of cancer (Xu, et al. 2009). SRCs

play important roles in endocrine-related cancers such as breast, prostate, ovarian and

endometrial cancer (Lonard & O'Malley. 2012) and their functions in other types of cancer

are rapidly being decoded (Fig. 3). SRC-1 and SRC-3 promote ER-dependent breast cancer

proliferation, as well as facilitate cancer metastasis by upregulating transcription of invasive

gene signature coactivating polyoma enhancer activator 3 (PEA3) (Qin, et al. 2009, Qin, et

al. 2011). SRC-1 and SRC-3 are overexpressed in endocrine-resistant tumors such as

aromatase inhibitor resistant and tamoxifen resistant (McBryan, et al. 2012). In prostate

cancer, deep sequencing studies revealed SRC-2 amplification in 8% of primary tumors and

37% metastatic tumors (Taylor, et al. 2010). In addition, SRC-2 expression correlates

positively with poor survival of prostate cancer patients (Agoulnik, et al. 2006, Agoulnik &

Weigel. 2008), and its expression is an important predictor of time-to-disease relapse

(Dasgupta, et al. 2012b). Recent studies have identified coactivators such as SRC-1, SRC-3

and PGC-1α as regulators of bioenergetic pathways in cancer cells (Motamed, et al. 2014,

Vazquez, et al. 2013, Zhao, et al. 2014). PGC-1α promotes mitochondrial oxidative

phosphorylation to generate sufficient energy supporting the anabolic needs of tumor cells.

In addition, recent findings have indicated that coactivators such as p300/CBP along with

SRC-3 play critical roles to maintain pluripotency and an embryo stem cell state (Chitilian,

et al. 2014, Percharde, et al. 2012, Wu, et al. 2012). SRC-3 coactivates Estrogen-related

receptor beta (ESRRB) to enhance the expression of Oct4, Sox2, and the Nanog the master

drivers of stem-cellness. Thus it will be important to understand the role of these

coactivators in ‘cancer stem cells’.

Since SRCs have emerged as ‘master regulators’ of cancer progression and metastasis by

integrating various upstream signaling pathways, therapeutic targeting of these molecules

may be beneficial for treatment of cancers. High throughput screen (HTS) of a chemical

library containing compounds from the NIH-Molecular Libraries Probe Production Centers

Network (MLPCN) was used to identify inhibitors blocking the intrinsic transcriptional

activity of SRCs (Wang, et al. 2014). The study identified a cardiac glycoside bufalin as a

potent small-molecule inhibitor for SRC-3 and SRC-1. Molecularly bufalin and digoxin (a

cardiac glycoside) blocked SRC-3 expression by directly binding to it and promoting its

rapid degradation in a proteasome-dependent fashion. Bufalin was extremely potent in

nanomolar scale to block the growth and proliferation of breast and lung cancer cells (Wang,

et al. 2014). In addition, Verrucarin A was also identified as a small molecule inhibitor

(SMI) that can selectively promote the degradation of SRC-3 protein, while affecting SRC-1

and SRC-2 to a lesser extent but having no impact on CARM-1 and p300 protein levels.
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Verrucarin A belongs to a group of sesquiterpene found in toxins of pathogenic fungus, has

potent anticancer effects by blocking tumor cell growth, proliferation and migration-

invasion (Yan, et al. 2014). Thus, targeting coactivators represents a novel way to block

tumor cell growth, and future studies should identify effective small molecule inhibitors to

circumvent other pathologies as well.

Conclusion

Transcriptional coactivators have emerged as an important new class of functional proteins

that participate with virtually all transcription factors and NRs to intricately regulate gene

expression in response to a wide variety of environmental cues. Recent findings have

highlighted that coactivators are important for almost all biological functions. Coactivators

work in tandem with specific interacting partners to precisely regulate activation of genes,

and loss or genetic defects lead to severe pathologies. Future studies will further broaden our

understanding about these fascinating molecules in their various biological functions, and

drug discovery efforts targeting coactivators may prove valuable for treatment of a variety of

diseases.
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Figure 1.
(A) Coactivator dependent complex assembly and regulation of gene transcription. Upon

hormone (H) binding, the nuclear receptors (NR) interact with steroid receptor coactivators

(SRC) and recruit them to the enhancer region of target genes. SRC coactivators then

interact with co-activator-associated arginine methyl transferase 1 (CARM1), cyclic AMP

response element-binding protein (CBP), p300 (a 300 kDa protein homologous to CBP; also

known as EP300), mediator complex (MED1) and recruit other common co-coactivators

(CoCoAs) to remodel the chromatin and build up the activated transcription complex. Post-

translational modifications (PTM) on SRCs such as phosphorylation (P), acetylation (Ac),

and methylation (Me) also regulate the coactivator complex association, and modulate the

assembly of general transcription factors such as TBP (TATA-binding protein) and TAF

(TBP-associated general transcription factors) along with RNA polymerase II (Pol II). (b)

Schematic representation of the molecular structural domains and a comprehensive map of

known PTM codes on SRC-3 along with the type of modifications, residues modified, and

enzymes imparting the code.
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Figure 2.
Coactivator dependent signaling regulates various biological functions, and deregulation

causes diseases. Several extracellular stimuli such as growth factors- EGF (epidermal

growth factor) and IGF (insulin-like growth factors); cytokines- IL-6 (interlukein-6) and

TNFα (tumor necrosis factor-α) and steroid hormones trigger downstream signaling

pathway activating coactivator-dependent complex assembly. In addition, alterations in the

energy status (ATP/ADP ratio), nutrient signaling, and cellular stress can also promote

coactivator recruitment on target gene promoters. Coactivators such as steroid receptor

activators (SRCs) then bind to nuclear receptors (NRs) or several other transcription factors
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to stimulate gene transcription. This coactivator dependent gene activation is highly

selective, and intricately regulated by several mechanisms (described in the text) stimulating

specific cellular functions. In contrast, deregulated expression and activation of coactivators

lead to perturbed signaling pathway resulting in disease pathology.
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Figure 3.
Graphical representation of percentage of copy number alteration (CNA) frequency of

Steroid receptor coactivators (SRC-1, SRC-2 and SRC-3) across different types of cancer.

Data represents various types of alterations including gene amplification, mutation, and

deletion. Data generated using TCGA datasets from cBIOPortal [Cerami et al. Cancer

Discov. 2012 & Gao et al. Sci. Signal. 2013.]
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