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Recent genomic analyses of pathologically-defined tumor types identify “within-a-tissue” disease

subtypes. However, the extent to which genomic signatures are shared across tissues is still

unclear. We performed an integrative analysis using five genome-wide platforms and one

proteomic platform on 3,527 specimens from 12 cancer types, revealing a unified classification

into 11 major subtypes. Five subtypes were nearly identical to their tissue-of-origin counterparts,

but several distinct cancer types were found to converge into common subtypes. Lung squamous,

head & neck, and a subset of bladder cancers coalesced into one subtype typified by TP53

alterations, TP63 amplifications, and high expression of immune and proliferation pathway genes.

Of note, bladder cancers split into three pan-cancer subtypes. The multi-platform classification,

while correlated with tissue-of-origin, provides independent information for predicting clinical

outcomes. All datasets are available for data-mining from a unified resource to support further

biological discoveries and insights into novel therapeutic strategies.

INTRODUCTION

Cancers are typically classified using pathologic criteria that rely heavily on the tissue site of

origin. However, large-scale genomics projects are now producing detailed molecular

characterizations of thousands of tumors, making a systematic molecular-based taxonomy of

cancer possible. Indeed, The Cancer Genome Atlas (TCGA) Research Network has reported

integrated genome-wide studies of ten distinct malignancies: glioblastoma multiforme

(GBM) (The_Cancer_Genome_Atlas_Network, 2008), serous ovarian carcinoma (OV)

(The_Cancer_Genome_Atlas_Network, 2011), colon (COAD) and rectal (READ)

adenocarcinomas (The_Cancer_Genome_Atlas_Network, 2012b), lung squamous cell

carcinoma (LUSC) (The_Cancer_Genome_Atlas_Network, 2012a), breast cancer (BRCA)

(The_Cancer_Genome_Atlas_Network, 2012c), acute myelogenous leukemia (AML)

(The_Cancer_Genome_Atlas_Network, 2013b), endometrial cancer (UCEC) (Kandoth et

al., 2013b), and renal cell carcinoma (KIRC) (The_Cancer_Genome_Atlas_Network,

2013a), and bladder urothelial adenocarcinoma (The_Cancer_Genome_Atlas_Network,

2014). Those studies have shown that each single-tissue cancer type can be further divided

into three to four molecular subtypes. The sub-classification is based on recurrent genetic

and epigenetic alterations that converge on common pathways (e.g. p53 and/or Rb

checkpoint loss; RTK/RAS/MEK or RTK/PI3K/AKT activation). Meaningful differences in

clinical behavior are often correlated with the single-tissue tumor types and, in a few cases,

single-tissue subtype identification has led to therapies that target the driving subtype-

specific molecular alteration(s). EGFR-mutant lung adenocarcinomas and ERBB2-amplified

breast cancer are two well-established examples.

To move toward a molecular taxonomy, we investigated whether tissue-of-origin categories

split into sub-types based upon multi-platform genomic analyses, and also extend the

analysis in the other direction to look for possible convergence. We looked to see what

molecular alterations are shared across cancers arising from different tissues and if

previously recognized disease subtypes in fact span multiple tissues of origin. With those

questions in mind, we performed a multi-platform integrative analysis of thousands of

cancers from 12 tumor types in The Cancer Genome Atlas (TCGA) project. Using data from

multiple assay platforms, we tested the hypothesis that molecular signatures provide a
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distinct taxonomy relative to the currently used tissue-of-origin based classification. At the

center of our results is the identification of 11 “integrated subtypes”. Consistent with the

histological classification, tissue-of-origin features provided the dominant signal(s) for

identification of most subtypes, irrespective of genomic analysis platform or combination

thereof. However, approximately 10% of cases were reclassified by the molecular

taxonomy, with the newly defined integrated subtypes providing a significant increase in the

accuracy for the prediction of clinical outcomes.

RESULTS

Samples, Data Types, and Genomic Platforms

To identify a multi-tissue, molecular signature-based classification of cancer objectively, we

first characterized each of the individual tumor types using six different “omic” platforms.

The diverse tumor set called “Pan-Cancer-12,” is composed of 12 different malignancies. It

comprises 3,527 cases assayed by at least four of the six possible data types routinely

generated by TCGA: whole-exome DNA sequence (Illumina HiSeq and GAII), DNA copy

number variation (Affymetrix 6.0 microarrays), DNA methylation (Illumina 450,000-feature

microarrays), genome-wide mRNA levels (Illumina mRNA-seq), microRNA levels

(Illumina microRNA-seq), and protein levels for 131 proteins and/or phosphorylated

proteins (Reverse Phase Protein Arrays; RPPA). The 12 tumor types include the ten TCGA

Network published data sets listed above and two additional tumor types for which

manuscripts have been submitted: lung adenocarcinoma (LUAD) and head & neck

squamous cell carcinoma (HNSC). This is the most comprehensive and diverse collection of

tumors analyzed by systematic genomic methods to date.

We performed sample-wise clustering to derive subtypes based on six different data types

separately: DNA copy number, DNA methylation, mRNA expression, microRNA

expression, protein expression, and somatic point mutation (see Supplemental Extended

Experimental Procedures and Analyses, Section 1). The classification results from each

single-platform analysis produced sets of 8 to 20 groups of samples that each showed high

correlation with tissue of origin (Figures S1A–F) and were highly comparable with each

other (Figure S2A). For example, patterns of copy number change varied across tissue types,

and subtyping of the tumors based on copy number alterations revealed a significant

correlation with tissue (p < 6×10−6, Chi-square test).

Integrated Platform Analysis (Cluster of Cluster Assignments)

To identify disease subtypes on a more comprehensive basis than could be done using any

single type of data, we developed an integrated subtype classification for all of the tumor

samples in the Pan-Cancer-12 collection based on five of the data types, excluding somatic

mutations. To do so, the results of the single platform analyses were provided as input to a

second-level cluster analysis using a method we refer to as Cluster-Of-Cluster-Assignments

(COCA), which was originally developed to define subclasses in the TCGA breast cancer

cohort (The_Cancer_Genome_Atlas_Network, 2012c). The algorithm takes as input the

binary vectors that represent each of the platform-specific cluster-groups and re-clusters the

samples according to those vectors (see Supplemental Text Section 2). One advantage of the
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method is that data across platforms are combined without the need for normalization steps

prior to clustering. In addition, each platform influences the final integrated result with

weight proportional to the number of distinct subtypes reproducibly found by Consensus

Clustering. Thus, “large” platforms (e.g. 450,000 DNA methylation probes) with orders of

magnitude more features than “small” platforms (e.g. 131 RPPA antibodies) do not

dominate the solution.

In addition to the COCA classification, we used two additional, independent methods to

derive Pan-Cancer-12 subtypes based on integrated data: (i) an algorithm called

SuperCluster (Kandoth et al., 2013b) (Figure S2B) and (ii) clustering based on inferred

pathway activities from PARADIGM (Vaske et al., 2010), which integrates gene expression

and DNA copy number data with a set of predefined pathways to infer the degree of activity

of 17,365 pathway features such as proteins, complexes, and cellular processes (Figure

S2C). Both SuperCluster and PARADIGM produced classifications that were highly

concordant with the COCA subtypes (Figure S2D). Given recent promising results that use

gene networks (as opposed to the sparsely populated single-mutation space) to cluster

samples based on somatic DNA variants (Hofree et al., 2013), we calculated a mutation-

based clustering after first associating genes with pathways and then identifying clusters

based on mutated pathways (Figure S1F; Supplemental Data File S1). Including those

clusters in the identification of COCA subtypes produced highly similar results to COCA

subtypes that did not use the mutation-based clusters (Figure S2D). Thus, we focus here on

the COCA results obtained without the mutations, as those five other platform-based

classifications required no prior biological knowledge.

The COCA algorithm identified thirteen clusters of samples, 11 of which included more

than ten samples (Table S1). The two small clusters (n=3 and 6) are noted (Table 1), but

were excluded from further analyses. We refer to the remaining sample groups by cluster

number and a short descriptive mnemonic (Table 1). Of the 11 COCA-integrated subtypes,

five show simple, near one-to-one relationships with tissue site of origin: C5-KIRC, C6-

UCEC, C9-OV, C10-GBM and C13-LAML (Figure 1A). A sixth COCA type, C1-LUAD-

enriched, is predominantly composed (258/306) of non-small cell lung (NSCLC)

adenocarcinoma samples (LUAD). The second major constituent of the C1-LUAD-enriched

group is a set of NSCLC squamous samples (28/306). Upon re-review of the frozen or

formalin fixed sections, 11/28 lung squamous samples that cluster with the C1-LUAD-

enriched group did not have squamous features and were reclassified as lung

adenocarcinoma (Travis et al., 2011). NSCLCs are often difficult to classify based on

histology alone (Grilley-Olson et al., 2013). That difficulty poses an important clinical

challenge since histology is used to guide the selection of chemotherapy (Scagliotti et al.,

2008) and to select patients for further mutational analysis (e.g., EGFR mutation and ALK

fusion testing in non-squamous NSCLC). However, the challenge can be addressed by

genomic analysis based on distinct differences in mutation spectrum (Table S2A) and

distinct gene expression patterns (Figure S1A). Two clear subtypes of NSCLC (C1-LUAD-

enriched and C2-Squamous-like, see discussion below) are identified by COCA.

For the other five tissue types, the patterns are more complex. Either a given tissue splits

into multiple COCA groups (divergence) or multiple tissue types coalesce into a single
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COCA group (convergence). A simple example of convergence previously described for

TCGA data is the merging of colon (COAD) and rectal (READ) tumors into a single COCA

group (The_Cancer_Genome_Atlas_Network, 2012b). The expression features shared by

colon and rectal samples were noted in the TCGA Network paper on the two cancer types,

but we extend those findings through use of the multi-platform clustering approach (Figure

1, Table 1).

Breast cancers (BRCA) exhibit a pattern of divergence in which two main groups of samples

are distinctly identifiable. One group (C3-BRCA/Luminal) contains essentially all of the

Luminal (estrogen receptor-positive) (594/597) and HER2-positive tumors (66/66), whereas

the other (C4-BRCA/Basal) contains 131/139 of the Breast Basal-like tumors. Although it

has previously been appreciated that Basal-like breast cancers (the majority subset of Triple-

Negative Breast Cancers) form a distinct subtype (Prat et al., 2013;

The_Cancer_Genome_Atlas_Network, 2012c), the findings here provide a more refined,

quantitative picture of the extent of difference from Luminal and Basal-like breast cancers.

Whereas tissue-of-origin is the dominant signal for combined data on almost all of the other

cancer types in the Pan-Cancer-12 collection, Breast Basal-like cancers are as different from

Luminal/ER+ breast cancers as they are from cancers of the lung (Figure 1). The data from

the present study strongly reinforce the idea that Basal-like breast cancers constitute a

unique disease entity.

The remaining three tissue types (HNSC, LUSC and BLCA) provide examples of both

divergence and convergence in COCA subtyping (Figure 1 and Table 1). The strongest

pattern of convergence is observed for the vast majority of HNSC (301/304), LUSC

(206/238) and some of the BLCA (31/120) tumors; they cluster together in a large COCA

group (C2-Squamous-like), perhaps reflecting similar cell-type-of-origin or smoking as an

etiologic factor. BLCA tumors also exhibit a divergence pattern, distributing predominantly

into three distinct groups: 31 BLCA in the C2-Squamous-like group, 10 in the C1-LUAD-

enriched group, and 74 in the bladder-only group, C8-BLCA. Five other BLCA samples

cluster in four different COCA groups.

Clinical importance of the COCA subtypes

To investigate the clinical relevance of the COCA subtypes, we performed Kaplan-Meier

Survival analysis on the Pan-Cancer-12 data set. The results indicate that tissue-of-origin

(Figure S3A) and COCA subtype (Figure 1D) are both prognostic and each provides

independent information (Figure 1E). Additionally, the two most commonly mutated genes

in the overall dataset, TP53 (41%) and PIK3CA (20%), are prognostic, even across different

tumor types, as are previously defined genomic signatures of cell proliferation rate (Nielsen

et al., 2010) and mutated TP53 gene expression-based signature (Troester et al., 2006)

(Figure S3B–F).

We next asked whether prognostic information is provided by the COCA subtypes after

accounting for known clinical and tissue-of-origin features. We performed a Multivariate

Cox proportional hazards analysis to predict outcomes across the dataset. The analysis was

limited to the COCA subtypes that did not have a one-to-one relationship with tissue-of-

origin tumor type (COCA1-LUAD enriched, COCA2-Squamous, COCA3-Breast/luminal,
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COCA4-Breast/Basal, COCA7-COAD/READ, and COCA8-BLCA). In the model we

included clinical features such as tumor size, node status, metastasis status, and age at

diagnosis, as well as tissue-of-origin. We performed a likelihood ratio test conditioning first

on the clinical variables; when either tissue-of-origin or COCA subtype was added to the

model, a large increase in the predictive fit of the model was observed, beyond what one

would get with the clinical information alone (Figure 1E). That observation supports the

classical model in which tissues-of-origin provides strong predictions of outcome. Next, we

asked whether the COCA subtypes add additional independent information for predicting

survival beyond the combination of tissue-of-origin and clinical features. Indeed, we

observed a significant increase in statistical likelihood when COCA is added to a

multivariate model that already includes the clinical and tissue-based information (P <

0.0002; Chi-square test; Figure 1E). Thus, while the COCA classification differs from

tissue-of-origin based classification in only ~10% of all samples, the difference does provide

important molecular information that reflects tumor biology and is associated with clinical

outcome.

Genomic Determinants of the Integrated COCA Subtypes

We next identified the major genomic determinants of the COCA subtypes, including

somatic mutations and DNA copy number changes. For single nucleotide variants, we

analyzed a Pan-Cancer-12 list of 127 Significantly Mutated Genes (SMGs) obtained by

MuSiC analysis (Kandoth et al., 2013a). Only three of the genes are mutated at a frequency

≧10% (TP53, PIK3CA and PTEN), and 11 additional are mutated at ≥5% frequency (Table

S2A). We also include a list of 291 High-Confidence Cancer Drivers (HCDs) from Pan-

Cancer-12 analysis (Tamborero et al., 2013), identified by a combination of five

complementary methods to identify signals of positive selection in the mutational pattern of

genes across tumors.

A large number of correlations between COCA subtypes and somatic mutations were found

(Figure 2A, Figure S4D, Supplemental Data File S2). Somatic mutations clearly distinguish

the C1-LUAD-enriched group from the C2-Squamous-like group. KEAP1 and STK11 are

preferentially mutated in C1-LUAD-enriched tumors, whereas CDKN2A, NOTCH1, MLL2

and NFE2L2, among others, are preferentially mutated in C2-Squamous-like (Figure 2A). A

similarly distinct set of SMGs was seen for the C3-BRCA/Luminal and C4-BRCA/Basal

groups; only two genes are shared (TP53 and PIK3CA), and they show different mutation

frequencies (Table S2A). Since the somatic mutation results were not used in any way to

determine the COCA subtypes, they provide independent evidence that distinctly different

genetic events underlie the subtypes. A protein-protein interaction network analysis of

mutations associated with the COCA subtypes obtained using a new version of the HotNet

algorithm (Vandin et al., 2012) provides an overview of the genomic determinants of the

COCA subtypes (Figure S4E).

The degree of genomic instability was a major determinant of subtype, as revealed in copy

number variation (CNV) data (Figure 2B). The C9-OV, C4-BRCA/Basal and C1-LUAD-

enriched subtypes showed the most marked genomic instability, as assessed by average

number of copy number segments per subtype (Figure 2C), whereas AML and UCEC
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showed the least. Numerous COCA subtype-associated alterations implicated specific

regions, arm-level copy number changes (Figure S4A) and/or focal regions of copy number

alteration (Figure S4B). Of note were a number of previously described tissue type-specific

and subtype-specific alterations, including Chr7 gain and Chr10 loss in GBM

(The_Cancer_Genome_Atlas_Network, 2008), 3p loss and 5q gain in kidney

(The_Cancer_Genome_Atlas_Network, 2013a), 4q and 5q loss in Breast Basal-like cancers

(The_Cancer_Genome_Atlas_Network, 2012c) and 3p loss and 3q gain in Lung Squamous

tumors (The_Cancer_Genome_Atlas_Network, 2012a). Of note, the latter were seen in most

C2-Squamous-like tumors, regardless of tissue of origin.

Expression-based Determinants of the Integrated Subtypes

We next sought to identify gene expression modules characteristic of each COCA subtype.

First, we started with 6,898 sets of gene signatures documented to be co-expressed, co-

amplified, or to function together. From these, we identified gene programs as those whose

genes have mRNA-seq signatures of high mutual correlation across the Pan-Cancer-12

dataset. After applying a bimodality filter and Weighted Gene Correlation Network-based

clustering, 22 non-redundant gene programs were identified (Supplemental Table S4A,

Figure S5A, Experimental Procedures and Analyses, Section 5, and Supplemental Data File

S5). Linear classification with the 22 gene programs reconstituted the 11 integrated subtypes

with 90% accuracy (Figure S5A; Table S4B). To view the expression-based determinants of

the integrated subtypes we plotted the average expression level of each gene program within

each COCA cluster (Figure 3). As expected, the gene programs GP6-squamous

differentiation/development, GP13-neural signaling and GP20-TAL-1-leukemia/

erythropoiesis were the most highly expressed in the C2-Squamous-like, C10-GBM and

C13-LAML subtypes, respectively. As well, GP7_Estrogen signaling was highest in the C3-

BRCA/luminal cases, whereas GP17_basal signaling had its highest levels in the C4-

BRCA/Basal cases. Activated pathway characteristics found by enrichment and sub-network

analyses based on PARADIGM inferences, many of which were consistent with the gene

program analysis, are summarized in Table S4A (see Supplemental Extended Procedures

and Analyses).

Gene expression programs and PARADIGM pathways carry clinically relevant information

beyond tissue-of-origin as evidenced by a multivariate Cox model of survival with COCA

subtype as a covariate (see Table S4E). Squamous differentiation/development (GP6),

proliferation/cell cycle, and estrogen signaling (GP7) were significant predictors in the

model. Intriguingly, GP7, along with fatty acid oxidation (GP10), tumor suppressing miRNA

targets (GP3) and the PTEN/MTOR signaling program, were found to be significantly

associated with patient outcome in kidney cancer using a Cox proportional hazards survival

analysis (Figure S5D; Table S4F). In common with the C3-BRCA/Luminal subtype cases,

higher levels of estrogen signaling (GP7) were also associated with better prognosis for C5-

KIRC cancers. Consistent with the higher frequency of elevated HER2 protein levels in

bladder, colorectal and serous endometrial cancers (Akbani et al., 2014), the HER2-

amplified gene signature appeared elevated in the C8-BLCA, C7-COAD/READ and C6-

UCEC subtypes, as well as the C3-BRCA/Luminal subtype which contains all HER2-

positive breast cancers. Predictors independent of disease stage included basal signaling
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(GP17), associated with decreased overall survival, and the immune-related PARADIGM

pathways PD1_signaling and CTLA4_pathway, both of which were associated with

increased overall survival. These immune-related signatures may reflect varying amounts of

lymphocyte infiltrate in the tumors as has been estimated by DNA methylation-based

analysis of the Pan-Cancer-12 dataset (Figure S5E). In any case, these immune cell-

associated gene programs may be pertinent to emerging treatment strategies based on

immune modulation. Overall, despite uneven clinical information and follow-up across the

many different Pan-Cancer types, expression-based determinants of the integrated subtypes

were sufficiently informative to identify pathway-based features of prognostic value that

transcend tissue-of-origin cancer types.

Multiple-Platform Determinants of the Integrated Subtypes

To gain insight into the genetic and epigenetic determinants that characterize each of the

COCA subtypes, we calculated differential gene scores derived from each of the separate six

platforms (see Supplemental Extended Experimental Procedures and Analysis Section 4) as

well as PARADIGM pathway features. All differential activities were mapped to individual

genes so that thematic pathways could be identified (see Supplemental Data File S2). Copy

number data were summarized at the gene level using GISTIC 2.0 and t-tests for every gene

were performed for each COCA subtype. DNA Methylation probes were associated with

any gene that fell in the +/1500bp region surrounding gene transcriptional start sites. Genes

with differential mRNA expression were identified using a SAM analysis on the RSEM

values. Genes with differentially expressed protein products were determined by running a t-

test on the 131 protein forms represented on the RPPA data. For mutations, a Fisher’s exact

test on the frequency within a COCA subtype compared to outside the subtype was

performed for all of a set of 291 high-confidence driver genes (Tamborero et al., 2013).

Differentially expressed miRNAs for each COCA subtype were identified using a Wilcoxon

rank-sum test based on the miRNA-Seq data. Genes were then identified as those predicted

to be targeted by a differentially expressed miRNA that was also anti-correlated across the

Pan-Cancer-12 dataset.

Three approaches were used to summarize the unique features of the COCA subtypes. First,

Gene Set Enrichment Analysis (GSEA) was run on the single-platform gene-based results

and then clustered for visual inspection to elucidate distinctive pathways (Figure S6A).

Second, a supervised Elastic Net approach was used to classify the COCA subtypes with

95% accuracy in cross-validation and the predictive features were collected (Figure S6B;

Supplemental Data File S3). Third, ‘regulatory hubs’ from PARADIGM with more than 15

downstream targets and found to be differentially activated within a COCA subtype relative

to other subtypes were collected (Table S5A). All three approaches revealed that each

platform detects different pathways and features with respect to both COCA subtypes and

data platforms. The identified discriminating features of the COCA subtypes confirm several

expectations: 1) C3-BRCA/Luminal was defined by protein and gene signatures for ER and

GATA3 determined by the Elastic Net model as well as by PIK3CA-related signaling

revealed by copy number variation-based and mutation-based GSEA, 2) C5-KIRC was

defined by multiple features of hypoxia found by mutation- and mRNA-Seq-based GSEA as
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well as predictive Elastic Net features, and 3) C7-COAD/READ was in part defined by APC

mutations.

Convergence of the Squamous-like Subtype

A striking finding of the integrative subtype analysis was the coalescence of four distinct

tumor types (LUSC, HNSC, some BLCA and a very few LUAD) into the single C2-

Squamous-like subtype. We investigated the genomic- and pathway-based determinants of

the subtype. The three main tumor types included shared loss of 3p and increased TP63,

PIK3CA and SOX2 gene copies within a characteristic 3q amplicon (Figure 4A). Those

regions are well known in LUSC (The_Cancer_Genome_Atlas_Network, 2012a) and HNSC

(Bhattacharya et al., 2011; Walter et al., 2013), and the results here extend that observation

to include a subgroup of BLCA cases. In addition, the C2-Squamous-like subtype tends to

show amplification of MYC and loss of CDKN2A, RB1 and TP53. TP53 mutation is frequent

(72%), followed by a dramatic drop-off in mutation frequency to MLL2 (20%), PIK3CA

(19%), CDKN2A (18%), NOTCH1 (16%), NFE2L2 (10%) and MALAT1 (6%), the only

other genes mutated at ≥10% frequency (Table S2A). Of potential interest in the C2-

Squamous-like group, tumors without TP53 mutations show a higher density of PIK3CA

mutations (Figure 1), consistent with recent evidence linking PI3K activation and wild-type

TP53 inactivation in HNSC (Herzog et al., 2013). Putative driver analysis identified several

genes (PIK3CA, MLL3 and KEAP1) frequently mutated in the C2-Squamous-like group but

also in other COCA subtypes (Figure 4B). Of these, FRG1B and CASP8 were found to be

significantly more associated with HNSC by Fisher’s exact test. Putative driver analysis also

revealed a number of genes with higher mutation frequencies in the C2-Squamous-like

subtype than in any other subtype: TP53, SYNE1, MLL2, CDKN2A, NOTCH1, NFE2L2 and

EP300, among others (Figure 4C; Figure S7A).

An extension of the HotNet algorithm (Vandin et al., 2012) was run on all genes mutated in

≥ 2% of any one subtype in conjunction with the HINT physical protein-protein interaction

network (Supplemental Extended Experimental Procedures and Analyses, Section 4; Table

S3). HotNet identified four sub-networks of mutated genes characteristic of the C2-

Squamous-like subtype (Table S3B). The largest, most frequently mutated sub-network

(91.7% of C2-Squamous-like samples) includes many well-known cancer genes and tumor

suppressors, including TP53, CDKN2A and PTEN. The second most mutated sub-network

(59.9%) consists of NFE2L2, CUL3, and KEAP1, CCNE1, FBXW7, and NOTCH1. NFE2L2,

CUL3 and KEAP1 are well known regulators of oxidative stress. The third most mutated

sub-network (37.1% of Squamous samples) includes the ASCOM complex (MLL2 and

MLL3) and the putative ASCOM-interacting protein KDM6A. These proteins are involved

in histone modifications that promote transcription. In addition, consistent with previous

reports on collective motility in squamous cell carcinomas (Friedl and Gilmour, 2009), RAC

and RHO signaling are also elevated in the C2-Squamous-like subtype based on

PARADIGM analysis (Table S4A, Figure S7B).

Molecular Features Common to the Squamous, Breast Basal, and Ovarian Subtypes

Past work highlighted transcriptional similarities between the Breast Basal-like subtype and

LUSC (Chung et al., 2002), as well as Breast Basal-like and Serous Ovarian cancers
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(The_Cancer_Genome_Atlas_Network, 2012c). We therefore asked if those subtypes share

additional characteristics. The C9-OV (94%), C4-BRCA/Basal (80%) and C2-Squamous-

like (72%) subtypes have the highest frequencies of TP53 mutation. All three show a very

high frequency of copy number changes (Figure 2C), and all are significantly enriched with

amplifications of 3q26 and 8q24/cMYC and losses of chromosomes 4q, 5q, 8p, and 18q

(Figure 2B). The COCA subtypes share features common to a pan-cancer cluster identified

by a parallel analysis of the transcriptional profiles of these same tumors (Martinez et al.,

2014), which was found to be associated with genomic loss of CDKN2A (p16ARF),

increased numbers of DNA double strand breaks, high expression of cyclin B1, and

upregulation of proliferation genes.

Consistent with our previous TCGA report noting the similarities between Breast Basal-like

and Serous Ovarian cancers (The_Cancer_Genome_Atlas_Network, 2012c), the copy

number profiles of the integrative subtypes place the C4-BRCA/basal subtype closest to the

C9-OV subtype (Figure S4C); both are also near a cluster tree branch that contains C2-

Squamous-like and C8-BLCA. All six of those subtypes show TP53 mutation and large-

scale copy number changes.

Pathway commonalities between the C4-BRCA/basal and C9-OV subtypes (Table S5B)

largely recapitulate previous finding using PARADIGM analysis that both subtypes show

activation of cMYC and FOXM1/proliferation signaling

(The_Cancer_Genome_Atlas_Network, 2012c). However, HIF1A signaling in those

subtypes, despite previously being reported as high, appears less active in this Pan-Cancer

context, probably due to the presence of other cancer types with clearly elevated HIF1A

signaling (e.g. C5-KIRC). In terms of gene programs, C2-Squamous-like tumors show high

expression of the basal signaling gene program (GP17), at levels comparable with those in

the C4-BRCA/Basal tumors (Figure 3). In addition, both subtypes show up-regulation of the

proliferation/DNA synthesis gene program (GP1), as well as signatures of TP53 mutation,

MYC targets/TERT, VEGF signaling and activation of the PD1 and CTLA4 immune co-

stimulatory pathways (Table S4A, Figure 3). Indeed, principal components analysis showed

that C2-Squamous-like and C4-BRCA/Basal tumors are the most similar COCA subtypes

with regard to gene program/drug pathway expression (Figure S5B).

In line with those findings, a systematic search for PARADIGM pathway commonalities

between the C2-Squamous-like and C4-BRCA/Basal tumors through the definition of a

‘basalness score’ (The_Cancer_Genome_Atlas_Network, 2012c) reveals shared activation

of proliferation- and immune-related pathways. TP63 network dysregulation is apparent in

HNSC and LUSC (Figure S7C, Table S5), as found previously

(The_Cancer_Genome_Atlas_Network, 2012a; Walter et al., 2013). It has also been

associated with normal basal stem/progenitor cell function in other organs (e.g. breast,

urogenital tract) (Crum and McKeon, 2010). However, closer scrutiny of the network

neighborhood surrounding the TAp63g and dNp63a complexes reveals that TP63 activation

is more significant in the C2-Squamous-like tumors than it is in the C4-BRCA/Basals, and it

involves a larger number of TP63 network targets (Figure 5A). Indeed, TP63 expression

levels, in particular expression of the oncogenic ΔNp63 isoform, are significantly higher in

the C2-Squamous-like subtype than in the C4-BRCA/Basal tumors (Figure 5B). Notably, we
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did not see TP63 network activity or increased expression in the C9-OV subtype (Table S4A

and Figure 6B).

High TP53 mutation rates characterize several tumor types including those represented by

the COCA subtypes C4-BRCA/Basal, C9-OV, and C2-Squamous-like (Table S2A).

Surprisingly, our pathway and gene program analysis reveal a pattern of TP53 compensation

in the C2-Squamous-like tumors that distinguishes them from these other subtypes with high

TP53 mutation rates. First, the C2-Squamous-like tumors do not exhibit significant loss of

PARADIGM-inferred TP53 activity (Table S4A) and PARADIGM-SHIFT analysis (Ng et

al., 2012) predicts loss-of-function of TP53-truncating mutations (observed in 43% of C4-

BRCA/Basal, 38% of C9-OV and 30% of C2-Squamous-like cases) at a significantly higher

degree in the C4-BRCA/Basal and C9-OV subtypes compared to the C2-Squamous-like

subtype (Figure 5C). Second, the copy number data when aligned with TP53 missense and

truncating mutations, reveals more loss of heterozygosity (LOH) in the C9-OV and C4-

BRCA/Basal than in the C2-Squamous-like samples. The apparent higher TP53-pathway

activity in C2-Squamous-like tumors may be related to the expression of isoforms of related

family members TP63 and/or TP73 (Figure 5B), which may compensate for TP53 mutation

in the C2-Squamous-like tumors as revealed by PARADIGM-Shift analysis (Figure 5C),

and as supported by functional experimental data in HNSC lines and tumors (Lu et al.,

2011). In HNSC, the function of TP63/73 in growth of HNSC is modulated in the presence

of inflammatory factor TNF-α and cREL. Third, the transcriptional targets of TP53 shared

with TP63/73 appear to be more highly expressed in the C2-Squamous-like subtype than in

the C9-OV or C4-BRCA/Basal subtype (Figure S7D). Indeed, hierarchical clustering of 33

TP53-related gene signatures subsets the C2-Squamous-like, C4-BRCA/Basal and C9-OV

tumors predominantly by subtype (left side dendrogram sub-tree: 99% C4-BRCA/basal/C9-

OV; right-side dendrogram sub-tree: 98% C2-Squamous-like) (Figure 5D). However, with

the exception of the C4-BRCA/Basal-like subtype, the levels of TP53 activity were not

predictive of overall survival when restricted to the analysis within a subtype. For the C4-

BRCA/Basal case, the PARADIGM-Shift scores do provide a moderate predictive degree

when only the TP53 truncating mutants are considered (P<0.05). Interestingly, TP63/73

compensatory function has been linked to cisplatin chemo-sensitivity and survival in

BRCA1-related triple negative breast cancers (Leong et al., 2007). These studies show the

potential for p63/73 compensatory function for mutated or suppressed p53 in HNSCC and

breast cancer, which has potential implications for targeted and standard therapy across

these malignancies. These data indicate that TP53/63/73 downstream activities are of

potentially broader significance among the C2-Squamous-like, C9-OV and C4-BRCA/Basal

subtypes, with similarly high TP53 mutation rates.

Divergence of Bladder Cancer Subtypes

Despite a relatively small sample size (n=120), bladder cancer was one of the most diverse

of the tumor types, with samples clustering into 7 of the 11 major COCA subtypes (Table

S6). The majority of the samples fell into three main COCA groups: 10 in C1–LUAD-

enriched, 31 in C2–Squamous-like and 74 in C8–BLCA. Correlation with histology showed

that the bladder samples in the C2-Squamous-like group did, indeed, have evidence of

squamous features, although most in that subtype had less than 50% squamous
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differentiation upon review by a team of 5 urological pathologists. The genomic

classifications are consistent with evidence for diverse squamous, adenocarcinoma and other

variant histologies in bladder carcinoma (Willis et al., 2013). Because it is one of the most

diverse tissue-of-origin tumor types in the Pan-Cancer-12 set, we looked at survival

differences among the three main COCA groups of bladder cancers. Samples in the C2-

Squamous-like and C1-LUAD-enriched groups showed significantly worse overall survival

than those in the C8-BLCA group (Figure 6A; Figure S8B). The same distinction held in

proteomics-only analyses (Akbani et al., 2014), consistent with the worse overall survival of

the other tumor types (LUAD, LUSC, and HNSC) that predominate in the C1-LUAD-

enriched and C2-Squamous-like subtypes.

We focused on the two larger subsets (C2-Squamous-like and C8-BLCA) of bladder

cancers, performing single-platform and integrated-platform comparisons. There are

significant differences in copy number (Figure S4A), protein expression (Figure 6B),

mutations (Figure 6C), gene programs (Figure 6D) and PARADIGM pathway networks

(Figure 6E; Figure S8A). There is also a significant difference in 3p arm-level events; the

C2-Squamous-like subset shows the characteristic squamous-like pattern of 3p loss, whereas

the C8-BLCA subtype does not (Figure 2B). Consistent with findings from the Pan-Cancer

proteomics analysis (Akbani et al., 2014), higher HER2 and Rab25 protein levels are

observed in the majority of the C8-BLCA cases relative to the C2-Squamous-like bladder

cases (Figure 6B). Conversely, markers of epithelial-to-mesenchymal transition (EMT) such

as low E-cadherin, high fibronectin, and high N-cadherin expression are apparent in the C2-

Squamous-like bladder cancers (Figure 6B). Both gene program and PARADIGM analyses

reveal differences in immune cell signatures; the bladder C2-Squamous-like samples show

higher levels of immune cell-associated signatures (Figure 6D–E). That difference, which

has also been noted for lung squamous (The_Cancer_Genome_Atlas_Network, 2012a) and

breast Basal-like cancers (Prat et al., 2010), could contribute to differences in outcome and

suggest therapeutic targets.

DISCUSSION

This integrated multi-platform analysis of 12 cancer types provides independent and

clinically relevant prognostic information above and beyond tumor stage and primary tissue-

of-origin. Based on this study, one in ten cancer patients would be classified differently by

this new molecular taxonomy versus our current tissue-of-origin tumor classification system.

With respect to its therapeutic relevance, this proportion of potentially misclassified tumors

is comparable to the rate of EGFR mutations in unselected non-small cell lung cancers

(Lynch et al., 2004; Paez et al., 2004) and ERBB2 amplifications among all breast cancers

(The_Cancer_Genome_Atlas_Network, 2012c). If used to guide therapeutic decisions, this

reclassification would affect a significant number of patients to be considered for non-

standard treatment regimens. In addition to identifying several new genomic and pathway

insights between and within tissue-of-origin tumor types, this TCGA study provides a public

resource compendium of individual and integrated datasets from six different “omic”

platforms, comprehensively characterizing >3,500 tumors and enabling researchers to

explore new questions and analytical approaches that will perpetuate this discovery process.
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It is possible that each COCA subtype reflects tumors arising from distinct cell types. In this

new taxonomy, cancers of non-epithelial origin (e.g. neural, muscle, connective tissue)

appear most different from epithelial tumors based on virtually all molecular platforms. The

next most marked difference is apparent between epithelial cancers arising from basal layer-

like cells (C2-Squamous-like and C4-BRCA/Basal) and those with secretory functions (C1-

LUAD-enriched and C3-BRCA/Luminal). Molecular commonalities within a COCA

subtype suggest common oncogenic pathways. The C2-Squamous-like cancers likely arise

from a cellular subtype shared between environmentally exposed epithelial surfaces (e.g.

oral cavity, lungs, and bladder); and malignancies from this cellular subtype possess a

characteristic set of dysregulated genomic features, including SOX2 and ΔNp63 high

expression (by 3q26-29 amplification) with TP53 mutation. Although some of these

pathway features have previously been reported for normal squamous tissue development

and homeostasis (Crum and McKeon, 2010) and in squamous cell carcinomas of specific

organ sites (Maier et al., 2011; Yang et al., 2011), they have not previously emerged

collectively as a broad subtype-defining phenotype from an integrated genomic analysis of

thousands of different tumors. Cancers in the C2-Squamous-like subtype appear most

similar to those in the C4-BRCA/Basal subtype, which in turn show pathway similarities to

those in the C9-Ovarian. While all three COCA subtypes exhibit comparably high TP53

mutation frequencies and expression of the GP17_Basal signaling gene program, the C2-

Squamous-like cancers are distinguished from all others by their significantly higher TP63

and TP73 expression, both short (ΔNp63, ΔNp73) and long (TAp63, TAp73) isoforms,

which may partially compensate TP53 mutation in this COCA subtype.

In this integrated analysis, bladder cancers (BLCA) emerged as the most heterogeneous of

all Pan-Cancer-12 malignancies, with multiple samples falling into primarily three different

integrated subtypes (C1-LUAD-enriched-like, C2-Squamous-like and C8-BLCA). The

clinical relevance of Pan-Cancer integrated subtyping is apparent in this divergent cohort of

tumors. Survival is dependent on subtype membership, with the C2-Squamous-like BLCA

cases showing earlier mortality than the more common C8-BLCA cases (Figure 7A). Those

BLCA cases in the C2-Squamous-like subtype display immune features common to the C2-

Squamous-like subtype, that are pertinent to two areas of current interest among bladder

cancer researchers: i) epidemiologic and experimental evidence that chronic cystitis and

recurrent bladder inflections (or other physical irritants) capable of inducing squamous

metaplasia can predispose to squamous cancer of the bladder; and ii) the observation that

early-stage bladder cancers are often responsive to intravesicular T-cell induction by

Bacillus-Calmette-Guerin (BCG) anti-TB vaccination. These findings strongly support a

COCA subtype specific approach to post resection surveillance, adjuvant therapy and

management of metastatic disease for bladder cancer patients.

Our results suggest that “cell-of-origin” rather than pathway-based features dominate the

molecular taxonomy of diverse tumor types. There are several possible explanations for this

observation. First and foremost, there are hundreds to thousands of features (mRNAs,

proteins, microRNAs) with cell-type specific expression patterns, whereas pathways tend to

regulate a much smaller subset of components – tens to hundreds of genes and their

products. Secondly, pathways are often used in a cell type-specific manner (e.g. APC-
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pathway in colon/rectum); therefore, pathway-based features are likely subsumed by a cell-

of-origin-based classification. Further research is needed to uncover pathway dependencies

within a cell-of-origin context, of which many such relationships already exist (i.e. EGFR in

LUAD, BRAF in Melanoma, etc).

In closing, the refined molecular taxonomy we describe builds on centuries of pathology and

genetic research. The datasets and results have been collected into a unified resource on

Synapse to support integrative bioinformatics analysis. To support navigation through these

findings, the results have been made available through several portals including the UCSC

Genome Browser, Gitools, and MD Anderson’s Next Generation Heatmaps (see the

Supplemental Extended Procedures and Analyses). New methods to mine these data will

enable “subtracting away” the dominant cell-of-origin signals to reveal information about

pathway signaling and tumor microenvironments (e.g. stromal and immune components).

This new taxonomy provides independent prognostic information above and beyond stage

and tissue-of-origin, and further investigations may provide novel pathway-based insights

with clues for personalizing therapy. Follow-up studies are needed to validate the findings

reported here, and additional samples and tumor types will extend the integrated analysis.

However, this initial PanCancer-12 analysis lays the groundwork for a richer classification

of tumors into molecularly defined subtypes unlike all prior cancer classification systems.

EXPERIMENTAL PROCEDURES

Data for the complete set of 5,074 TCGA samples were obtained for the December 22, 2012

Pan-Cancer-12 data freeze from the Sage Bionetworks repository, Synapse. All data is made

available through the Synapse website (https://www.synapse.org) and referenced with

Synapse identifiers denoted as synN, where N provides a unique identifier within the

Synapse system. All relevant result files relevant for subtyping and downstream analyses are

available from syn2468297.

Mutation data and predicted driver genes

Single nucleotide variant calls for all samples in each of the 12 different tumor types were

obtained from the official data freeze for each individual data type. Briefly, mutation calls

were obtained from the separate TCGA working groups and processed to de-duplicate and

re-annotate them using the ENSEMBLE version 69 transcript database. The combined

mutation annotation format (MAF) file is available from the Synapse resource.

127 Significantly mutated genes (SMGs) were identified in the entire sample set as those

mutated more frequently than the background model according to MuSiC analysis as

described in (Kandoth et al., 2013a). The SMG analysis was also performed by running

MuSiC restricted to each COCA subtype. Lastly, genes whose mutations predominantly

occur within a given COCA subtype were identified by using the list of high-confidence

drivers retrieved by the combined analysis of several signals of positive selection, as

described in (Tamborero et al., 2013).
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Cluster of Cluster Assignments (COCA)

Subtypes derived from each of the six platforms – mRNA-Seq, miRNA-Seq, reverse-phase

protein arrays (RPPA), structural copy number alterations (SCNA), DNA methylation, and

somatic mutations – were calculated as described in the Supplemental Extended Procedures

and Analyses section. Subtype calls for each of the six platforms were used to identify

relationships among the different COCA subtypes and coded into a series of indicator

variables for each subtype. The binary matrix was then used in the ConsensusClusterPlus R-

package (Wilkerson and Hayes, 2010) to identify patterns of relationship among the

samples. ConsensusClusterPlus was run with 80% sample resampling and 1000 iterations of

hierarchical clustering based on a Pearson correlation distance metric. More information on

integrative subtyping analysis can be found in Supplemental Extended Procedures and

Analyses, Section 2. The integrated COCA subtypes are available on the Synapse resource.

Survival Analysis for Pan-Cancer-12 and Squamous Bladder Samples

Overall survival was calculated for samples using information from the enrollment and

follow-up forms available at the DCC and downloaded on 6/17/2013. Kaplan-Meier survival

plots were generated with the package Survival in R. A log-rank test was used to assess

significance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Integrated Cluster-Of-Cluster Assignments analysis reveals 11 major subtypes (see also
Supplemental Figures S1-3 and Data Files S1-3)
A) Integration of subtype classifications from 5 “omic” platforms resulted in the

identification of 11 major groups/subtypes from 12 pathologically defined cancer types. The

groups are identified by number and color in the second bar, with the tissue of origin

specified in the top bar. The matrix of individual “omic” platform type classification/subtype

schemes was clustered, and each data type is represented by a different color: copy

number=black, DNA methylation=purple, miRNA=blue, mRNA=red and RPPA=green. B)

Mutation status for each of 10 Significantly Mutated Genes coded as: wild-type=white,

mutant=red, missing data=gray. C) Copy number status for each of 9 important genes:

amplified=red, deleted=blue, copy number neutral=white and missing data=gray. The color-

coding schema is shown to the right. D) Overall survival (OS) of COCA subtypes by

Kaplan-Meier plot. COCA subtypes are highly correlated with overall survival outcomes. E)

The log-likelihood ratio (LR) statistic was estimated as we added clinical variables, COCA

subtype, or tissue type information to a cox proportional hazards model. Clinical variables

included age at diagnosis, tumor size, node status and metastasis status. The change in LR

statistic as features were added to the model was assessed for significance by chi-square

analysis. The set of samples was limited to the set of tumor types that did not have a one-to-

one relationship with a COCA subtype: BLCA, BRCA, COAD, HNSC, LUAD, LUSC, and

READ in COCA clusters COCA1 – LUAD-enriched, COCA2-Squamous, COCA3-BRCA/

Luminal, COCA4-BRCA/Basal-like, COCA7-COAD/READ and COCA8-BLCA. First bar
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“A” shows results of adding tissue-of-origin to clinical variables already part of the model,

followed by a variable representing the COCA subtyping; bar “B” shows results when

COCA is first added on to clinical variables, and then tissue-type is added. In each case the

increase in the ability to predict OS was in terms of the LR.
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Figure 2. Genomic determinants of the Integrative COCA Subtypes (see also Supplemental
Figure S4 and Tables S2-3)
A. Genes from the high-confidence list of drivers (Tamborero et al., 2013) found to be

mutated at a different rate within one COCA subtype compared outside it based on a two-

tailed Fisher’s exact test. Mutation frequency enrichment, red to orange; genes with

mutations equaling the background rate, yellow; genes with no observed mutations in a

subtype, white. Displayed are top-ranked genes in terms of significant mutation enrichment

(FDR<1%) in at least one COCA subtype. B. Somatic copy number alterations (SCNAs) in

Integrative Clusters. SCNAs in tumors (horizontal axis) are plotted along chromosomal

locations (vertical axis). The heatmap shows the presence of amplifications (red) and

deletions (blue) throughout the genome. The color strip along the top indicates integrative

COCA cluster membership; the number in parentheses indicates % of samples in a COCA

subtype with TP53 mutation. COCA subtypes are ordered from highest TP53 mutant

percentage to lowest. C. Range of copy number segments in tumors within each Integrative

Cluster. The box and whisker plots show the middle quartiles and the minimum and

maximum number of segments in each cluster group.
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Figure 3. Subtype-specific patterns of gene-program and selected pathway expression
characterizing each Pan-Cancer-12 COCA subtype (see also Supplemental Figures S5-6, Table
S4, and Data File S5)
The heat map shows integrative subtypes in numerical order. Gene programs (top) and

pathway signatures from PARADIGM (bottom) were clustered separately from each other.

Red-blue intensities reflect the means of the scores (red=high, white=average, blue=low).
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Figure 4. Genomic determinants of the C2-Squamous-like COCA subtype (see also Supplemental
Figure S7 and Table S5)
A) SCNAs for the C2-Squamous-like subtype are shown, highlighting the importance of

3q26 gains across the different tissue-of-origin samples. B. Selected genes from 291 high-

confidence driver (HCD) genes (Tamborero et al., 2013) mutated in > 5% of C2-Squamous-

like samples and comparable in frequency in other subtypes. Samples with protein-affecting

mutations in those genes are shown in green. C. HCD genes (as in panel B) with mutation

frequency significantly higher in C2-Squamous-like tumors relative to others (stated at

p<0.01 according to Fisher’s exact test with FDR correction). The method used corrections

for imbalance in the number of samples from different tissues (see Supplemental Text

Section 8). D. Two sub-networks of mutated pathways identified by an updated HotNet

algorithm analysis using HINT interactions (see Supplemental Text) as mutated in at least

20% of the samples of the C2-Squamous-like subtype (cluster 2). Pie charts indicate

interactions among the proteins in each subnetwork. Each gene (node) is colored by wedges

whose size indicates the relative proportion of the gene’s mutations that are in samples from

each integrated subtype. To the right of the pie charts is a gene-by-sample mutation matrix

representing the mutation status of each gene across all Squamous-like samples. Full ticks

represent SNVs, downticks represent deletions and upticks represent amplifications. The

color of each tick indicates tissue-of-origin type, with gray indicating no mutation in the

corresponding sample.
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Figure 5. Comparison of molecular characteristics of C2-Squamous-like, C4-BRCA/Basal and
C9-OV (ovarian) subtypes reveals differences in TP63 and TP53 signaling (see also
Supplemental Figure S7, Table S5, and Data File S4)
A) Relative significance of TP63 network activation within the C2-Squamous-like and C4-

BRCA/Basal subtypes. The network neighbors surrounding the TAp63γ and ΔNp63α

tetramer complexes that show significant activation (or inactivation) within the C2-

Squamous-like and/or C4-BRCA/Basal subtypes relative to all other cases were visualized

using Cytoscape (Shannon et al., 2003). Node shape reflects relative significance in the one-

versus-all comparison (square: more significant in C2-Squamous-like, triangle: more

significant in C4-BRCA/Basal). Node color indicates relative activity (red: activated in C2

and C4, blue: inactivated in C2 and C4, purple: activated in C2 but inactivated in C4, white:

activated or inactivated in only one subtype). B) Box plot of isoform-specific levels of TP63

and TP73 within three of the TP53-frequently mutated COCA subtypes (C2-Squamous-like,

C4-BRCA/Basal, and C9-OV). C) CircleMap of PARADIGM-Shift differences associated

with TP53 mutations within the C2, C4 and C9 COCA subtypes. Samples were ordered first

by integrative subtype membership (innermost ring), then by TP53 mutation status (second

ring), and finally by P-Shift (outer ring, indicating TP53 activity). The GISTIC score

(indicating CNV), mRNA expression level, PARADIGM upstream and downstream

activities are shown in the third, fourth, fifth and sixth rings, respectively. Red-blue color

intensity reflects magnitude (red: positive, blue: negative). TP53-truncating mutants are

highlighted (black outlined wedge), and the mean P-shift scores of the truncating mutants

are shown. Negative P-Shift scores (outer ring blue) predict loss of function (LOF). D)
Unsupervised clustering of C2-Squamous-like, C4-BRCA/basal, and C9-OV cancers based

on the expression patterns of 33 published TP53-related gene signatures. Sample subtype

assignment (pink: C2-Squamous-like, blue: C4-BRCA/basal, purple: C9-OV) and TP53
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mutation status (wild type: white, truncating: black, missense: grey) are indicated in the

column color bar. Heatmap red-blue color intensity reflects magnitude (red: positive, white,

average: blue: negative). See Supplemental Data File S4 (syn2491513) for complete list.
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Figure 6. Divergence of the bladder cancer samples across multiple COCA subtypes (see also
Supplemental Figure S8 and Table S6)
A) Kaplan-Meier survival analysis of bladder cancers within the C1-LUAD-enriched, C2-

Squamous-like, and C8-BLCA subtypes. B) Heatmap of 17 proteins expressed at

significantly different levels within the C2-Squamous-like relative to the C8-BLCA bladder

cancer samples. Samples are arranged along the column by subtype (pink: C2, light blue:

C8); and protein data are ordered along the rows by clustering. Rainbow color scale reflects

magnitude (red: high, green: average, blue: low). C) HCD genes with differential mutation

frequencies among the bladder samples clustered in COCA subtypes C1, C2 and C8.

Differential frequencies reflect frequencies within, relative to frequencies outside of, the

COCA subtype. D) Heatmap of 11 gene programs showing significant differential

expression between the C2 and C8 bladder cancers. Samples are arranged along the column

by subtype (pink: C2, light blue: C8), and gene programs are ordered along the rows by

clustering. Red-blue color scale reflects magnitude (red: high, blue: low). E) PARADIGM

sub-network of immune-related pathway biomarkers activated in C2 bladder cancers relative

to the C8 subtype. Red-blue color scale represents relative activation (red: higher in C2,

blue: higher in C8). Node size reflects relative significance, and node shape denotes feature

type (diamond: multi-protein complex, inverted v: cellular process, circle: genes, square:

gene family). Color of an edge reflects type of interaction within the PARADIGM

SuperPathway (purple arrows: activation, green T: inhibition).
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