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Abstract Cooling of fruits and vegetables, immediately after
the harvest, has been a widely used method for maximizing
post-harvest life. In this paper, an optimization algorithm and
a numerical solution are used to determine simultaneously the
convective heat transfer coefficient, hH, and the thermal dif-
fusivity, α, for an individual solid with cylindrical shape,
using experimental data obtained during its cooling. To this
end, the one-dimensional diffusion equation in cylindrical
coordinates is discretized and numerically solved through
the finite volume method, with a fully implicit formulation.
This solution is coupled to an optimizer based on the inverse
method, in which the chi-square referring to the fit of the
numerical simulation to the experimental data is used as
objective function. The optimizer coupled to the numerical
solution was applied to experimental data relative to the cool-
ing of a cucumber. The obtained results for α and hH were
coherent with the values available in the literature. With the
results obtained in the optimization process, the cooling ki-
netics of cucumbers was described in details.

Keywords Numerical simulation . Optimization . Finite
volume . Food properties . Vegetables . Infinite cylinder

Introduction

The conservation time of fruits and vegetables in natural
conditions is limited to only a few days. Cooling of these

products, immediately after the harvest, has been a widely
used method for maximizing post-harvest life and inhibiting
the growth of decay-causing microorganisms (Miyake and
Hiramitsu 2011). In this sense, cooling techniques have
been widely studied for several researchers (Wijewardane
and Guleria 2011; Basediya et al. 2011; Samira et al. 2011;
Raval et al. 2011). According to Brosnan and Sun (2001), it
is necessary not only to cool the product but also to cool the
product as quickly as possible, after harvest. In order to use
efficient techniques for the cooling of fruits and vegetables,
the heat transfer from the product to the medium should be
known in details (Dincer 1995a). Thus, in the case of the
heat conduction, the solution of the diffusion equation
should be used in the description of the cooling process.
On the other hand, the convective heat transfer coefficient
hH and thermal diffusivity α are important parameters to
characterize, to model and to optimize the heat transfer
processes (Erdogdu 2005). In order to determine these
parameters and to describe the cooling kinetics of a product,
in a general way two tools are available: the analytical and
numerical tools.

Analytical solutions of the diffusion equation are found
in the literature for several simple geometries such as slabs,
cylinders, and spheres, among others shapes. In these sol-
utions, it is usually assumed that these solids have constant
thermo-physical properties as, for example, in Luikov
(1968) and Crank (1992). In the 1990s, these solutions were
used in several research works to determine the thermal
diffusivity and the convective heat transfer coefficient of
several agricultural products, with the objective to describe
the cooling kinetics of them (Dincer 1995a, b, c, d, 1996). In
these works, analytical solutions are combined with curve
fitting to determine empiric expressions for α and hH.

Although analytical models are still used (Becker and
Fricke 2004; Erdogdu 2005; Erdogdu 2008; Kumar et al.
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2008; Cuesta and Lamúa 2009; Raval et al. 2011), in the
recent years many works use numerical solutions to describe
the cooling kinetics of agricultural products. Campanõne et
al. (2002) used an implicit finite-difference scheme to de-
scribe the simulation of food refrigeration. Pirozzi and
Amendola (2005) determined the convective heat transfer
coefficient value of strawberries, employing numerical sim-
ulation through finite differences and experimental data. A
similar procedure was used by Amendola et al. (2009) to
determine the convective heat transfer coefficient value for
fig fruit. The authors employed numerical simulation and
experimental data, using finite differences and spherical
coordinates to solve the one-dimensional diffusion equation
through an explicit scheme. Using finite differences and a
Differential Evolution algorithm, Mariani et al. (2009) esti-
mated the apparent thermal conductivity of carrot purée
during freezing. In the last work, for instance, only the
thermal conductivity was determined through optimization,
since a fluxmeter was adhered to the internal wall of the
container, in the interface with the product. According to the
authors, “the instrument used in the experiment had allowed
the measurement of the heat transfer coefficient between
400 and 2000 W m−2 °C−1”. On the other hand, Silva et
al. (2011) studied the effect of the geometric representation
of cucumbers on the numerical simulation of its cooling
kinetics. The following geometries were used to represent
the cucumber: infinite cylinder, finite cylinder, and ellipsoid.
In this article, the authors assumed that the diffusion model
with boundary condition of the third kind satisfactorily
describes the cooling, and that the thermo-physical param-
eters are constant during the process. According to Silva et
al. (2011), the best model in the representation of the
cucumber’s shape was the ellipsoid, but the time demanded
in its optimization was about 66 times greater than the time
for the infinite cylinder.

As observed by Erdogdu (2008), the simultaneous deter-
mination of the thermal diffusivity and convective heat
transfer coefficient is difficult to accomplish because there
may be several pairs of these parameters for which the
solution of the diffusion equation is fitted to a set of exper-
imental data. In other words, the objective function may
have several local minima. Thus, the simultaneous determi-
nation of the parameters of the diffusion equation through
optimization is an issue which still deserves further investi-
gation. On the other hand, although there are some articles
in the literature describing the drying of agricultural prod-
ucts using the finite volume method (Wu et al. 2004; Carmo
and Lima 2005), few works use finite volume method to
describe cooling of products, particularly of an individual
solid, despite the fact that this method presents a simple
physical interpretation of the conservation laws.

The main objective of this paper is to present an optimiza-
tion algorithm and a numerical solution for the simultaneous

determination of the convective heat transfer coefficient and
thermal diffusivity of a cylindrical body cooled in any medi-
um, supposing that the position of the thermocouple which
measures the temperatures is known. As a second objective,
an application of the presented tools is made in a cucumber
subjected to cooling air.

Material and methods

The mathematical model used in this article for the solution
of the diffusion equation for a cylinder presupposes the
following assumptions:

& infinite cylinder: R≪L, where R is the radius and L is the
height of the cylinder;

& the solid must be homogeneous and isotropic;
& the spatial distribution of the temperature must have

radial symmetry and must be initially uniform;
& the only mechanism for transport of heat within the solid

is diffusion;
& the convective heat transfer coefficient is constant dur-

ing the heat diffusion;
& the boundary condition is of the third kind (Cauchy),

and the cooling medium temperature must be constant;
& there must be no phase change in the product during the

process;
& the mass loss and the source term due to the respiration

heat are negligible during the cooling of the cucumber.

Diffusion equation

For the assumptions above, the diffusion equation in cylin-
drical coordinates can be written as

@ðρcpTÞ
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¼ 1
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@
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� �
; ð1aÞ

where ρ is the density (kg m−3), cp is the specific heat (Jkg
−1

K−1), T is the temperature (K), t is the time (s), r defines a
radial position within the infinite cylinder (m), and k is the
thermal conductivity (Wm−1 K−1). If the density and the
specific heat are constant, Eq. (1a) can be written in the
following way:
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where α is the thermal diffusivity (m2s−1).

Discretization

The diffusion equation will be numerically solved through
the finite volume method (Patankar 1980). This choice is
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explained only by the experience of the authors of this article
with this method. It is important to mention that the explicit
formulation presents good results in problems involving dis-
cretization. However, a fully implicit formulation will be used,
and this formulation was chosen because it is unconditionally
stable, enabling the user of the software to be created freely
can choose the number of the time step, with no restriction. To
this end, a cylinder and its uniform mesh are presented Fig. 1.
The thickness of the control volumes isΔr (m) and the control
volume number “i” has a nodal point “P”.

Figure 2 shows a control volume with nodal point “P”
and its neighbors to west (W) and to east (E). The lower
cases “w” and “e” refer to the interfaces of the referred
control volume P. Therefore, rw and re are the radius of the
circumferences “w” and “e”.

Integrating Eq. (1b) with respect to space (2πrPΔrL) and
time (Δt), the following result is obtained for the control
volume P:

TP � T0
P

Δt
rPΔr ¼ reae

@T

@r e

��� � rwaw
@T

@r w

��� ; ð2Þ

where the superscript 0 means “former time” t and its
absence means “current time” t+Δt.

Cylinder: internal volumes

The partial derivatives for an internal control volume can be
approached in the following way:

@T

@r e

��� ffi TE � TP
Δr

ð3Þ

and

@T

@r w

��� ffi TP � TW
Δr

: ð4Þ

Replacing Eqs. (3) and (4) into Eq. (2), the discretized
equation for an internal volume may be written:

ApTP ¼ AwTW þ AeTE þ B; ð5Þ
where

Aw ¼ rw
Δr aw; Ap ¼ rPΔr

Δt þ re
Δr ae þ rw

Δr aw;

Ae ¼ re
Δr ae; B ¼ rPΔr

Δt T0
P:

ð6a–dÞ

Cylinder: control volume 1

Due to the symmetry condition (flux zero in the centre), the
third term of Eq. (2) is zero for the control volume 1. Thus,
Eq. (2) becomes:

ApTP ¼ AeTE þ B; ð7Þ
with

Ap ¼ rPΔr
Δt þ re

Δr ae; Ae ¼ re
Δr ae;

B ¼ rPΔr
Δt T0

P:
ðð8a–cÞÞ

Cylinder: control volume N

For the control volume N, the convective boundary condi-
tion can be expressed in the following way:

� ke
@T

@r e

�� ¼ hH Tb � T1ð Þ; ð9aÞ

where hH is the convective heat transfer coefficient (Wm−2

K−1), Tb is the temperature at the boundary (K), and T ∞ is
the temperature of the cooling air (K). Dividing Eq. (9a) by
the factor ρcp, a new equation can be written for the con-
vective boundary condition:

� ae
@T

@r e

�� ¼ h Tb � T1ð Þ; ð9bÞFig. 1 a Cylinder of radius R and height L; b Uniform mesh: N
control volumes with thickness Δr, and nodal points

Fig. 2 Control volume P and its neighbors to west (W) and to east (E)
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where h is the convective transfer coefficient (ms−1). For the
control volume N, Eq. (3) can be rewritten as follows:

@T

@r e

��� ffi Tb � TP
Δr 2=

: ð10Þ

Combining Eq. (9b) and (10), an expression for Tb is
obtained:

Tb ¼
aeTP þ hΔrT1

2

ae þ hΔr
2

: ð11Þ

Substituting Eq. (11) in Eq. (10), and the obtained
result into Eq. (2), and taking in account Eq. (4), the
following discretized equation is obtained for the control
volume N:

ApTP ¼ AwTW þ B; ð12Þ
where

Aw ¼ rwaw
Δr ; Ap ¼ rPΔr

Δt þ reae
ae
h þΔr

2
þ rwaw

Δr ;

B ¼ rPΔr
Δt T0
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h þΔr

2
T1:

ð13a–cÞ

For each time step, a system of equations given by Eqs.
(5), (7) and (12) can be solved by the TDMA method, i.e.,
tri-diagonal matrix algorithm (or Thomas algorithm) (Press
et al. 1996). Once T(r,t) is numerically determined, the
temperature Tb at the boundary, at a given time t, can be
calculated through Eq. (11). The average value of T at a
given time t may be calculated by (Silva et al. 2008):

T ¼ 1

V

XN
i¼1

TiVi ð14Þ

with

V ¼
XN
i

Vi; ð15Þ

where Vi and V respectively are the volume of the control
volume “i” (m3) and the volume of the cylinder (m3).

The aforementioned system of equations can be solved
for the dimensionless temperature, which is defined in the
following way:

T*ðrÞ ¼ TðrÞ � T1
T0 � T1

; ð16Þ

where the initial temperature T0 (K) is supposed uniform. In
this case, for t00, T * (r)01 and, for t→∞, T * (r)00.

Thermal diffusivity α

For the nodal points, the process parameter α may be
calculated from an appropriate relation between such

parameter and the temperature T,

a ¼ f T ; a; bð Þ ð17Þ
where “a” and “b” are parameters which fit the numerical
solution to the experimental data, and they are determined
by optimization.

On the interfaces of the control volumes, for example “e”
(Fig. 2), the following expression should be used to deter-
mine α (Patankar 1980; Silva et al. 2008):

ae ¼ 2aEaP

aE þ aP
; ð18Þ

and Eq. (18) is valid for uniform grids. Note that Eq. (18) is
also valid for a constant diffusivity, with a value α. In this
case, αE 0 α and αP 0 α; and Eq. (18) results in αe 0 α.

Optimization algorithm

In order to determine the parameters α and h by optimiza-
tion, the objective function was defined by the chi-square
referring to the fit of the simulated curve to the experimental
data of the cooling kinetics in the centre. The expression for
the chi-square involving the fit of a simulated curve to the
experimental data is given by (Bevington and Robinson
1992; Taylor 1997)

c2 ¼
XNp

i¼1

T exp
i � Tsim

i

� �2 1

σ2
i

ð19Þ

where T exp
i is the temperature measured in the experimental

point “i” (K), Tsim
i is the correspondent simulated temperature

(K), Np is the number of experimental points, 1=σ2
i is the

statistical weight referring to the point “i”. In general, in the
absence of information, the statistical weights are made equal
to a common value, for instance 1. In Eq. (19), the chi-square
depends on Tsim

i , which depends on α and h. If the cooling
involves an interval of temperature in which the value of h can
be considered constant and the thermal diffusivity is given by
Eq. (17), the parameters can be determined through the min-
imization of the objective function, which is accomplished in
cycles involving the following steps (Silva et al. 2011):

Step 1) Inform the initial values for the parameters “a”, “b”
and “h”. Solve the diffusion equation and deter-
mine the chi-square;

Step 2) Inform the value for the correction of “h”;
Step 3) Correct the parameter “h”, maintaining the param-

eter “a” and “b” with constant values. Solve the
diffusion equation and calculate the chi-square;

Step 4) Compare the latest calculated value of the chi-square
with the previous one. If the latest value is smaller,
return to the step 2; otherwise, decrease the last
correction of the value of “h” and proceed to step 5;
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Step 5) Inform the value for the correction of “a”;
Step 6) Correct the parameter “a”, maintaining the param-

eters “b” and “h” with constant values. Solve the
diffusion equation and calculate the chi-square;

Step 7) Compare the latest calculated value of the chi-
square with the previous one. If the latest value is
smaller, return to the step 5; otherwise, decrease
the last correction of the value of “a” and proceed
to step 8;

Step 8) Inform the value for the correction of “b”;
Step 9) Correct the parameter “b”, maintaining the param-

eters “a” and “h” with constant values. Solve the
diffusion equation and calculate the chi-square;

Step 10) Compare the latest calculated value of the chi-square
with the previous one. If the latest value is smaller,
return to the step 8; otherwise, decrease the
last correction of the value of “b” and proceed
to step 11;

Step 11) Begin a new cycle coming back to the step 2 until
the stipulated convergence for the parameters “a”,
“b” and “h” is reached.

In each cycle, the value of the correction of each param-
eter can be initially modest, compatible with the tolerance of
convergence imposed to the problem. As an example, if the
relative tolerance for h (Δh/h) is 1×10−4 and h0 is 1×10

−6,
then Δh is 0.0001×10−6 and this is the first correction for the
parameter. Thus, for a given cycle, in each return to the step 2,
5 or 8, the value of the new correction can be multiplied by the
factor 2. If the modest correction initially informed does not
minimize the objective function, in the next cycle its
value can be multiplied by the factor −1. Note that if
the thermal diffusivity is supposed constant, the steps 8,
9 and 10 are not necessary. On the other hand, the
initial values for the parameters can be estimated through the
obtained values for similar products available in the literature,
or through some empirical correlation. Another interesting
aspect is that the order for the correction of the parameters
was established after several tests. Although any order for the
correction of the parameters results in the same final values for
the parameters, the convergence is achieved more quickly
using the established order.

For constant thermal diffusivity, once α and h have
been determined through optimization, the Biot number
(dimensionless) can be calculated by the expression
(Dincer 1996):

Bi ¼ hR

a
: ð20Þ

The analysis of Eq. (1a) and (1b) makes it possible to
write an expression for the thermal conductivity:

k ¼ ρcpa: ð21Þ

Comparing Eq. (9a) with (9b), the following equation is
obtained for the convective heat transfer coefficient:

hH ¼ ρcph: ð22Þ

Developed software and statistical indicators

The developed software (optimizer and solver for the diffu-
sion equation), including the user interface, was created in a
computer Intel Pentium IV with 1 GB RAM; in the studio
Compaq Visual Fortran Professional Edition V. 6.6.0, using
a programming language option called QuickWin Applica-
tion, under the Windows XP platform. In order to analyze
the quality of the fit, the statistical indicators chi-square,
given by Eq. (19), and the coefficient of determination R2

(Taylor 1997) are used. In addition to these, the average
error, the correlation coefficient and the covariance between
parameters, as well as the t-test and the variance will be used
to evaluate the results. All the statistical treatment of the
obtained results is performed using the LAB Fit Curve
Fitting Software, available on www.labfit.net.

Figure 3 shows a screen of the developed software during
an optimization process.

Basically, the developed software can be used in two
situations: 1) simulation of the cooling kinetics when the
thermo-physical parameters are known; 2) determination of
the parameters α and h by optimization when an experimen-
tal dataset is known.

Experimental data

Experimental data obtained by Dincer (1996) for cooling of
cucumbers are explored in the present paper. The temper-
atures were measured with a thermocouple placed in the
centre of the cucumber, and they were presented through
dimensionless values determined by Eq. (16). The points of
the graph that describes the cooling kinetics of the cucumber
were digitized using the software xyExtract Graph Digitizer
available on Internet in (http://zeus.df.ufcg.edu.br/labfit/
index_xyExtract.htm). Dincer (1996) did not inform the
uncertainties of the temperatures and, due to that, in the
present paper, the statistical weights were made equal to 1.
The dimensions of the cucumber used in the experiment
were: radius R00.019 m and height L00.16 m. For these
dimensions, the vegetable shape can be reasonably consid-
ered an infinite cylinder (Erdogdu and Turhan 2006). The
decimal moisture content of the cucumber was X00.96
(wb), and the mass loss was found to be negligible. The
initial temperature of the cucumber was 295 K, while the
temperature of the cooling air was 277 K. Note that, al-
though software developed in this article can include the
dimensional variations of the cylinder during the cooling
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process, for this particular range of temperature (295–
277 K) these variations were not measured by Dincer
(1996) and, due to this fact, are not considered here. On
the other hand, the cooling air velocity was kept at 2 ms−1

and its relative humidity was 80 %.
In the present paper, the specific heat was estimated from

the expression (Sweat 1986; ASHRAE 1993)

cp ¼ 1:381þ 2:930X ð23Þ

with cp given in kJ kg−1 K−1 when the moisture content X is
decimal in wet basis. Using Eq. (23), the value for the specific
heat of cucumbers was estimated: cp04190 Jkg−1 K−1. Note
that cucumber is 96 % water. Thus, the specific heat of the
product is practically equal to the specific heat of the water.
Naturally, we used an empirical expression to determine this
parameter, and the value obtained herein is not exact. The
density of the cucumber was determined by Fasina and
Fleming (2001) for a vegetable with the same moisture con-
tent as the cucumber currently under analysis: ρ0959 kgm−3.

Results and discussion

The circular section of the infinite cylinder that represents the
cucumber was divided into 200 control volumes and the total
time of cooling was divided into 1000 time steps. Previous

study indicates that 200 control volumes and 1000 time steps
could guarantee an adequate refinement for the problem under
investigation. Although this number seems excessive, the po-
sition of the thermocouple within the cucumber is provided to
software by the identification of the control volume where the
device is placed (in this article the centre is represented by the
control volume number 1). In this way, this number of control
volumes allows to locate the thermocouple with good accuracy.

Constant thermal diffusivity

It must be observed that different α and h pairs can describe
the cooling kinetics (Erdogdu 2008), since the objective func-
tion may have more than one minimum point. This is a
problem which occurs in many optimization processes as,
for example, in nonlinear regression. The Statistical Reference
Datasets Project (SRDP) of the National Institute of Standards
and Technology (NIST), for instance, presents 27 datasets
(and initial values) with three levels of difficulty in order to
certify nonlinear regression algorithms. Some of the files
available are used to test whether the algorithm can detect
the global minimum or if it determines parameters when
another minimum is found. Initial values, physically consis-
tent, should be chosen so that this difficulty can be worked
around by the software user. Similarly, for the algorithm
proposed in this paper, such difficulty must be worked around,
and this can be made as will be shown below.

Fig. 3 Screen of the developed software during an optimization process
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Boundary condition of the first kind

Initially, constant thermal diffusivity α is the only parameter
to be determined by the proposed algorithm, and h will be
kept at 1×10+10, which means boundary condition of the
first kind. In this case, the objective function has a single
minimum as noted by Silva et al. (2009). For the experi-
mental data of cucumbers cooling, for example, using
several significantly different initial values, and impos-
ing a relative tolerance of 1×10−4 for the convergence,
the same value for the thermal diffusivity is obtained, as
can be seen in Table 1.

In Table 1, despite the fact that the last initial value is 500
times greater than the first, the same value was obtained for
the thermal diffusivity, in all the optimizations performed.
This is consistent with the results of Silva et al. (2009), who
observed that there is a single value for the diffusivity that
minimizes the objective function for the boundary condition

Table 1 Thermal diffu-
sivity obtained through
optimization for the
boundary condition of
the first kind

Initial value (m2 s−1) Result (m2 s−1)

1×10−10 4.490×10−8

5×10−10 4.491×10−8

1×10−9 4.491×10−8

5×10−9 4.489×10−8

1×10−8 4.491×10−8

5×10−8 4.489×10−8

Fig. 4 Cooling curve in r0
0.0 m, supposing: a Boundary
condition of the first kind, b
Boundary condition of the third
kind with constant thermal
diffusivity and c Boundary
condition of the third kind with
variable thermal diffusivity
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of the first kind. The cooling simulation considering the
boundary condition of the first type is shown in Fig. 4(a).

An inspection of Fig. 4(a) makes it possible to state that
the boundary condition of first kind is not suitable to de-
scribe cooling of cucumber. On the other hand, this condi-
tion is expressed by an infinite Biot number and, in practical
terms, an “infinite Biot number” may be a value, for in-
stance, close to 200. Another point to consider is that this
inadequacy observed in Fig. 4(a) indicates that there is
resistance to heat flow on the surface, so the Biot number
must be much lower than 200. Furthermore, due to the
resistance at the surface, a value for the thermal diffusivity
greater than the one obtained in Table 1 should be expected.

Boundary condition of the third kind

For the boundary condition of third kind, using the proposed
algorithm, in general an initial value two, three or four times
greater than that obtained for the condition of the first kind
produces satisfactory results for the simultaneous determi-
nation of α and h. On the other hand, the strong inadequacy
of the solution with boundary condition of the first kind to the
experimental data (Fig. 4a) makes it possible to estimate h
by imposing the value of Biot number as 4, 3, 2 or 1 (values
much lower than 200). If the initial value of α is esti-
mated as 1×10−7 m2s−1, for example, assuming Bi 0 2,
the initial value of h can be estimated as 1×10−6 m s−1.
Based on earlier study, the initial values for α and h were



attributed respectively as 1×10−7 m2 s−1 and 1×10−6 m s−1.
Performing the optimization process as described in the
“Thermal diffusivity α”, with a relative tolerance of

convergence for the parameters given by 1×10−4, and
using the solution for the diffusion equation presented in
“Discretization”, it is possible to obtain the graph for the
temperature in the centre (control volume 1) versus the
cooling time, as shown in Fig. 4(b).

The fit of the numerical simulation to the experimental
data obtained by optimization via inverse method is good,
with a chi-square given by 2.8210×10−3 and a determina-
tion coefficient of 0.999088. The obtained results for the
parameters can be summarized through Table 2.

In Table 2, the parameter h was obtained through
optimization and hH by Eq. (22). In the same way, the
parameter α was obtained through optimization while the
parameter k was obtained by Eq. (21). The obtained

Table 2 Constant parameters determined in this article for cucumber
and values from the literature for this product

Present article Dincer
(1996)

Silva et al.
(2012b)

α (m2 s−1) 1.453×10−7 1.45×10−7 1.47×10−7

k (W m−1 K−1) 0.5838 – –

h (m s−1) 6.439×10−6 6.21×10−6 6.39×10−6

hH (W m−2 K−1) 25.87 – –

Fig. 5 a Dispersion and
average error for constant
diffusivity; b Variable thermal
diffusivity versus dimensionless
temperature; c Dispersion and
average error for variable
diffusivity; d Dimensionless
temperatures: average, in the
centre and on boundary; e
Graph of the dimensionless
temperature versus radial
position after 402 s of cooling
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value in the present paper for α agrees with the value
obtained by Dincer (1996), and the discrepancy between
the two results is only 0.2 %.

With the results of Table 2, the Biot number can be calcu-
lated using Eq. (20): Bi00.8420. This result agrees with the
one obtained by Dincer (1996), and the discrepancy between
them is only 3.3 %. The advantage of the presented numerical
tools with respect to the empirical expressions proposed by
Dincer (1996) is that, for the numerical case, the sensor of
temperature could be placed in any position within the cu-
cumber. Besides this advantage, numerical simulations make
it possible to describe the cooling kinetics in details, as it will
be seen in this article. In addition, the presented numerical tool
can to determine the interest parameters with variable value, as

a function of the temperature, and this is not possible through
the analytical tools.

In order to investigate how much the simulated curve
represents the cooling kinetics, a plot of the error as function
of the dimensionless temperature is shown in Fig. 5(a).

Figure 5(a) enables to conclude that the average error is
small but significant (1.079×10−3), once it is expected the
value zero. Then, another model for the diffusivity should
be tried, considering a value variable for this parameter.

Variable thermal diffusivity

For the interval of the temperature used in the experiment, it is
well known that thermal diffusivity (and thermal conductivity)

Fig. 6 Dispersions between the
parameters for the 50 virtual
results: a h and b; b h and a; c b
and a

Table 3 Elements of the corre-
lation coefficient and covariance
matrix supposing variable
thermal diffusivity

a (°C−2) b (m2 s−1) h (m s−1)

Correlation coefficient

a (°C−2) 1 −0.623412 0.412486

b (m2 s−1) −0.623412 1 −0.813996

h (m s−1) 0.412486 −0.813996 1

Covariance matrix

a (°C−2) 1.34521×10−2 −3.42872×10−10 1.24181×10−8

b (m2 s−1) −3.42872×10−10 2.24867×10−17 −1.00192×10−15

h (m s−1) 1.24181×10−8 −1.00192×10−15 6.73750×10−14
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decreases when the average temperature of the product also
decreases (Ansari et al. 2007; Oke et al. 2007; Kurozawa et al.
2008; Singhal et al. 2008; Ansari et al. 2009). In these papers,
each value of the thermal diffusivity is determined in an
experiment with the solid in a given average temperature.
However, for the transient state, during the cooling, the tem-
perature within the cucumber varies with the position (and
time). Then, it is reasonable to suppose that the thermal
diffusivity depends on the local temperature. Thus, in order
to relate the thermal diffusivity with the local temperature,
several simulations were carried out with various increasing
functions. In these simulations, the convective heat transfer
coefficient was considered constant. Analyzing the statistical
indicators of all optimizations performed, it was observed that
the dependence of the diffusivity on local temperature may be
described by an expression in the following form:

a ¼ b cosh aT*2
� �

: ð24Þ

If the thermal diffusivity is constant, the coefficients A of
the discretized equations are calculated only once, and the
coefficient B is calculated in each time step because its value
depends on T0

P, which is the value of T in the control volume
P at the initial instant of each time step. However, if the
parameter α is variable, the coefficients A are also calculated
in each time step, due to the nonlinearities caused by the
variation of this parameter. In this case, according to Silva et
al. (2012a), if the time refinement is adequate, the errors due to
the nonlinearities can be discarded. Thus, due to the nonlinear-
ities on the coefficients A (Eqs. 6a–d; (8a–c); and 13a–c),
introduced by the variable diffusivity, the time of cooling will
be divided into 2000 steps. Attributing the initial values for the
parameter “a” as a001.0 °C-2, b0010

−7 m2s−1 and h00
10−6 m s−1, the following results are obtained for the parame-
ters: a01.202 °C−2, b09.671×10−8 m2 s−1 and h07.763×
10−6 m s−1. The statistical indicators for the fit were χ20
1.9289×10−3 and R200.999369, and the tolerance for conver-
gence was stipulated as 1×10−4. Note that the constant values

for the thermal diffusivity and convective heat transfer coeffi-
cient were already determined. Thus, typical values for these
quantities were assumed as initial values. An initial value was
chosen for “a” assuming a moderate modification for α, when
the dimensionless temperature varies from zero up to 1. On the
other hand, Fig. 4(c) shows the obtained results for the cooling
kinetics, supposing the thermal diffusivity is variable.

Obviously, through the statistical indicators, it can be ob-
served that the obtained results assuming variable thermal
diffusivity are better than those in which the thermal diffusiv-
ity is considered constant. Although cooling has been studied
with the temperature in the dimensionless form, the obtained
results are valid only for the interval from 277 up to 295 K. On
the other hand, a plot of α versus T is shown in Fig. 5(b).

For the proposed model, it can be observed that, for T*

between 0 and 0.5 (corresponding to 277–286 K), the value of
the thermal diffusivity is almost constant and, from 0.5 up to 1
(corresponding to 286–295 K), this parameter depends con-
siderably of the local value of the dimensionless temperature.

For the variable diffusivity, a plot of the error as function
of the dimensionless temperature is shown in Fig. 5(c).

As can be seen in Fig. 5(c), the result for the average
error is practically equal to zero (−1.458×10−4) and the
dispersion (between −1.4×10−2 and 2.1×10−2) is less than
the dispersion observed in Fig. 5(a) (between −1.8×10−2

and 2.7×10−2). The standard deviation associated to the
errors is σT* ¼ 0:00733.

As all the thermo-physical parameters are now known, a
new simulation was performed assuming 200 control vol-
umes and a time step of 2.1615 s (cooling time divided by
2000). Equation (11) makes it possible to determine the
dimensionless temperature at the boundary for each time
step. In the centre, the dimensionless temperature in each
time step is the value obtained for the control volume
number 1. The average value of the dimensionless temper-
ature can be calculated by Eq. (14). An idea about how
much the dimensionless temperature at the boundary differs
from that in the centre (and the average value) is given
through Fig. 5(d).

The greater difference between dimensionless tempera-
tures in the centre and at the boundary occurred after 402 s,
and its value is 0.27151 (it is 0.92594 in the centre and
0.65443 at the boundary).

The graph of the dimensionless temperature versus the
radial position r is shown at instant 402 s through Fig. 5(e).

Table 4 Statistical treatment for
the 50 virtual results supposing
variable thermal diffusivity.

Average Standard deviation
(95 %)

Standard deviation of
the average (95 %)

a (°C−2) 1.1941 0.1160 0.0164

b (m2 s−1) 9.5106×10−8 0.4742×10−8 0.06771×10−8

h (m s−1) 7.9065×10−6 0.2596×10−6 0.0367×10−6

Table 5 t-Student test
supposing variable
thermal diffusivity.

t P(t)

a (°C−2) 72.8 0.0

b (m2 s−1) 141.5 0.0

h (m s−1) 215.4 0.0
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Information about the dimensionless temperature distri-
bution inside the cucumber, given by Fig. 5(e), is necessary
in the description of its cooling because it allows for the
analysis of internal stresses during the process. These ther-
mal stresses are important because they may damage the
product during the cooling process.

Equation (14) makes it possible to determine the average
dimensionless temperature at any instant during the cucumber
cooling. For instance, the average dimensionless temperature
at the end of cooling (t04323 s) is 0.0904 and, with this value,
the removed heat of the cucumber could be calculated.

In order to estimate the uncertainties of the determined
parameters and the covariance between them, 50 virtual
experiments were performed as presented in Le Niliot and
Lefèvre (2004). To this end, the experimental measurements
were disrupted with 50 different Gaussian error distributions
with zero mean value and standard deviation given by σ ¼ 2
σT* 95%ð Þ. A plot showing the dispersions between “h” and
“a”; “h” and “b”; and “b” and “a” is given in Fig. 6.

An inspection in Fig. 6 enables to conclude that “h”
decreases with an increase in “b”. On the other hand, “h” rises
when “a” is increased, while “b” decreases with an increase in
“a”. These results can also be seen through Table 3.

The average values of the parameters and also the uncer-
tainties of them are given in Table 4.

The compatibility between the values of the parameters
determined through the experimental data (a01.202 °C−2,
b09.671×10−8 m2 s−1 and h07.763×10−6 m s−1) and the
corresponding values of the parameters obtained from the
50 virtual experiments (Table 4) is worthy of notice. For “a”,
the value of the discrepancy is 0.67 %, while for “b” it is
1.7 %, and for “h” it is 1.8 %.

Student’s t-test is a statistical indicator that allows to
determine the probability P(t) of a parameter given by an
average value (and its uncertainty) be zero. In order to
obtain information for the last results using this test, the
values of “t” and P(t) are given in Table 5 for the parameters
obtained through the virtual experiments.

As can be seen in Table 5, the values of “a”, “b” and “h”
are significant due to the fact that, for all them, P(t) is zero.

As a final comment, although this methodology has been
used by the first time for a cooling model with variable
thermal diffusivity in this article, a preliminary study of
the methodology was used with success to describe drying
of bananas (Silva et al. 2012b), using a model with variable
mass diffusivity and volume.

Conclusions

Although the present study has been applied to cooling of an
individual cucumber, the proposed tools can be used to de-
scribe cooling of many products with cylindrical geometry.

For the experimental dataset analyzed, the optimization pro-
cess supposing constant thermal diffusivity was able to simul-
taneously determine the values of h and α, and the obtained
results agree with the values given in the literature.

Although the consideration of constant thermal diffusivity
presents satisfactory results for the cooling kinetics, the model
supposing variable diffusivity is better than the constant
diffusivity model. For the variable diffusivity model, it is
interesting to observe that the variation of the thermal
diffusivity is more significant for the dimensionless tempera-
ture (local) between 0.5 and 1.0.With respect to the calculated
parameters, it is interesting to note that “h” decreases as “b”
increases. On the other hand, h increases as “a” increases,
while “b” decreases as “a” increases.

The proposed algorithm along with the suggested way of
determining initial values is effective in the simultaneous
determination of α and h. On the other hand, the determi-
nation of the uncertainties of the parameters is consistent
with the standard deviation relative to the original optimi-
zation, and the t-test results in a probability zero for all
parameters.

Despite the proposed tools having been applied for a cool-
ing process, the developed study can also be applied to diffu-
sion processes that involve the mass transfer in a product, and
also the simultaneous diffusion of heat and mass.
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