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The dichotomy between acoustic temporal envelope (ENV) and fine structure (TFS) cues has stimulated numerous studies over the past
decade to understand the relative role of acoustic ENV and TFS in human speech perception. Such acoustic temporal speech cues produce
distinct neural discharge patterns at the level of the auditory nerve, yetlittle is known about the central neural mechanisms underlying the
dichotomy in speech perception between neural ENV and TFS cues. We explored the question of how the peripheral auditory system
encodes neural ENV and TFS cues in steady or fluctuating background noise, and how the central auditory system combines these forms
of neural information for speech identification. We sought to address this question by (1) measuring sentence identification in back-
ground noise for human subjects as a function of the degree of available acoustic TFS information and (2) examining the optimal
combination of neural ENV and TFS cues to explain human speech perception performance using computational models of the peripheral
auditory system and central neural observers. Speech-identification performance by human subjects decreased as the acoustic TFS
information was degraded in the speech signals. The model predictions best matched human performance when a greater emphasis was
placed on neural ENV coding rather than neural TFS. However, neural TFS cues were necessary to account for the full effect of

background-noise modulations on human speech-identification performance.
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Introduction

Rate-place and temporal codes are the two primary neural codes
for sound perception (Plack and Oxenham, 2005). In terms of
frequency coding, the rate-place code utilizes the basilar-membrane
place corresponding to the maximum discharge rate of auditory-
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nerve (AN) responses over the stimulus duration. However, most
natural sounds fluctuate over time, therefore it is necessary to
consider temporal codes that rely on shorter timescales. Any
acoustic signal can be decomposed into the mathematical prod-
uct of a slowly varying temporal envelope (ENV,_.,.,) and a rap-
idly varying temporal fine structure (TFS,,) (Hilbert, 1912).
At the level of AN, ENV,_, . is represented as variations in the
discharge rate over several milliseconds (ENV, .,..1), Whereas TF-
Sacoust 1S represented as phase-locking information to individual
cycles of the stimulus waveform (TFS,,.,..;) (Johnson, 1980; Joris
and Yin, 1992). It should be noted that complex mappings exist
between the acoustic signal and its neural representation in the
peripheral auditory system. For example, when acoustic signals
are passed through cochlear filters, there is no one-to-one map-
ping between acoustic and neural ENV or TFS information
(Heinz and Swaminathan, 2009; Shamma and Lorenzi, 2013).
There has been a long-standing debate about the contribution
of these two acoustic features to speech intelligibility. ENV_ .
information over a few spectral channels is often thought to pro-
vide sufficient information for speech intelligibility in quiet
(Shannon et al., 1995), whereas TFS, . information may play
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an important role when speech is pre-
sented against a complex background
noise (Gnansia et al., 2009; Hopkins and
Moore, 2009). However, caution should
be taken to interpret these previous con- ~ N(©)
clusions because TFS, ., and ENV, ..«
do not factor in the neural representations
of these acoustic features. Furthermore it
is still unclear how the central auditory
system utilizes the neural information that is processed and con-
veyed from the peripheral auditory system.

The current study approaches the question of the neural cod-
ing of speech using psychoacoustic experiments and computa-
tional models. A recent study by Swaminathan and Heinz (2012)
evaluated the contribution of peripheral ENV ..., and TFS, ...
to speech perception in noise using a simple regression model,
and showed that ENV .., was the primary contributor to speech
perception. In their study, TFS, ., contributed mainly in the
presence of ENV _...;, but rarely as the primary cue itself. How-
ever, the question of how the central auditory system utilizes such
ENV, cura and TFS, ... information is largely unknown. To ad-
dress this question, we gradually jittered the acoustic phase cues
to degrade TES,_,, over 32 frequency channels with an expecta-
tion that the jittered acoustic phase cues may affect neural syn-
chrony in AN fibers. We simulated the AN response using a
computational model of peripheral auditory processing (Zilany
and Bruce, 2006, 2007) to evaluate how degraded TFS,_, ., cues
affect the encoding of TFS, .., and ENV ., information. Fi-
nally, we processed the peripheral neural information using a
computational neural-observer model and compared human
speech identification to model predictions. In doing so, we deter-
mined the optimal combination of ENV, ..., and TFS ..., infor-
mation needed to account for speech intelligibility in steady and
fluctuating noise.

Figure 1.

Materials and Methods

Subjects. Six native speakers of American English participated (four fe-
males and two males; five subjects between the ages of 28 and 30 and one
23 year old; mean age 27.8 years). All subjects had audiometric thresholds
of 20 dB HL or less at octave frequencies between 250 and 8000 Hz in
both ears. The current study was approved by the University of Wash-
ington Institutional Review Board.

Phase vocoder processing. Figure 1 shows a schematic diagram of the
Hilbert phase randomization procedure. Input waveforms, X(t), were
filtered into 32 channels using an array of finite impulse-response anal-
ysis filters. They were evenly spaced on an ERBy scale between 100 and
10,000 Hz, where ERBy, refers to the average value of the equivalent
rectangular bandwidth (ERB) of the auditory filter for young, normal-
hearing listeners at moderate sound levels (Glasberg and Moore, 1990).
The bandwidth for each channel was set to 1-ERB wide with the as-
sumption that if vocoding is performed with analysis channels that have
a similar bandwidth to auditory filters (i.e., 1-ERB wide), the effect of
the phase randomization will be primarily restricted to the temporal
information encoded via neural phase locking, while the spectral infor-
mation available to the central auditory system (encoded spatially on the
basilar membrane in the cochlea) will be only minimally affected, if at all.
In other words, the present approach explored only the role of within-
channel (neural) temporal cues for speech identification. The Hilbert
transform (Hilbert, 1912) was used to decompose each sub-band signal
into its ENV__ . and TFS, .. The absolute value of each sub-band
analytic signal, x;(#), was taken as the sub-band ENV___ .. No additional
processing was applied to the sub-band ENV__ .. The TES ., for each
sub-band was computed as the cosine value of the angle of the analytic
signal. The same analysis filters were used to filter a wideband noise,
N(t), to generate a band-limited noise carrier for each sub-band,
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Schematic diagram of signal processing to randomize Hilbert phase is shown. See text for details. BP, bandpass.

n,(t). The root mean square (RMS) value of 1;(t) was set to the same
RMS value as x;(t). The following equation was used to vary the extent
of phase randomization:

yi(t) = abs(x(1)) X cos(angle([(1 — NF) X x()] + [NF X n;(1)]),
(1)

in which, y;(#) is the output stimulus, x;(¢) is the analytic signal of the
ith analysis channel, n,(¢) is the filtered noise of the ith analysis chan-
nel in an analytic form, and NF is a “noise factor” from 0 to 1. As shown
in Equation 1, the weighted random noise component, analytic signal
[NF X n;(1)], was added to the weighted original sub-band analytic
signal [(1 — NF) X x;(t)]. Then, the randomized TFS,_,,, was ob-
tained by taking the cosine value of the angle of these mixed signals. The
randomized TFS,,,, was then modulated with the ENV__ ., of the
sub-band signal. Each modulated sub-band signal was subsequently filtered
with the initial analysis filters. The real values of the filtered signals were then
summed over all channels. For a pilot study, different types of equations
were tested for the phase randomization process such as cos(angle
() + angle(NF X n(0)), or cos(angle(x(1) X [n(n) X e M),
where w, is the center frequency of each analysis channel. Equation 1 was
chosen because when correlations between the Hilbert TFS, . of a
vocoded signal and the corresponding original signal were computed,
Equation 1 shows that, as a function of NF, the correlation coefficients
decrease in a more linear fashion (Fig. 4A) than other functions tested.

Human speech-identification test procedure. The target sentences were
taken from Institute of Electrical and Electronics Engineers (IEEE) sen-
tences (Rothauser et al., 1969), sampled at 20,000 Hz, spoken by a female
speaker. The IEEE sentences were presented in either steady or
amplitude-modulated, speech-shaped noise. The steady noise maskers
were spectrally shaped to have the same long-term power spectrum as the
IEEE sentences. The modulated noise maskers were generated by ampli-
tude modulating the steady noise with an 8 Hz sinusoid on a logarithmic
scale with a peak-to-valley ratio of 30 dB. In all trials, maskers were gated
on and off with 50 ms linear ramps 500 ms before and 50 ms after the
target sentences. The mixture of the target sentence and masker stimuli
were then vocoded and presented monaurally to the right ear via an
ER3-A insert phone at an overall target speech level of 65 dB SPL. Before
actual testing, subjects listened to vocoded sentences that were processed
with NF of 1 in the absence of background noise while they were pre-
sented with the sentences on the computer screen.

Speech reception thresholds (SRTs) corresponding to the 50% intelli-
gibility level were measured using a one-up, one-down adaptive proce-
dure. For each testing condition, subjects identified the IEEE sentences in
the presence of either steady or modulated noise. Each test run started
with a signal-to-noise ratio (SNR) of 6 dB, for which subjects were easily
able to identify the words in the target sentence correctly. If subjects
correctly identified three or more of the five keywords, the response was
counted as correct and the SNR for the next sentence was decreased. If
two or fewer keywords were correctly identified, the response was
counted as incorrect and the SNR for the next sentence was increased.
The level of the target sentence was always fixed, but the level of back-
ground noise was varied in an adaptive manner. An initial step size of 4
dB was used for the first two reversals in the adaptive track, after which
the step size was fixed at 2 dB for the next six reversals. The SRT for a
given track was based on the average of the SNRs corresponding to each
of the last six reversals in the adaptive track. No target sentence was
repeated to any subject. NF values of 0, 0.1, 0.2, 0.3, 0.5, 0.7, and 1.0 were
tested in random order. For each NF value, two adaptive tracks were
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completed and a further adaptive track was obtained if the difference of
the first two tracks exceeded 3 dB. Only about 7% of conditions across six
subjects required the third adaptive track. The final threshold for each NF
value was the mean of these two (or three) adaptive tracks.

Computational model of peripheral auditory processing. A phenomeno-
logical model of the AN (Zilany and Bruce, 2006, 2007) was used to
simulate spike-train responses in AN fibers to the same stimuli used in
the human sentence-identification test. This model is an extension of a
previously established model that has been tested extensively against
neurophysiological data obtained from animals in response to both sim-
ple and complex stimuli, such as tones, broadband noise, and speech-like
signals (Carney, 1993; Heinz et al., 2001; Zhang et al., 2001; Bruce et al.,
2003; Tan and Carney, 2003; Zilany and Bruce, 2006, 2007). The model
incorporates diverse nonlinear physiological properties of the cochlea,
including compression, suppression, broadened tuning, and best-
frequency shifts with increases in sound level. Inputs to the AN model
were the IEEE sentence waveforms, and the output of the model was a set
of spike times for four high spontaneous rate AN fibers with character-
istic frequencies (CFs) of 200, 464, 1077, and 2500 Hz (CF is the fre-
quency at which the fiber responds at the lowest sound level). These four
CFs were chosen because phase locking considerably decreases above
~2.5 kHz (Johnson, 1980).

To quantify the similarity between neural ENV or TES responses to
two different stimuli, the two sets of predicted AN spike trains were
compared by computing neural cross-correlation coefficients (pgy and
prrs) using established techniques (Heinz and Swaminathan, 2009).
Briefly, for two different stimuli passed through the AN model, one
serves as a reference stimulus (A) and the other serves as a test stimulus
(B). To create test stimuli, two different types of speech degradation were
used: phase vocoding and adding background noise. These stimuli were
passed through the AN model (Zilany and Bruce, 2006, 2007) to simulate
AN spike-train responses. Shuffled autocorrelogram and shuffled cross-
correlogram (SAC and SCC) analyses (Joris, 2003; Louage et al., 2004;
Heinz and Swaminathan, 2009) of these spike-train responses were per-
formed to compute neural cross-correlation coefficients (pgy, and
prrs)- These correlation coefficients describe the similarity in neural rep-
resentations of ENV or TFS between the reference and test stimuli. Sim-
ulated AN spike-train responses were obtained to each of the reference
(A) and test (B) stimuli, and their polarity-inverted waveforms (e.g., A+
with A—, and B+ with B—). For a given stimulus, AN responses were
generated for 20 repetitions at each CF. Here, polarity inversion results in
inverting the TES but keeping ENV the same.

To quantify the strength of TFS or ENV coding to a given stimulus (A),
simulated spike trains from A+ and A— were compared by creating
histograms of the intervals between spikes across all pairs of repetitions
(i.e., via shuffling). The shuffled autocorrelogram [SAC(A+)] was com-
puted from spike intervals in the spike-train responses to stimulus A+,
whereas the shuffled cross-polarity correlogram [SCC(A+, A—)] was
computed from spike intervals between the A+ and A— spike trains.
Following normalization of the histograms, TFS and ENV coding was
characterized by computing “difcor” and “sumcor ” functions, respec-
tively, as follows:

difcor, = SAC(A+) — SCC(A+, A—), (2)
sumcor, = [SAC(A+) + SCC(A+, A—)]/2. (3)

The peak height of the difcor or sumcor at a delay (spike interval) of zero
represents the strength of TFS and ENV, respectively. To quantify the
overall strength of common TFS or ENV coding between responses to
stimuli A and B, a difcor or sumcor function was computed based on
shuffled cross-stimulus correlograms as follows:

difcor,; = SCC(A+, B+) — SCC(A+, B—), (4)
sumcor,; = [SCC(A+, B+) + SCC(A+, B—)]/2. (5)

Using these difcor and sumcor functions, neural cross-correlation coef-
ficients ranging between 0 and 1 were computed by comparing the degree
of common TFS or ENV coding between A and B relative to the degree of
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TES or ENV coding to A and B individually (Heinz and Swaminathan,
2009) as follows:

difcor,y

e 6
ydifcor, X difcory ©)

PrEs =

sumcor,z—1

(7)

Prnv = \(sumcor,—1) X (sumcorg—1)’

Values of pgyy and prpg range from near 0 for completely uncorrelated
reference/test stimuli (noise floor for pgyy and prpg = 0.1 and 0.01,
respectively) to near 1 if the reference and test stimuli were perfectly
correlated. For a complete illustration of the computation of ppyy and
prrs Metrics, see Heinz and Swaminathan (2009).

Computational model of the central neural observer. To gain further
insight on how the central auditory system utilizes neural TFS and ENV
information for speech perception, the sentence-identification test for
human subjects was implemented using neural observers. The neural-
observer sentence-identification test was conducted using the same test-
ing paradigm as with human subjects. Human subjects were tested on an
“open-set” IEEE sentence test; however, to make the computational
speech-identification test more tractable, the central neural observer was
provided with a set of “exemplar” sentences. Figure 2 shows the block
diagram of the neural-observer computation. In each trial, the testing
program randomly selected a “target” sentence out of the 50 exemplar
sentences, and the peripheral model outputs were then compared be-
tween the target sentence and each of the 50 exemplar sentences. Both the
target and 50 exemplars were degraded by both noise and phase vocoding
at the corresponding SNR and NF. For example, for the 0 dB SNR and
NF = 1 condition, when the testing program selected a target sentence
randomly from the pool of 50 exemplar sentences, the background noise
was added to that sentence at 0 dB SNR and the mixture of the target
sentence and noise was passed through the phase vocoder with NF = 1.
Here, fresh noise was generated and used for each sentence. The resulting
vocoded signal was then provided to the peripheral model as a target
stimulus. The 50 sentences were also degraded at the corresponding SNR
and NF values; for this example, 0 dB and NF = 1. The degraded 50
exemplar sentences were provided to the peripheral model one by one.
Therefore, to make a single decision, 50 different mean (across 4 CFs)
Peny and prpg values were computed.

The neural-observer model used in this study was based upon assump-
tions that the central auditory system may optimally use the sensory
information provided by the peripheral auditory system for the best
possible speech-identification performance, depending on the acoustic
environment. To simulate such a decision process, different weightings
were applied to the mean ppy, and ppg values to compute a final deci-
sion metric for the neural observer. The following equation shows this
computation:

PENV_TFS_COMBINED — (a X PENV) +((1—a)X pTFS)) (8)

in which « is a weighting coefficient for pgyy» and subsequently, 1 — acis
a weighting for pyps. Five different sets of weighting coefficients were
tested (a = 1, 0.75, 0.5, 0.25, and 0).

The above procedure was performed independently for all the
weightings to compare the predicted speech-identification perfor-
mance by the neural-observer model. The central model had a two-step
decision process. First, 50 pgnv rrs compivep Values (for 50 exemplar
sentences) were scanned to determine the sentence that produced the
highest penv 1rs_compiven value. This sentence was saved as the predicted
sentence by the central model. Second, the testing program compared the
predicted sentence with the originally selected target sentence, and re-
corded the central neural-observer’s response as either correct or incor-
rect. As with the speech test for human subjects, the neural-observer
testing program started with an SNR of 6 dB. If the neural-observer
model was not able to predict sentence identification, such a condition is
marked as “n/a” in the data plot. For each testing condition, the mean
threshold from six model runs was obtained.
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Figure 2.

Results

Sentence identification by human listeners

Figure 3A shows SRTs as a function of NF values. Here, a lower
SRT value implies better speech-identification performance in
background maskers. In general, performance was better in mod-
ulated noise (filled triangles) than in steady noise (open squares).
A two-way repeated-measures ANOVA was performed to assess
the effects of NF and masker type (steady or modulated noise).
The main effects of NF (F(4 59, = 31.3, p < 0.001) and masker type
(F1.5) = 142.0, p < 0.001) were all highly significant. That is, as
NF increased (i.e., more phase randomization), SRTs increased
in both maskers, but the rate of increase for SRT values differed
between the two masker types. The interaction between NF and
masker type also reached significance (F4 55, = 3.18, p = 0.015),
indicating that the contribution of TFS,, ., is greater for SRTs in
modulated noise.

Speech-masking release was calculated as the SRT for steady
noise minus the SRT for modulated noise. Figure 3B shows the
speech-masking release as a function of NF. The amount of mask-
ing release decreased from 9.4 to 6.8 dB as NF increased from 0 to
1, creating a difference of 2.6 dB. This size of speech-masking

Block diagram for the neural-observer computation. See text for details.

release effect is consistent with Hopkins and Moore (2009), where
they tested normal-hearing listeners using tone vocoders that pre-
served either 0% or 100% TFS across 32 frequency bands. There was
no difference in SRTs between the first and second adaptive tracks
(paired t tests, p > 0.05 for both maskers) in the sentence-
identification test (i.e., there was no training effect observed).

Quantifying the effect of phase randomization on the
TFS, coust> TFSneurar> and ENV . ., information
To estimate how the phase randomization varied the availability
of TES, .. information in the vocoded signal, correlations be-
tween the Hilbert TFS,.,, (i-e., the cosine component of the
analytic signal) of a vocoded signal and the corresponding origi-
nal signal were computed. Ten sentences were used for this anal-
ysis. Figure 4A shows the mean correlation coefficients between
the Hilbert TFES,_, . of the original and vocoded signals. As NF
increased from a value of 0 to 1, there was a gradual decrease in
the correlation coefficients. When NF = 1 was used, the original
TFS,couse information was completely degraded.

To estimate how the phase randomization varies the availabil-
ity of TFS, . information in the AN, an IEEE sentence was
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Figure4. A, Mean correlation between the Hilbert TFS, ., of a vocoded signal and the corresponding original signal. Error bars show 1 SD of the mean across 10 sentences. B, , TFS . and
ENV, o) Vlues, where the neural cross-correlation coefficients were computed between model spike-train responses to the vocoded speech and a sentence in quiet processed with NF = 0 (as a
reference stimulus). Mean pyes and pgy, values across four AN fibers are plotted with SE bars. The [EEE sentence, the birch canoe slid on the smooth planks, was used.

processed with 11 NF values from 0 to 1 with a step size of 0.1. A
sentence in quiet processed with NF = 0 served as a reference
stimulus. Figure 4B shows mean values of prpg averaged across
four CFs between reference and vocoded stimuli as a function
of NF. As expected, ppg values decreased all the way to zero as
NF increased from 0 to 1, which was consistent with the pat-
tern of acoustic correlation coefficients presented in Figure
4A. This suggests that the phase randomization in the acoustic
domain successfully varies the availability of TFS, . infor-
mation in the AN.

It should be noted that the phase randomization in the acous-
tic domain may also degrade the encoding of ENV ... cues,
because of the conversion of the frequency excursions of TFS ..
into dynamic variations of the output levels of the cochlear filters
(i.e., ENV  curas Ghitza, 2001). The same approach was thus used
to estimate the extent to which the phase randomization also
alters the availability of ENV, .. information in the AN. Figure
4C shows mean values of pgy averaged across four CFs for ref-
erence and vocoded speech as a function of NF. A sentence in
quiet processed with NF = 0 served as a reference stimulus. As
expected, pgyy values slightly decreased as NF increased from 0 to
1. Figure 4, B and C, also shows that the phase randomization in
the acoustic domain had a differential effect on TFS,.,,, and
ENV

neural.

Quantifying the effect of phase randomization on TFS .,
and ENV__ ., information in the presence of background
noise

The effects of noise on the neural coding of TFS and ENV for
phase-vocoded speech are shown in Figure 5. Overall, a dynamic
pattern of prps and pgyny values was observed. On the left side of
Figure 5, mean pry¢ values averaged across four CFs in steady and
modulated noise are shown on the top and bottom, respectively.
Symbols represent different SNR conditions. Error bars show 1
SEM across four CFs. At each NF value, pps values decreased as
SNR decreased. At NF = 1, prps became zero, indicating that the
vocoded sentence produced completely different neural TFS cod-
ing from the original sentence. At positive SNRs, prpg values were
relatively high and changed little until NF reached 0.5, but be-
yond NF = 0.5, there was a rapid decrease in ppg values. At
negative SNRs, ppg values were already low, even at NF = 0. This
observation illustrates the deleterious effect of adding back-
ground noise on the speech-related TFS coding in the AN. The
right side of Figure 5 shows mean values of pgy averaged across
four CFs in steady and modulated noise. pgyy values measured
for speech masked by noise tended to decrease as NF increased
from 0 to 1, but the slopes of the functions were shallower than
those for ppps. These data are consistent with the simulation data
obtained in quiet (Fig. 4).
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and a sentence in quiet processed with NF = 0 (as a reference stimulus). Symbols show different SNR conditions. Mean values and SEs across four CFs are shown. The IEEE sentence, the birch canoe

slid on the smooth planks, was used.

Sentence identification predicted by the central

neural observer

Figure 6 shows SRTs predicted by the central neural-observer
model and obtained from six human subjects (black circles). For
clarity, error bars are not plotted in Figure 5, but SEs across six
model runs were generally below 1 dB. SEs across human subjects
are shown in Figure 3A and they are <0.5 dB. For steady noise,
the central model generally outperformed human subjects, but
for modulated noise, the range of model predictions overlapped
with the human data. Some patterns of the human data were well
depicted by the central model. For example, the predicted SRTs
of the central model consistently increased as a function of NF.
When comparing steady and modulated noise, the model pre-
dicted substantially lower SNRs for modulated noise than for
steady noise, consistent with human data.

The central neural-observer data were generated using five
different sets of weightings for pgyy and prpg to examine the
respective effects of ENV ... and TFS ... on the intelligibility
of speech (see Materials and Methods for details). When the
ENV | ..ra Weighting coefficient a was set to 1, the central model
used 100% of ppyy and 0% of prpg to conduct the sentence-
identification task. Likewise, if the ENV .., weighting coeffi-
cient o was set to 0, the central model used ppg only without
using pgny- To quantify the difference between the human and
central model predicted SRTs, the mean squared error (MSE) was
computed for each model condition as follows:

1
MSE = NziNzl(Observed SRT; — Predicted SRT;)?,

(9)

in which N indicates the number of NF values considered for
computation. Except for the pyy, weighting coefficient of 0, MSE
values were computed over seven NF values. For the pgyy coeffi-
cient of 0, MSE values were computed over six NF values includ-
ing0,0.1,0.2,0.3,0.5, and 0.7. Here, smaller MSE values indicate
abetter fit between the observed and predicted SRTs. As shown in
Table 1, the central neural-observer data for the pg\, coefficient
of 1 predicted the human data most accurately in steady noise. As
more weighting was applied to prgg, the central model prediction
showed a substantial decrease in SRTs in steady noise (Fig. 6),
resulting in greater differences between the data from the model
and human subjects (Table 1). Somewhat different patterns were
observed for modulated noise. When the py\ weighting coeffi-
cient of 0.75 was used, the smallest MSE value was observed be-
tween the human and central neural-observer model data.

Speech-masking release predicted by neural observers

Figure 7 shows speech- masking release predicted by the central
model, plotted with the data observed from human subjects. To
compute the central neural-observer model prediction of speech-
masking release, the pgyy weighting coefficients that showed the
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Predicted SRTs by the central neural observer in steady and modulated noise as a function of NF. Black circles represent mean SRTs averaged across six human listeners. Symbols (red

circles, green reversed triangles, yellow triangles, blue squares, and purple squares) show different pg,, weighting coefficients for the neural-observer predictions. Error bars are not plotted for
clarity, but SEs across six model runs were generally below 1 dB. SEs across six human subjects can be found in Figure 3A. Note that because the neural-observer model was unable to perform the
speech-identification task for NF = 1and the pg,, weighting of 0, the data point for that condition is shown as n/a.

Table 1. MSE between the SRTs observed from human subjects and predicted by
the central neural-observer model

Penv-Prrs 1:0 0.75:0.25 0.5:0.5 0.25:0.75 0:1
Steady noise 4.40 12.05 19.68 24.41 31.45
Modulated noise 1.86 0.59 1.57 14.62 3.64

minimum MSE values were considered, i.e., the “best-fit” to ob-
served SRTs was used. For steady noise, the p\ weighting coef-
ficient of 1 was used, and for modulated noise, the pgy weighting
coefficient 0.75 was used as these weighting coefficients produced
the minimum MSE values. In addition, pgy, weighting coeffi-
cients of 1 and 0.5 also showed fairly small MSE values for mod-
ulated noise, so these ratios were also considered. In Figure 7, the
central neural-observer model prediction of speech-masking re-
lease followed the pattern of human data; that is, speech-masking
release decreased as NF increased. This result suggests that both
human subjects and the neural-observer model increased their
masking release when accurate TFS,,, cues were present (i.e.,
NF = 0) compared with a listening condition where TFS, ..
cues were absent (i.e., NF = 1). Comparing the three model
predictions, greater speech-masking release was shown when a
higher weighting was given to pps. Quantitatively, MSE values
for the model prediction with the pgy, weighting coefficient of
0.5 for modulated noise was 2.11, whereas MSE values for the
model prediction with the pgy weighting coefficients of 0.75 and
1 for modulated noise were 3.89 and 10.16, respectively.

Effects of model parameters

In the current study, all model simulations were obtained with
the functionality of inner and outer hair cells set to normal hear-
ing (i.e., Cye and Cypye = 1.0) and the AN fibers had a high
spontaneous rate (50 spikes per second). Input stimuli were re-
sampled to 100 kHz before presentation to the model and scaled
to best modulation level (BML). Here, BML refers to the sound
level that produces maximal neural ENV coding. BMLs are typi-
cally ~15 dB above AN fiber threshold (Joris and Yin, 1992). In
this study, BMLs were computed at four different CFs for multi-
ple input sentences to determine the overall BML, which was
finally set to 35 dB SPL for all simulations in the present study.

Thus, the sound level of the individual sentences used in the
modeling was 35 dB SPL, which was 30 dB below the sound level
used in the human speech-identification tests. However, differ-
ences in input sound level between the auditory model and hu-
man behavioral testing are consistent with many previous AN
modeling studies that attempted to simulate performance of hu-
man subjects in speech-identification tests using neural re-
sponses of high spontaneous rate AN fibers (Swaminathan and
Heinz, 2012; Chintanpalli and Heinz, 2013). In the AN model
used in this study (Zilany and Bruce, 2006, 2007), thresholds of
high spontaneous rate fibers were fitted to the lowest thresholds
observed in cats (—5 dB SPL at mid-frequencies), and these fibers
have rate-level functions with the typical 30—-40 dB dynamic
range (Miller et al., 1997). Thus, the sound levels that produced
the maximum amount of neural ENV coding (best modulation
levels) are quite low in the model fibers used in this study. How-
ever, given the fact that there is typically a wide range of thresh-
olds across AN fibers, it is reasonable to expect that some fibers
would exhibit essentially the same maximal neural ENV coding
properties at 65 dB SPL (Joris and Yin, 1992).

To compare the effects of input sound level on the neural TFS
and ENV coding, pTFS and pENV values were computed across
four CFs between 200 and 2500 Hz. These simulations were per-
formed using 10 different IEEE sentences presented in modulated
noise at —15 dB SNR and processed with NF = 0, since the
human subjects showed an average SRT of —15 dB for this listen-
ing condition. Figure 8A shows mean pTFS and pENV values
averaged across four CFs as a function of NF for input stimulus
levels of 35 and 65 dB SPL. As discussed above, a similar pattern of
change in pTFS and pENV values as a function of NF was ob-
served at both 35 and 65 dB SPL, suggesting that the absolute
difference in input sound level between the model and behavioral
speech-identification tests is unlikely to limit the conclusions
from the current study.

In the current study, only four CFs were included between 200
and 2500 Hz for the model simulations to reduce computation
time, but it may be more realistic to include higher CFs to reflect
the different patterns of the AN encoding across different CFs. To
evaluate the potential effect of including higher CFs, pENV was
computed for seven CFs between 200 and 8000 Hz. Note that
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Predicted speech-masking release by the central neural-observer model. Black circles represent mean speech-masking release found for six human listeners. Red triangles represent

speech-masking release predicted using the pg,, weighting of 1 for steady noise (SN) and 0.5 for modulated noise (MN). Green squares represent speech-masking release predicted using the pgyy
weightings of 1for SN, and 0.75 for MN. Yellow rhombuses represent speech-masking release predicted using the pgy, weighting of T for SN as well as for MN. Error bars represent 1 SE across six

subjects (for human data) and across six repetitions (for the model data).
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Effects ofinputsound level, the number of CFs, and the spontaneous rate of the AN fibers on the neural TFS and ENV are evaluated. For these simulations, 10 different IEEE sentences were used. IEEE

sentences were presented in modulated noise at — 15 dB SNR. pTFS and pENV values were computed between the phase vocoded (with NF = 0) signals of the mixture (i.e., target IEEE sentence in the presence
of modulated noise) and the corresponding target IEEE sentence (processed with NF = 0). A, Mean pTFS and pENV values averaged across four CFs (200 —2500 Hz) for input stimulus of 35 and 65 dB SPL. The
AN fibers were set to have a spontaneous rate of 50 spikes per second for these simulations. B, Mean pENV values averaged across four CFs (200 —2500 Hz) and seven CFs (200 — 8000 Hz). For these simulations,
stimuli were presented at 35 dB SPL and the model was run with the spontaneous rate of 50 spikes per second. €, Mean pTFS and pENV values averaged across four CFs (2002500 Hz) for three different
spontaneous rates (5, 25, and 50 spikes per second). For these simulations, stimuli were presented at 35 dB SPL. Error bars represent 1 SE across 10 IEEE sentences.

neural TFS processing is substantially decreased above 2500 Hz
(Johnson, 1980), thus only pENV values were compared for four
CFs (200-2500 Hz) and seven CFs (200—8000 Hz). Figure 8B
shows that pENV values averaged across four CFs or seven CFs
were very similar, suggesting that including more CFs would not
likely change the conclusions of the present study.

In the current study, all model simulations were obtained with
high spontaneous rate (50 spikes per second) fibers, because the
AN model has not been validated for low spontaneous rate fibers.
In Figure 8C, mean pTFS and pENV values averaged across four
CFs for three different spontaneous rates (5, 25, and 50 spikes per
second) were compared as a function of NF. For these three dif-
ferent spontaneous rates, similar patterns of pTFS and pENV
values were observed.

Discussion

Neural ENV and TFS coding for speech identification

In this study, a long-standing question of the neural mechanisms
of speech identification in noise was explored. Our approach was
unique in two aspects. From the acoustic perspective, previous
vocoder studies had generally assessed the contribution of
TES, cura a0d ENV, .1 cues to speech intelligibility by removing
either TES, . or ENV, .. within each frequency band. How-
ever, this all-or-none approach may preclude a systematic assess-
ment of the contribution of TES, .., or ENV_ ... on speech
intelligibility. We used a phase vocoder that allows for a more
gradual degradation in TFS,_,,, within each frequency band.
From the physiological perspective, our approach provides a link

neura
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between the physical sound and its representation in the AN, and
a link between the peripheral sensory information and central
processing for the purpose of speech perception. There are sev-
eral ways to quantify TFS ., and ENV, .., information in the
AN. The overall strength of TFS, ., and ENV, .. coding in
individual fibers can be quantified with synchrony-based indices
(Young and Sachs, 1979; Johnson, 1980; Joris and Yin, 1992),
whereas correlational or coincidence-based approaches can be
used to evaluate across-fiber temporal coding (Shamma, 1985;
Deng and Geisler, 1987; Carney et al., 2002). However, neither of
these approaches allows for the direct assessment of the effects of
degradations of TFS, . or ENV, .. cues, because they quantify
the strength of the entire temporal responses. For example, if
listeners are presented with the speech signals containing
TFS,couse ONly (Lorenzi et al., 2006), the entire ENV ... response
is a combination of the independent ENV, .., from the noise
carrier and the speech-related ENV, .. responses recovered
from the TFS, ... Cross-correlation-based metrics allows for
the direct comparison of the temporal responses to original and
vocoded speech, and thus provides a direct assessment of the
effects of vocoding on the fidelity of speech-related cues.

Using the SCC analyses with the simulated AN responses, we
showed a systematic degradation of the TFS, .. and ENV ...,
information as a function of NF and SNR. This result is consistent
with recent modeling work suggesting that jittering phase cues of
the acoustic stimuli degrade the encoding of both TFS,,.,,,. and
ENV .y information (Heinz and Swaminathan, 2009; Shamma
and Lorenzi, 2013). This dynamic interaction between the acous-
tic phase and the TFS ., and ENV_ .., information was used by
the central neural-observer model. For example, at NF = 1, the
original phase information was completely destroyed by the vo-
coder, and hence, ppg was near 0 (Figs. 4, 5). Thus, this condition
may force listeners to use ENV .., information only. This is
consistent with the fact that the central neural-observer model
was unable to predict sentence identification with the ppyy
weighting coefficient of 0 (Fig. 6, n/a) at NF = 1.

The central neural-observer model predicts lower SRTs when
pres Was weighted more, demonstrating that the model predic-
tion of speech-identification performance in noise clearly bene-
fits from TFS, . cues. The extent to which TFS, .. cues
contribute to speech identification could differ for different types
of maskers. For steady noise, the best fit between the SRTs ob-
served from humans and predicted from the model was found
with the ppy weighting coefficient of 1, while for modulated
noise, the pgry weighting coefficient of 0.75 showed the best fit
(Fig. 6). Furthermore, speech-masking release observed from hu-
mans was best explained when the pg\ weighting coefficient of
0.5 was used for the prediction of SRTs in modulated noise. To-
gether, the sole use of either ENV .., or TES, ... cues does not
account for human performance in all masking conditions. It
may be possible that ENV ... and TFS, .. cues are used opti-
mally by the central auditory system, depending on the acoustic
environment where a listener is situated.

Limitations of the current modeling approach

The model data demonstrate that it is possible to account for the
effect of phase and masker type on speech identification by lis-
teners using relatively simple decision rules that involve the use of
ENV, ura and TES . cues. Although the central model gener-
ally outperformed humans, particularly for steady noise, the fact
that the model prediction replicated the pattern of human data
(effects of NF and masker type) is encouraging because these
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models could be used in future studies investigating the effects of
hearing loss on using such ENV .../ TFS, .. Cues or assessing
the possible benefits of novel signal processing for hearing pros-
theses. However, it is important to acknowledge that the central
model used in the present study was built on several assumptions.
For example, only within-channel temporal cues were considered
in the model. Also, humans were tested in open set, meaning that
they do not have any exemplar sentence options available for
them, but the central model was provided exemplar sentences.
One can implement a closed-set speech-identification test both
for humans and model simulations to minimize any procedural
bias. Human listeners are able to use the top-down process for
speech identification in degraded listening conditions (Warren,
1970), but the neural-observer model does not take into account
such top-down processing.

The AN model used in the present study is stochastic in na-
ture. Thus, this model takes into account the effect of internal
noise at the level of the AN (Javel and Viemeister, 2000), but the
model does not take into account internal noise that is generated
more centrally (Vogels et al., 1989). Psychoacoustic studies on
spectral and temporal auditory perception showed that human
subjects (e.g., normal-hearing vs hearing-impaired subjects, or
young vs older subjects) may differ strongly in terms of the cen-
tral “processing efficiency,” which is their ability to use optimally
the information encoded peripherally (Hall and Grose, 1994;
Vinay and Moore, 2007). The model framework presented herein
can readily be expanded to include the effects of reduced processing
efficiency, which could potentially exist in listeners with various
forms of hearing loss. For example, Lopez-Poveda and Barrios
(2013) predicted the effects of the deafferentation process on tem-
poral coding of AN fibers and how it could subsequently affect
speech identification for hearing-impaired listeners. The work of
Lopez-Poveda and Barrios (2013) and the present modeling study
suggest that the reduction of speech-masking release that is typically
associated with sensorineural hearing loss (Lorenzi et al., 2006)
might result (at least in part) from the deafferentation process and
the subsequent degradation of TFS coding. Altogether, the current
approach could help better link the sensory information processing
(i.e., from the acoustic to the peripheral neural representation) with
perceptual outcomes (i.e., following processing of peripheral infor-
mation into central neural information).

In the latest versions of the AN model used in this paper,
simulations of the strength of phase locking (Zilany et al., 2009)
and the discharge rates at saturation for higher CFs (Zilany et al.,
2014) were improved. SRTs were predicted using four CFs in the
current study, but it might be more realistic if more CFs were
included in the advanced AN model simulations. However, even
with the most recent model with more CFs, properties of ppyy
and ppg remained quite similar as a function of NF, masker type,
and SNR (data not shown). Therefore, it is unlikely that using the
most recent AN model with more CFs would change the conclu-
sions from the present study.

Implications for hearing devices and audio coding

One of the critical barriers to improving the performance of hear-
ing prostheses is the large variability in patient outcomes, which
makes it challenging or even impossible to predict hearing-aid or
cochlear-implant outcomes. Patient outcome variability occurs
because speech perception involves dynamic interactions be-
tween the acoustic signals (provided by hearing aids) or electric
signals (provided by cochlear implants) and different biological
conditions in the ears that received hearing prostheses. Hearing
device signal processing has to be customized to an individual



12154 - J. Neurosci., September 3, 2014 - 34(36):12145-12154

patient for the best outcomes; however, individual variability in
outcomes poses a challenge. The approach presented in this pa-
per suggests an objective and innovative way for such an optimi-
zation process. For example, the peripheral model used here was
set up with the functionality of inner and outer hair cells set to nor-
mal hearing (i.e., C;yc and Cppye = 1.0). These model parameters
could be modified to simulate a specific hearing-loss configuration
of an individual patient with hearing loss. With simulated neural
responses from the customized AN model along with the prediction
of speech identification by the central model, extensive evaluation of
signal processing would be readily possible.

This paper also suggests that understanding the encoding and
decoding of neural responses for acoustic speech signals may be
crucial for the development of advanced automatic speech-
recognition algorithms. Today, automatic speech recognition is
widely used in desktop or tablet computers, mobile phones,
home appliances, and cars. However, performance by automatic
speech-recognition systems is far worse than humans, particu-
larly in background noise (Benzeghiba et al., 2007). The perfor-
mance of automatic speech-recognition systems could improve if
a computational AN model were implemented as front-end pro-
cessing. Such efforts have already been undertaken (Jiirgens et al.,
2013) and show a promising path for audio coding.
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