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Abstract

Motivation—Genome-wide association (GWA) studies have reported susceptible regions in the

human genome for many common diseases and traits, however, these loci only explain a minority

of trait heritability. To boost the power of a GWA study, substantial research endeavors have been

focused on integrating other available genomic information in the analysis. Advances in high

through-put technologies have generated a wealth of genomic data, and made combining SNP and

gene expression data become feasible.

Results—In this paper we propose a novel procedure to incorporate gene expression information

into GWA analysis. This procedure utilizes weights constructed by gene expression measurements

to adjust p values from a GWA analysis. Results from simulation analyses indicate that the

proposed procedures may achieve substantial power gains while controlling family-wise type I

error rate (FWER) at the nominal level. To demonstrate the implementation of our proposed

approach, we apply the weight adjustment procedure to a GWA study for serum interferon-

regulated chemokine levels in systemic lupus erythematosus (SLE) patients. The study results can

provide valuable insights for the functional interpretation of GWA signals.

Availability—The R source code for implementing the proposed weighting procedure is

available at http://www.biostat.umn.edu/~yho/research.html
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1 Introduction

Over the past few years, genome-wide association (GWA) studies have been successful in

localizing and identifying genetic regions that are related to common human diseases [1].
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But studies have shown that the amount of genetic variation explained by GWA findings for

any given disease is often significantly less than the estimated heritability of the disease [2].

One possible reason for the missing heritability is that GWA studies are under powered to

detect genetic variants that possess small effects. Most common human diseases or traits

have complex inheritance patterns with multiple underlying genes with small to moderate

effects. Therefore, it requires a relatively large sample size for a GWA study to detect

signals with such small effects. In order to boost statistical power of a GWA study, an

important direction of recent research is to integrate available genomic information such as

gene expression, single nucleotide polymorphism (SNP), copy number variation,

transcription regulation, methylation, and protein abundance together in the analysis [3, 4].

With the advances of high through-put technologies, integrating gene expression with SNP

information has drawn much attention in the past decade [5, 6, 7, 8, 9, 10, 11]. A recent

study incorporating gene expression information into gene association mapping in mice

showed assuring results in identifying functional networks that explain phenotypic

alterations [12].

Genovese et al. [13] introduced the idea of utilizing prior knowledge to weight p values

from a GWA study. Li et al. [14] adapted the p value weighting idea and proposed using

gene expression information to formally derive weights and to apply the derived weights to

p adjust the p values from a GWA study. They specified weights  where

peQTL is the p value for association between a SNP marker and gene expression (these SNP

markers sometimes were referred to as eQTLs). They demonstrated power gain when

incorporating information of association between SNP markers and gene expression profiles

in their study. However, their approach did not utilize the information of association

between gene expression profiles and phenotypic outcome of interest.

In this paper, we propose approaches that utilize both (SNP, gene expression) as well as

(gene expression, phenotype) associations and are expected to achieve greater power gains

than that of Li et al. [14] under some situations. A study-wise threshold for the weight

adjusted p values can then be used to determine genome-wide significance. In addition to the

expected power gain, the weights calculated based on gene expression can provide useful

information for prioritizing SNPs for further functional validation experiments.

To assess the performance of our proposed approach, we conducted simulation analyses

under various scenarios to evaluate the family-wise type-I error rate (FWER) and statistical

power. We also compared the performance of our proposed weighting approaches to that of

Li et al. [14] in the simulation analysis.

We apply the proposed approach to a study related to lupus activity in Systemic lupus

erythematosus (SLE) patients. Through experimental data analysis, our primary focus is to

demonstrate the implementation of the proposed weight adjustment approach. SLE is a

chronic, inflammatory autoimmune disease that can cause damage to organs and tissues

throughout the body. The exact cause of SLE is unknown, but a combination of genetic and

environmental factors are thought to trigger the disease. More than 45 genetic variants are

known to be associated with SLE, and over half of these can be linked to the type I

interferon (IFN) pathway [15]. The type I IFNs are a family of antiviral cytokines that are
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implicated in the pathogenesis of lupus, and IFN-inducible transcripts and proteins are

candidate biomarkers for this disease [16, 17, 18, 19]. We previously evaluated a panel of 3

IFN-inducible serum chemokines (IP-10, MCP-1, MIP-3b) as predictors of lupus flare [20].

Identification of genetic variants associated with elevated chemokine levels could improve

the treatment of SLE patients and may assist in identifying additional disease susceptibility

loci.

The structure of the paper is as follows: we describe the study population and the weighting

approach in detail in Section 2, the simulation analysis in Section 3. The implementation of

the proposed approach in the SLE GWA study is described in Section 4, with a discussion

and a final conclusion in Section 5.

2 Research Design and Methods

Phenotype and Study Population

In this study, our primary outcome of interest is lupus activity in SLE patients. Three

interferon (IFN) regulated serum chemokines: CXCL10 (IP-10), CCL2 (MCP-1) and CCL19

(MIP-3β) were measured using SearchLight (Pierce, Woburn, MA) chemiluminescence

sandwich-based immunoassays. A single normalized composite chemokine score on a 100-

points scale was calculated using the three chemokine measurements as described in [20].

The chemokine score could serve as a biomarker for lupus activity and predict future disease

flares in patient cohort [20].

The data we used was collected from 309 SLE patients with consent from the Hopkins

Lupus Cohort [21] enrolled through Autoimmune Biomarkers Collaborative Network

(ABCoN) described in Bauer et al. [20]. All patients were Caucasian and the majority were

females. They received treatments for lupus during the study period including

hydroxychloroquine, cyclophosphamide, mycophenolate mofetil, azathioprine,

methotrexate, chlorambucil, and oral prednisone.

SNP Genotyping and Gene Expression Profiling

Whole genome genotyping for 555,352 SNP markers were carried out using Illumina 550K

SNP array version 1 (HJ550v1; Illumina Inc., San Diego, CA, USA). Gene expression of

24,849 genes were measured using Illumina Human-6 Expression BeadChip; data files were

analyzed with Illumina’s GenomeStudio gene expression module to report quantile-

normalized, background-corrected gene expression signal levels.

Method

In this study, we propose using weights [22, 13, 23] computed based on gene expression

measurements to adjust p values from GWA analysis. Roeder et al. [24] suggested to use a

weight (wi > 0) to adjust a p value (pi) and reject a null hypothesis Hi if the adjusted p value

is smaller than the Bonferroni corrected threshold , where α is the significance level and m

is the total number of hypotheses. Hence the set of rejected hypotheses (Hi) is defined as:
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In Roeder et al. [25], they provided theoretical proof that the rejection set R described above

controls FWER at level α, as long as wi > 0 and .

Based on their theoretical results, we utilize the p value weighting approach to gain power in

detecting signal while controlling FWER at the nominal level. After weight adjustment, SNP

loci that have strong contributions to phenotype-associated gene expression will have

smaller p values. The weighting mechanism is as follows. We assign a weight,  to each

SNP marker i such that , and the average of weights ( ) is 1. The weight for a given

SNP (Li) is a product of two parts: wLiEj and wEjP. wLiEj indicates the effect of SNP locus Li

on the j-th gene expression measurement, Ej. The second term wEjP describes whether gene

expression measurement (Ej) is associated with the phenotypic outcome (P).

To ensure correct control of FWER, we use the model below to calculate wLiEj:

(1)

and . The estimate  from the above regression model is equivalent

to that of βr in the following model:

where r1 and r2 are residuals from the following two models respectively:

In regression model (1), the reason for adjusting for P is to remove the effect of P to prevent

the correlation between the weight wLiEj and the GWA p value. In an extreme situation, for

example, consider SNP marker Li is not associated with Ej while Ej and P are highly

correlated. The p value for βLiEj in the model Ej = β0+βLiEj Li+ε will be highly correlated

with the GWA p value for β in the GWA model P = β0+β Li+ε, due to the high correlation

between Ej and P. Hence, after adjusting for the effect of P in model (1), the p value for

βLiEj will be less likely to be significant, yielding a derived weight not highly correlated with

the GWA p value.

Similarly, we adjust for Li when calculating weight wEjP using the model: P = β0 + βEjPEj +

γLi + ε, and assign  . Then the product of the two weights is used to

describe the effect of SNP locus Li on P through Ej. The useful benefit of taking the product

of two weights is that if either wLiEj or wEjP is zero, then the resulting product will be zero.
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On the other hand, if both wLiEj and wEjP are reasonably large, then taking the product of the

two parts will result in an amplified overall weight. A crude weight for SNP locus Li is

determined by the maximum of the products among all gene expression measurements:

Finally, we divide crude weights (wMP) by their average ( ) so that  as required by

Roeder et al. [25]:

With the , adjusted p value for the ith SNP can then be calculated as:

In the weighting approach described above, we assume that the effect of SNP genotype on

gene expression is linear. More generally, we may code two dummy variables to indicate Li

= 1 versus 0, and Li = 2 versus 0 respectively, then the χ2 statistic derived from the

likelihood ratio test can be used in replacement of the squared t statistic. Furthermore, in the

case-control study design, a similar approach can be applied by deriving the weights through

logistic regression.

Because the weights are constructed as products of two parts, to ensure both the associations

between Li & Ej and also Ej & P are substantial, we propose a trimming method for wLiEj

and wEjP as follows. We set wLiEj × wEjP = 0 if  or . In the analysis

below, we set . Then  can be calculated as described above.

When only a subset of individuals have gene expression profiles available in a dataset, the p

values can be derived from the full dataset, and weights can be calculated from the partial

data set. Then the same weight adjusting procedure can be implemented as described above.

The R source code for implementing the proposed weighting procedure is available at http://

www.biostat.umn.edu/~yho/research.html.

3 Simulation

To mimic data from a GWA study, we constructed simulated data using the marginal

distribution parameters of the genotype scores of the SNP markers, the gene expression

measurements and the phenotype obtained from the SLE study described in the previous

section. We selected one SNP marker to be the true underlying SNP (SNPtrue) and simulated

a single gene expression level according to this model: E1 = β0E + βE × SNPtrue + ε,

. In the described model, β0E and  were obtained from the mean and the

variance of a randomly selected gene expression. The value of the phenotypic outcome was
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simulated based on the model: . The β0P, and σP

were determined by the mean and variance of the chemokine score in the SLE dataset. We

used standardized E1 in the above equation for the ease of interpreting βP.

To investigate family-wise error control, we randomly selected another 9 non-phenotype-

associated SNP markers and 1,000 gene expression measurement from the experimental data

in the SLE study. Hence, the simulated dataset consisted of 10 SNP markers and 1,001 gene

expression measures, and one continuous phenotypic outcome.

Scenario 1

In the first simulation, we assumed βE = βP = 0 to examine the type-I error rate and the

results are presented in Table 1. In Table 1, we recorded the fraction of times that a SNP was

declared significant at  for the four approaches: the conventional GWA analysis, the

weight adjusted approach with ( ) and without (WMP) trimming and Li’s approach [14].

The overall FWERs from the 10,000 simulations were estimated by counting the percent of

times when any significant results were reported. In Table 1, we observed the estimated

FWERs were close to 0.05 for all four approaches. In addition, we observed similar results

when assuming βE = 10, and βP = 0.

Scenario 2

A second simulation was conducted by assuming βE = 0 and βP = 10. The results are shown

in Table 1. According to the simulation results shown in Table 1, the FWER remained

controlled at the 0.05 level for GWA, WMP, and .

Scenario 3

In this simulation scenario, the underlying SNP marker L was not associated with outcome P

and gene expression E. However, two unobserved latent variables (F1, and F2) were in

association with the observed L, E and P as as illustrated in Figure 1. This latent model can

account population stratification, or admixture. In this simulation scenario, we are interested

in examine whether the latent variables could create a spurious dependency for the proposed

analyses. According to the result shown in Table 1, the FWER remained controlled at the

0.05 level for all four approaches in this scenario.

Scenario 4

To assess the power of the proposed weighting approaches, we conducted simulations

assuming  and the results are shown in Table 2. The result suggested substantial

power gain by the weighting approaches when compared to the conventional GWA analysis.

By incorporating gene expression information, in the moderate effect size setting

( ), power increased by 56% (from 42.5% to 66.1%) when  was compared

to the standard GWA analysis.
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Furthermore, the results also indicated that Li’s approach had less power gain than our

proposed weight approaches due to the fact that the former’s weight does not incorporate

information of association between gene expression and phenotype.

Scenario 5

In this scenario, we assumed ; in addition, we assumed another SNP maker

(SNPadd) had an effect on a gene expression with effect size , but this gene

expression was not associated with phenotype as illustrated by the diagram below.

The results from this simulation scenario are shown in Table 2. In Table 2, WMP and 

demonstrated considerable power gains over the conventional GWA. However, Li’s

weighting approach suffered dramatic power loss compared to the GWA approach in this

scenario. Li’s weighting approach only accounted for the association between SNP and gene

expression, which resulted in incorrectly assigning higher weights to SNPadd.

Scenario 6

In this scenario, we assumed ; only a subset of the individuals had expression

measurements available but more samples had SNP genotype and phenotype information. In

the simulation, we assumed that only 1/3 of individuals had expression profiles available. In

this setting, the proposed weighting approach still demonstrated considerable power gain

(with power increased from 41.9% to 60.1%) compared to the conventional GWA, although

the power gain was less prominent than that of scenario 4 when the expression profiles for

the whole study population were available.

Scenario 7

This scenario assumes a reactive model [26] as illustrated by the diagram below. We

assumed a SNP marker L had an effect on outcome P, and the alteration of gene expression

E was the result of change in outcome P. We assumed  in the simulation. The

result shown in Table 2 indicates that all three weight adjustment approaches (WMP, ,

Li’s approach) assigned lower weights for SNP markers with gene expression in reactive

model compared to the original GWS p value. In the proposed weighting approaches, the

model constructed for calculating wLE (equation 1) adjusted for outcome P. As a result, wLE

was less likely to be large and more likely be reduced to 0 in the trimming approach. Hence

we observed that  assigned the lowest weights for the reactive model.
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Scenario 8

This scenario was modified from Scenario 5, where an independence model was assumed as

illustrated in the diagram below. A SNP marker L1 had an effect on outcome P and also had

an effect on gene expression E1. But P and E1 were independent. We assumed 

and  in the simulation.

The results from this simulation scenario shown in Table 2 indicates that  assigned

lowest weights for SNP markers that arose from independence model due to small wEP

values. On the contrary, according to the simulation result, Li’s approach undesirably

assigned larger weights for SNP markers that were in the independence model.

In summary, the proposed weighting procedures control FWER at the nominal level when L

is not associated with E or E is not associated with P or both. Our proposed methods aim to

find genes that undergo L → E → P mechanism, where gene expression is in the middle of

the pathway. Hence our methods exhibit largest power gain in identifying genes described in

Scenario 4.

4 Data Analysis Results

4.1 Results

In the SLE dataset described in Section 2, the obtained chemokine score is considered a

biomarker for lupus activity for SLE patients. To demonstrate the implementation of the

proposed approach, we applied the chemokine score as the primary outcome and performed

weight adjustment analysis for SNP loci with allele frequency > 0.1. The simulation results

suggest that the trimming approach could allocate more weights on relevant SNP loci.

Therefore, we applied  with trimming in the following analysis.
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The 13 SNPs with GWA p value < 10−5 are listed in Table 3. In addition to the GWA p

values indicated in the third column of Table 3, weights and weight adjusted p values are

also presented. In the last two columns of Table 3, we recorded the annotation of SNP

markers, and the gene expression that reported the maximum weight for the SNP.

The weights obtained from the proposed  and Li’s approach have similar trend for 10

out of 16 in the top SNP markers shown in this table. Six SNP markers (rs2810693,

rs11247300, rs931481, rs6536732, rs4892151, rs122778761) were down-weighted

( ) in our approach while having w > 1 using Li’s approach. One possible

explanation is that these SNP markers might undergo the independence model.

The top SNP hit (rs17415112) is located within the EXOSC1 gene. EXOSC1 encodes a core

component of the exosome and may be involved in Ig class switch recombination and

degradation of mRNA transcripts for histone proteins, which are implicated in SLE [27].

Our results suggest a possible interaction of EXOSC1 and LOC441019, a locus related to

immune system, cytokine and interferon gamma signaling. In addition, several transcripts

reported in Table 3 are involved in the immune response, inflammation, and cytokine

pathways that are known to be associated with active SLE [28]. These include the

inflammatory caspase-related CARD17 [29], the interferon-inducible IFI35, the apoptosis-

inducing ligand TNFSF10 [30], and the galectin LGALS9 [31].

Furthermore, according to Table 3 we noticed that there were several SNP markers at the top

of the list having lowered p values after the weight adjustment. Using the threshold of 10−5,

three additional SNPs (rs596346, rs624676 and rs514604) became significant. These three

SNP markers are in linkage disequilibrium and mapped to a noncoding mRNA transcript

BC041900. This region is about 500K upstream of gene clusters on chromosome 11 where

FAM181B, PRCP, SNORA70E, C11orf82, LOC100506233, AK311356, ANKRD42, RAB30

locate.

To investigate SNP loci with moderate p values but large weights, we ranked SNP loci with

unadjusted p value < 10−3 and . The top 40 ranked loci are listed in Table 4. The

complete list of SNP loci with unadjusted p value < 10−3 and  is available in

Supplementary Data. Interestingly, in some cases multiple SNPs on different chromosomes

appear to interact with a single transcript. Among these transcripts are BST2, PARP12,

SP140, TIMM10, UBQLNL, and XAF1. This suggests that distinct genetic variants may

lead to altered expression of a single gene and provide divergent ways to trigger elevated

chemokine levels.

In Table 4, there are 11 SNP markers were up-weighted ( ) using our approach but

down-weighted by Li’s approach. These differences in weights could be due to the

mechanism described in simulation scenario 2.

4.2 Functional Annotation

Many of the transcripts identified in our study are known to be regulated by type I IFN [16].

Furthermore, several of the transcript abundance are also known to be altered in blood cells

Ho et al. Page 9

Hum Hered. Author manuscript; available in PMC 2015 July 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



of patients with SLE compared to healthy controls [16]. Among those transcript abundance

that are both altered in SLE and IFN-inducible are IFI35, TNFSF10, XAF1, PARP12, BST2,

ISG15, DDX58, HERC6, and MT2A. Only a few transcripts in our results: SP140, PSME2,

and LGALS9 are IFN-inducible but were not observed to be changed in our studies of SLE

patients.

While the current findings require validation to confirm the association of these variants to

gene expression and serum chemokine levels, several of the identified loci harbor genes with

known functions related to the immune system. These include DKK3, which plays a role in

peripheral CD8 T-cell tolerance [32]; the transcription factor NR1D1, which regulates the

production of inflammatory cytokines [33]; RGS9, which may have a role in chemokine-

induced lymphocyte migration [34]; and SDK1, which is associated with combined variable

immunodeficiency [35]. In addition, several expressed genes listed in the ninth column of

Table 4, that interact with the SNP variants described above, participate in cellular apoptosis

such as: XAF1, UBQLNL, TIMM10, BST2, HERC6, ISG15, PSME2 [36, 37].

5 Discussion

Through experimental data analysis, our primary focus is to demonstrate the implementation

of the proposed weight adjustment approach. In the analysis of SLE GWA data, we

identified three SNP loci with large weights that became significant after weight adjustment

as shown in Table 3. Several genes listed in Tables 3 and 4 have pivotal roles in immune

functions. Our results identified several genetic interactions among immune responses and

cellular apoptosis pathways and seemed to suggest the importance of their interactions in

active SLE symptoms. These SNP loci and corresponding associated gene expression

provided valuable information for further functional evaluation. Replication of these

findings in other cohorts is necessary to demonstrate the biological significance of the

additional loci identified by our method.

Yet we also observed SNP loci with small p values that showed no evidence of gene

expression association when analyzing SLE GWA data. This could be due to that phenotype

contribution mechanisms were not measured in the current study, such as through

unmeasured gene expression transcripts, DNA structures, or through other mechanisms.

These SNPs will not be favored in the proposed weighting method since they will be down-

weighted due to lack of evidence of association with gene expression. These unmeasured

mechanisms might explain the moderate differences in p values we observed in the SLE data

analysis results described in Section 4. Hence in practice, we suggest to pursue both (1)

SNPs with tiny GWA p values without weighting, (2) SNPs with small weight adjusted-p

values. The proposed weighting approach assists researchers to prioritize GWA SNP

findings by integrating available genomic information.

In this paper, we demonstrated our method in a paired gene expression and GWA study data

from the same cohort. To date, relatively few published studies have utilized gene

expression data from the same patients studied by GWA study [38, 39, 40, 41, 42].

However, as appreciation grows for the power of eQTL analysis, efforts such as the

Genotype-Tissue Expression project will come to fruition [43], and methods such as ours
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will facilitate the analysis of such datasets, we believe the collection of RNA for expression

profiling from GWA study participants will be useful.

In addition, if eQTL (SNP, gene expression) data, and (gene expression, phenotype) data are

available from two different sets of cohorts, instead of paired gene expression and GWA

study data from the same cohort, our proposed approaches can be easily modified and

applied.

Our proposal provides a formalized procedure to incorporate additional genomic

information into GWA analyses. In additional to gene expression measurements as

demonstrated in this paper, with the advent of a wealth of genetic data generated through

high-throughput technologies, the proposed method is extendable to integrate other sources

of information such as DNA methylation status, transcription regulation, and protein

abundance.

The weighted hypothesis testing concept appeared to be first introduced by Holm [22], and

since then theoretical developments have been advanced to form the basis for p value

weighting in order to increase power while controlling FWER in a multiple hypothesis

testing setting. Roeder et al. [25] provided an applicable theory for constructing weights

which control FWER at the nominal level. Roeder et al. [24] applied p value weighting

procedures to GWA analysis and demonstrated power gain compared to conventional

analysis.

In the spirit of integrating genomic information from multiple sources for power gain, we

proposed novel weighting procedures based on the theory by Roeder et al. [25] to

incorporate gene expression into GWA analyses. Our simulation results confirmed that the

proposed weighting procedure dramatically improved the statistical power of GWA studies

while controlling FWER at the nominal level, when gene expression is in the middle of the

etiological pathway. Under this mechanism, our methods demonstrated greater power gain

compared to that of Li et al. [14]. It also provides ways to draw valuable information from

massive data to assist functional interpretations of GWA signals.
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Figure 1.
A diagram illustrates simulation Scenario 3.
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Table 1

FWER of the conventional GWA analysis and three weight adjusting approaches in scenario 1 and 2. Results

are from 10,000 simulation iterations. WMP: Weight adjustment approach without trimming. : Weight

adjustment approach with trimming.

GWA WMP Li

Scenario 1 0.053 0.055 0.053 0.051

Scenario 2 0.046 0.048 0.047 0.078

Scenario 3 0.051 0.051 0.051 0.059
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Table 2

Power of the conventional GWA analysis and three weight adjusting approaches in scenario 3, 4, and 5.

Results are from 10,000 simulation iterations. WMP: Weight adjustment approach without trimming. :

Weight adjustment approach with trimming.

GWA WMP Li

Scenario 4 0.425 0.653 0.661 0.602

Scenario 5 0.421 0.617 0.640 0.184

Scenario 6 0.419 0.594 0.601 0.474

Scenario 7 0.810 0.736 0.418 0.736

Scenario 8 0.795 0.814 0.433 0.861
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