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INTRODUCTION
Peripheral nerve injury arising from disease or trauma induces 

long-lasting pathological pain, namely neuropathic pain,1 which 
manifests as spontaneous pain, allodynia (pain evoked by a 
normally innocuous stimulus), or hyperalgesia (heightened pain 
evoked by a noxious stimulus). Tactile allodynia in particular is 
a cardinal symptom of neuropathic pain.2 Recently, neuropathic 
pain has been thought to arise primarily from neuronal dysfunc-
tion. Several lines of evidence demonstrate that activation of 
glial cells in the central nervous system is associated with the 
posttraumatic neuronal plasticity and sensitization, and contrib-
utes to the development of neuropathic pain.3–5 In our previous 
work, activation of microglia in the cuneate nucleus (CN) was 
observed in a median nerve chronic constriction injury (CCI) 
model and inhibition of microglial activation by minocycline 
prevented the development of tactile allodynia.6
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Disturbed sleep and short sleep duration are not uncommon 
in patients with various chronic pain disorders.7–9 Rats with 
peripheral neuropathy induced by sciatic nerve constriction 
injury also have a poor quality of sleep with reduced sleep effi-
ciency,10 although there are reports of studies using the Bennett 
model of sciatic nerve ligation that show no untoward effects on 
sleep.11 Accumulating evidence suggests that insufficient sleep 
and poor sleep quality are risk factors for inflammation-related 
conditions such as cardiovascular disease,12 immune dysfunc-
tion,13,14 and metabolic disorders.12,15 In healthy human subjects, 
sleep deprivation increases pain sensitivity.16 Pain-related 
behavioral responses of male rats subjected to 72 h of sleep 
deprivation were significantly greater when noxious mechan-
ical, thermal, or electrical stimuli were applied.17 Certainly, a 
vicious cycle develops in that pain interferes with sleep and 
inadequate sleep has an influence on pain perception.18–20 Thus, 
it is of paramount importance to better understand the inter-
play between pain and sleep, and its mechanism. Specifically, 
we are wondering if sleep deprivation aggravates neuropathic 
pain. Further, if this is the case, what role does activation of 
microglia play in this phenomenon?

Melatonin (N-acetyl-5-methoxytryptamine) is an indole-
amine synthesized in the mammalian pineal gland21 and 
secreted into the bloodstream.22 Melatonin is involved in 
numerous biological functions, including circadian rhythm 
regulation,23 sleep,24,25 analgesia,26–28 and antioxidant effect.29 
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There is evidence that systemic or central administration of 
melatonin effectively prevents neuronal damage on the sleep 
deprived animals.30,31 However, it is unknown whether mela-
tonin supplements during the sleep deprived period counteracts 
the effect of sleep deprivation on the presence and severity of 
neuropathic pain. For clinicians taking care of nerve-injured 
patients experiencing neuropathic pain, it is always helpful to 
understand the influence of sleep deprivation on neuropathic 
symptoms and the potential new remedies.

In the current study, we aimed to investigate the effects of 
sleep deprivation on neuropathic pain symptoms and microglial 
activation in the rat CN after median nerve CCI. In addition, 
we used melatonin supplementation to assess its effects on the 
sleep deprived rats with regard to neuropathic pain symptoms 
and microglial activation following CCI of the median nerve.

METHODS

Animal Preparation
The experimental protocol was approved by the National 

Science Council Committee and the Institutional Animal Care 
and Use Committee (IACUC) of Fu-Jen Catholic University. 
Ethical guidelines of the International Association for the Study 
of Pain,32 regarding the animal experimentation, were followed. 
All efforts were made to minimize the animal suffering and 
reduce the number of experimental animals. Animals used in 
this study were male Sprague-Dawley rats weighing 180-250 g, 
and they were housed under approved conditions with a 12/12 
h light/dark cycle and with food and water available ad libitum.

Nerve Injury Surgery
The experimental model of median nerve CCI was estab-

lished based on the methods described by Bennett and Xie.33 
Briefly, anesthesia was induced by an intraperitoneal (i.p.) 
injection of 7% chloral hydrate (0.45 mL/100 g body weight). 
Under a dissecting microscope, the right median nerve was 
separated from the surrounding tissue at the elbow level, imme-
diately proximal to the entry between two heads of the pronator 
teres muscle. Four loose ligatures (4.0 chromic gut) were made 
around the nerve,6,34–36 and then the incision was sutured. For 
the sham surgery, the median nerve of the right forelimb was 
manipulated similarly without ligation.

Sleep Deprivation Procedure
The disc-on-water method was slightly modified to achieve 

total sleep deprivation (TSD) in this study.37 The apparatus 
comprised two rectangular clear plastic chambers (60 × 20 × 
60 cm each) placed side by side for housing two rats simultane-
ously. A single plastic disc (40 cm in diameter), serving as the 
rat-carrying platform, was built into the lower quarter of the 
two chambers. Beneath the disc, and extending to the chamber 
walls, was a rectangular tray filled with water to a depth of 5 
cm. This disc was controlled by a motor set to rotate it for 8 sec 
at a speed of 3.5 rpm and then stop for 15 sec. The rats placed 
on the disc had to keep awake and walk against the direction of 
disc rotation to avoid falling into the water. Sleep deprivation 
depended on the rats’ aversion to water, as rats rarely entered 
water spontaneously. Before the experiment, rats scheduled 
to undergo sleep deprivation were placed in the apparatus for 
environmental adaptation for at least 7 days. During the adap-
tive period and throughout the experiment, food and water were 
made available through grids placed on the top of the chambers. 
In the current study, the sleep of the rats was not recorded and 
the disc-on-water method designed for use with sleep deprived 
rats yoked to control rats was not implemented.

The experimental animals were divided into four groups 
(Figure 1). Rats in the first group (preinjury TSD group) were 
subjected to TSD for 3 days. Then, the rats were anesthetized 
immediately and underwent CCI of the median nerve (n = 10) 
or sham operation (n = 10). Animals in the second group were 
housed in the same apparatus for 3 days but were allowed 
to sleep (control for total sleep deprivation, TSDC). Subse-
quently, the rats (preinjury TSDC group) had median nerve 
CCI (n = 10) or sham operation (n = 10). In the third group 
(postinjury TSD group), animals underwent median nerve 
CCI (n = 10) or sham operation (n = 10). Immediately there-
after, the rats were subjected to TSD for 3 days. In the fourth 
group (postinjury TSDC group), animals underwent CCI of the 
median nerve (n = 10) or sham operation (n = 10). Then, the 
rats were housed in the same apparatus for 3 days but were 
permitted to sleep.

The animals in all the four groups survived 7 days after 
median nerve injury or sham operation, and then the behav-
ioral testing was conducted on these animals. Afterward, the 
rats were randomly assigned to one of the two experiments. In 
one experiment, the animals were processed for immunohisto-
chemistry; in the other experiment, animals were processed for 
Western blotting.

Melatonin Treatment
In a pilot study, we found that serum melatonin levels were 

consistently low during the sleep deprived period. The experi-
mental animals were assigned to two study groups. Rats in one 
group underwent median nerve CCI under chloral hydrate anes-
thesia and then were subjected to TSD for 3 days. During the 
sleep deprived period, the animals were given vehicle (n = 10) 
or melatonin (N-acetyl-5-methoxytryptamine; Sigma-Aldrich, 
St. Louis, MO, USA) at doses of 37.5 (n = 10), 75 (n = 10), 
150 (n = 10), or 300 mg/kg (n = 10). Rats in the other group 
underwent CCI of the median nerve but were allowed to sleep 
(TSDC) for 3 days. During the TSDC period, the rats were 
given vehicle (n = 10) or melatonin at doses of 37.5 (n = 10), 

Figure 1—Study design. Rats were randomized to undergo either chronic 
constriction injury (CCI) or sham operation of the median nerve. In 
addition, the animals were randomized to receive total sleep deprivation 
(TSD) or normal sleep as controls for total sleep deprivation (TSDC) 
either preinjury or postinjury.
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75 (n = 10), 150 (n = 10), or 300 mg/kg (n = 10). Melatonin 
was administered at 23:00 once a day taking into consideration 
the diurnal melatonin production in rats. Melatonin and vehicle 
were fed through an orogastric tube. Melatonin was dissolved 
in absolute alcohol and diluted in Ringer solution to achieve an 
ethanol concentration of < 1%. Animals in the control group 
(n = 10) underwent sham operation, but were not subjected to 
TSD. The animals were allowed to survive 7 days after median 
nerve injury or sham operation, and then the behavioral testing 
was conducted on them. Afterward, the rats were randomly 
assigned to one of the two experiments. In one experiment, the 
animals were processed for immunohistochemistry, and in the 
other, they were processed for Western blotting and enzyme-
linked immunosorbent assay (ELISA).

Behavioral Testing
All studies were performed in a randomized, blinded manner 

to avoid expectation bias. In short, all animals were selected in 
a random order for behavioral testing, and another investigator 
blinded to the experimental status of the rats made the observa-
tions. The behavioral testing was accomplished during the light 
phase of the diurnal cycle.

Mechanical Allodynia
Rats were placed in individual Plexiglass chambers (25 × 40 

× 18 cm) with wire mesh bottoms and were allowed to acclima-
tize to the environment for 30 min. The mechanical withdrawal 
threshold of the rat forepaws was determined using a series of 
von Frey filaments (Semmes-Weinstein Monofilaments, North 
Coast Medical, Inc., Gilroy, CA, USA; bending force: 0.16, 
0.4, 0.6, 1.0, 1.4, 2.0, 4.0, 6.0, 8.0, 10.0, 15.0, and 26.0 g). The 
measurement was performed as previously described.38 Quan-
titative mechanical stimuli were applied to the medial plantar 
surface of each forepaw in an ascending order to evaluate the 
withdrawal threshold. Each von Frey filament was applied 
five times and the duration of each stimulus was 5 sec. The 
minimum time interval between two successive stimuli was 10 
min. When rats displayed two or more withdrawal responses to 
a given filament, the bending force of the filament was defined 
as the withdrawal threshold.

Thermal Hyperalgesia
To measure the thermal withdrawal latency of the forepaws, 

the plantar test (Ugo Basile, Comerio, Italy) was used. In 
brief, rats were individually placed in one of three Plexiglass 
containers (22 × 17 × 14 cm) located on the elevated floor of a 
clear glass plate (3 mm thick) and were habituated to the appa-
ratus for 30 min. A radiant heat source was positioned under 
the glass plate and directly beneath the plantar surface of the 
forepaw. The withdrawal latency was automatically measured 
as the time elapsed from the onset of radiant heat stimulation 
to the withdrawal of the forepaw. To avoid tissue damage, the 
maximum thermal stimulus duration was 20 sec. The use of 
the apparatus has been described in detail previously.39 Each 
forepaw was alternately tested five times with a minimal 
interval of 10 min between measurements, and readings were 
recorded to the nearest 0.1 sec. Five latency values per side 
were averaged. Animals were tested at least 5 h after von Frey 
filament testing.

Immunohistochemistry
The rats underwent perfusion with 4% paraformaldehyde/0.1 

M phosphate buffer (PB), pH 7.4, after deep anesthesia (7% 
chloral hydrate, 0.45 mL/100 g body weight, i.p.). Tissue 
blocks of the medulla containing the CN were obtained and 
stored in PB/30% sucrose overnight, and were transversely cut 
into 30-µm slices with a cryostat (Leica, Nussloch, Germany).

The floating sections were retrieved and treated with 1% 
H2O2, blocked with 2% normal goat serum (NGS; GibcoBRL, 
Grand Island, NY, USA) in PB for 1 h, and then incubated in 
the mouse monoclonal anti-OX-42 antibody (CD11b, 1:200; 
Serotec, Indianapolis, IN) at 4°C for 48 h. The primary antibody 
was diluted in 0.01 M phosphate buffered saline (PBS, pH 7.4), 
containing 0.1% Triton X-100 and 5% NGS. After rinsing with 
PBS, sections were incubated in 1:200 biotinylated antimouse 
immunoglobulin G (IgG) (Vector, Burlingame, CA, USA) for 
2 h and processed with avidin-biotin-horseradish peroxidase 
complex (Vector) at room temperature for 1 h. Peroxidase 
activity was subsequently visualized using the Vector® SG 
Substrate Kit. Finally, floating sections were mounted onto 
gelatinized slides and observed light microscopically (Zeiss 
Axiophot, Jena, Germany). No immunolabeling was observed 
in sections when normal mouse serum was substituted for the 
aforementioned primary antibody or the same antibody was 
omitted as controls.

Sample Preparation and Western Blot Analysis
Rats were sacrificed by decapitation after i.p. anesthesia with 

chloral hydrate. The brainstem including the CN was removed and 
cut into 150-μm-thick slices with a vibratome (TPI, Series 1000, 
Portland, OR, USA). Sections were stained with a 0.05% tolu-
idine blue solution (Wako, Osaka, Japan) for 1 min and washed 
three times in PBS. Sections were then mounted onto glass slides 
and air-dried for 10 min. The CN was microdissected using a 
blunt-ended microdissection needle under a dissecting stereomi-
croscope (Leica).40 The retrieved tissue was homogenized in 100 
μl lysis buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1 mM 
ethylenediaminetetraacetic acid, 1% NP-40, 0.5% deoxycholic 
acid, 0.1% sodium docecyl sulfate (SDS), 1 mM Na3VO4, 20 μg/
mL aprotinin, 20 μg/mL leupeptin, 20 μg/mL pepstatin A) with 
a grinder on ice. The homogenate was centrifuged at 10,000 g 
at 4°C for 20 min. The supernatant was obtained and its protein 
concentration was determined by a detergent-compatible protein 
assay with a bovine serum albumin standard (BioRad, Hercules, 
CA, USA). Proteins (20 μg) were separated on 10% sodium 
docecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 
and transferred to the nitrocellulose membrane (GE Healthcare, 
Piscataway, NJ, USA). Equal protein loading was confirmed 
by Ponceau S staining. The membrane was blocked in the 5% 
nonfat dry milk in PBS/0.1% Tween-20 (PBS-T) for 1 h and then 
incubated in mouse monoclonal anti-OX-42 antibody (CD11b, 
1:1000; BD Biosciences, San Jose, CA, USA) at 4°C for 18 h. 
The membrane was washed three times in PBS-T and incubated 
with horseradish peroxidase (HRP)-conjugated sheep antimouse 
IgG (1:5000; GE Healthcare) at room temperature for 1 h. Peroxi-
dase activity was measured by incubating the membrane with the 
enhanced chemiluminescence (ECL) Western blotting detection 
reagents (GE Healthcare) for 1 min and exposing it to the hyper-
film (GE Healthcare) for 5 min. The blots were then incubated 
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in stripping buffer (67.5 mM Tris, pH 6.8, 2% SDS, and 0.7% 
β-mercaptoethanol) and reprobed with mouse anti-β-actin mono-
clonal antibody (1:5000; Sigma-Aldrich) as loading controls. 
The optical density of specific OX-42 bands was measured with 
a computer-assisted image analysis system (Gel-Pro Analyzer 
software, Media Cybernetics, Inc., Bethesda, MD, USA).

Enzyme-Linked Immunosorbent Assay
Concentrations of proinflammatory cytokines in the CN 

were determined by ELISA. The samples were prepared as 
described previously. The supernatant was collected and tumor 
necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and inter-
leukin-6 (IL-6) levels were quantified using TNF-α Immuno-
assay Kit (R&D Systems, Inc., Minneapolis, MN, USA), IL-1β 
Immunoassay Kit (R&D Systems, Inc.), and IL-6 Immunoassay 
Kit (R&D Systems, Inc.), respectively. The microplates were 
read using a microplate reader (Molecular Devices Corpora-
tion, Sunnyvale, CA, USA). All procedures were performed 
following manufacturer’s instructions. Detection limits of the 
assays were 5 (TNF-α), 5 (IL-1β), and 21 (IL-6) pg/mL with 
intra-assay and interassay coefficients of variation of < 9% 
and < 10%, respectively.

Melatonin Assay
Serum melatonin concentrations were measured in rats 

subjected to TSD, either preinjury or postinjury, by the commer-
cial immunoassay kit (GenWay Biotech, Inc., San Diego, CA, 
USA) according to the manufacturer’s instructions. Blood 
samples were collected from the orbital sinus using the stan-
dard procedure described by Parasuraman et al.41 The rats were 
anesthetized with 10% ether using a vaporizer (Buxco Elec-
tronics, Inc., Wilmington, NC, USA). The inlet in the exposure 
chamber was placed at the bottom to ensure a homogeneous 
concentration. Animals were placed in the chamber for 2 min 
and then a topical ophthalmic anesthetic agent was applied 
to their eyes prior to blood sample collection. The animal 
was fixed with the thumb and forefinger of the nondominant 
hand, and the skin around the eye was pulled taut. A capillary 
tube was inserted into the medial canthus of the eye. Slight 
thumb pressure was enough to puncture the tissue and enter 
the orbital sinus. After blood sampling, the capillary tube was 
gently removed and wiped with sterile cotton. Bleeding could 
be stopped by applying gentle finger pressure over the punc-
ture site. The rats were checked for postoperative and perior-
bital lesions 30 min after blood collection. We performed blood 
sampling twice a day at 11:00 and 23:00 from 2 days before 
to 2 days after TSD. At each time point, 5 rats were randomly 
selected for blood collection; however, at most two bleedings, 
one for each eye, were allowed for each animal during the study 
period. The sample collection tubes were centrifuged at 4,000 g 
at 4°C for 30 min and serum aliquots were frozen at -20°C. The 
melatonin assay had a detection limit of 4 pg/mL, an intra-assay 
coefficient of variation of 7–10%, and an interassay coefficient 
of variation of 10–13%.

Data Presentation and Statistical Analysis
All results were presented as mean ± standard deviation (SD). 

A factorial analysis of variance (ANOVA) was computed to test 
the main effects of different factors and their interactions. If 

there were significant main effects or interactions, post hoc 
pairwise comparisons were carried out with the Bonferroni 
correction. A P value of < 0.05 denoted statistical significance. 
All statistical analyses were performed using the SPSS software 
(version 19.0, SPSS, Inc., Chicago, IL, USA).

RESULTS

Effect of TSD on the Behavioral Testing After Median Nerve CCI
A factorial ANOVA with behavioral measures of either 

mechanical or thermal sensitivity as the dependent variable 
and sleep deprivation (TSD versus TSDC), CCI (CCI versus 
sham operation) and timing of intervention (preinjury versus 
postinjury) as fixed factors revealed a significant main effect 
of CCI (both P < 0.05). The sham-operated rats in all the 
four groups had similar mechanical withdrawal thresholds 
(Figure 2A) and thermal withdrawal latencies (Figure 2B). A 
marked decrease of the mechanical withdrawal threshold and 
thermal withdrawal latency was observed in CCI rats in each 
of the study groups as compared to the corresponding sham-
operated rats. The subsequent 2 × 2 factorial design analysis 
including only CCI rats on behavioral measures of mechanical 
or thermal sensitivity showed significant main effects of both 
sleep deprivation and timing of intervention, and a signifi-
cant sleep deprivation*timing of intervention interaction (all 
P < 0.05). The mechanical withdrawal threshold and thermal 
withdrawal latency of CCI rats in the postinjury TSDC group 
did not differ from those of CCI rats in preinjury TSD or TSDC 
groups; further, the latter two groups displayed similar behav-
ioral testing results. Of note, a significantly decreased mechan-
ical withdrawal threshold and thermal withdrawal latency was 
discernible in CCI rats of the postinjury TSD group than in 
those of the other three study groups.

Effect of TSD on Microglial Activation After Median Nerve CCI
A significant main effect of CCI (P < 0.05) on OX-42 expres-

sion was identified by using a factorial ANOVA in which the 
three factors in the design were sleep deprivation, CCI, and 
timing of intervention. Immunohistochemistry (Figures 3A, 3B, 
3E, 3F) and immunoblotting (Figure 4) showed little expression 
of OX-42 in the CN of sham-operated rats in the four study 
groups. When compared to sham operation, CCI resulted in 
a significant increase in OX-42 expression in rat CN within 
each study group (Figures 3C, 3D, 3G, 3H, 4). The 2 × 2 facto-
rial design analysis in CCI rats on OX-42 immunoreactivity 
showed significant main effects of sleep deprivation and timing 
of intervention, and a significant interaction between them 
(all P < 0.05). Among CCI rats, OX-42 was more profoundly 
expressed in the CN in the postinjury TSD group than the other 
three groups. There was similar expression of OX-42 in the CN 
of CCI rat between preinjury TSD and TSDC groups.

Influence of Melatonin Treatment on Behavioral Testing, 
Microglial Activation, and Proinflammatory Cytokine Expression 
in CCI Rats

Serum melatonin concentrations displayed a circadian varia-
tion with low daytime and high nighttime values before and 
after the period of TSD (Figure 5). During the sleep deprived 
period, serum melatonin levels were low over the 24-h period.
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A 2 × 2 factorial ANOVA with each of measurement of 
mechanical and thermal sensitivity, OX-42 immunoreactivity, 
and cytokine levels as the dependent variable and sleep depriva-
tion and melatonin treatment (melatonin versus vehicle) as fixed 
factors revealed significant main effects of sleep deprivation 
and melatonin treatment (all P < 0.05), but not their interactions. 
Behavioral testing demonstrated that the mechanical with-
drawal threshold (Figure 6A) and thermal withdrawal latency 
(Figure 6B) were significantly decreased in vehicle-treated CCI 
rats that were subjected to TSD or TSDC as compared to sham-
operated control rats. Administration of 75, 150, or 300 mg/kg 
melatonin to TSD-treated CCI rats dose-dependently increased 
mechanical withdrawal threshold and thermal withdrawal 

latency. Similar effects of melatonin on behavioral testing in 
TSDC-treated CCI rats were also observed. Generally speaking, 
a more profoundly decreased mechanical withdrawal threshold 
and thermal withdrawal latency was measured in TSD-treated 
CCI rats than TSDC-treated ones at various doses of melatonin.

Little OX-42 immunoreactivity was present in the CN of 
sham-operated control rats (figure not shown). There was intense 
OX-42 immunoreactivity in the ipsilateral CN of vehicle-treated 
CCI rats subjected to TSD or TSDC (Figures 7A, 7F); however, 
TSD led to more profoundly increased OX-42 immunoreac-
tivity than TSDC. After administration of different doses of 
melatonin, OX-42 immunoreactivity was decreased in the CN 
of TSD- or TSDC-treated CCI rats in a dose-dependent manner 
(Figures 7B–7E, 7G–7J). Western blot analysis (Figure 8) 
further confirmed the findings of immunohistochemistry.

Low levels of TNF-α, IL-1β, and IL-6 were detected in the 
CN of sham-operated control rats; however, these cytokine 
levels were markedly increased in the ipsilateral CN of vehicle-
treated CCI rats that were subjected to TSD or TSDC (Figure 9). 
Among TSD-treated CCI rats, melatonin treatment at various 

Figure 2—Effect of preinjury or postinjury total sleep deprivation (TSD) 
on nerve injury-induced mechanical allodynia and thermal hyperalgesia. 
The chronic constriction injury (CCI) and sham-operated rats were 
subjected to TSD or control for total sleep deprivation (TSDC) for 3 days 
either preinjury or postinjury. The mechanical withdrawal thresholds (A) 
and thermal withdrawal latencies (B) were assessed 7 days after CCI or 
sham operation. Data are expressed as mean ± standard deviation (error 
bars); n = 10 rats per group; * Bonferroni-adjusted P < 0.05.

Figure 3—Photomicrographs showing OX-42 immunoreactivity in the 
ipsilateral cuneate nucleus (CN) of chronic constriction injury (CCI) or 
sham-operated rats. The rats were treated with total sleep deprivation 
(TSD) (B,D,F,H) or control for total sleep deprivation (TSDC) (A,C,E,G) for 
3 days either preinjury (left panels) or postinjury (right panels). Each animal 
was sacrificed 7 days after CCI (C-D,G-H) or sham operation (A-B,E-F). 
The CN was harvested and processed for immunohistochemistry using 
the OX-42 antibody. Bar = 100 μm.
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doses dose-dependently decreased the levels of TNF-α, IL-1β, 
and IL-6 in the ipsilateral CN as compared to vehicle treatment. 
Similar effects of melatonin on cytokine expression in TSDC-
treated CCI rats were also observed. In general, a more evident 
production of TNF-α, IL-1β, and IL-6 was found in CCI rats 

subjected to TSD than in those subjected to TSDC at a given 
dose of melatonin.

DISCUSSION
This study demonstrates that 3-day TSD applied immediately 

after but not before CCI of the median nerve enhanced OX-42 

Figure 4—Western blot analysis showing the levels of OX-42 in the 
ipsilateral cuneate nucleus (CN) of chronic constriction injury (CCI) and 
sham-operated rats. The CN was homogenized and 20 μg of protein was 
analyzed by Western blot using anti-OX-42 antibody. β-actin was used 
as a loading control. Data are expressed as mean ± standard deviation 
(error bars); n = 7 rats per group; * Bonferroni-adjusted P < 0.05. TSD, 
total sleep deprivation; TSDC, control for total sleep deprivation.

Figure 5—The diagram showing serum melatonin levels during the study 
period. Serum melatonin concentrations were measured twice a day 
at 11:00 and 23:00. Data are expressed as mean ± standard deviation 
(error bars); n = 5 rats at each time point. TSD, total sleep deprivation.

Figure 6—Effect of melatonin treatment on nerve injury-induced 
mechanical allodynia and thermal hyperalgesia in chronic constriction 
injury (CCI) and sham-operated control rats. The rats received CCI of the 
median nerve and then were treated with total sleep deprivation (TSD) 
or were allowed to sleep (control for total sleep deprivation, TSDC) for 
3 days. During the 3-day period, the animals were administered with 
either vehicle or 37.5, 75, 150, or 300 mg/kg melatonin at 23:00 once a 
day. Sham-operated control rats were not subjected to TSD. Mechanical 
allodynia (A) and thermal hyperalgesia (B) were evaluated 7 days after 
CCI or sham operation. Data are expressed as mean ± standard deviation 
(error bars); n = 10 rats per group. * Bonferroni-adjusted P < 0.05 as 
compared to sham-operated control rats; # Bonferroni-adjusted P < 0.05 
as compared to TSD- and vehicle-treated CCI rats; § Bonferroni-adjusted 
P < 0.05 as compared to TSDC- and vehicle-treated CCI rats.
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immunoreactivity in the ipsilateral CN and development of 
neuropathic pain behavior in rats that were measured 7 days 
following nerve injury. During the sleep deprived period, serum 
melatonin levels were low throughout the day; in the mean-
time, melatonin treatment effectively reduced OX-42 immu-
noreactivity and the release of proinflammatory cytokines, and 
successfully ameliorated neuropathic pain in CCI rats.

Microglial activation in the central nervous system is a 
common phenomenon following peripheral nerve injury42,43 
and is considered to play a key role in the development of 
neuropathic pain.44 The activation of microglia is accompanied 
with upregulation of the surface antigen, complement receptor 
3 (CR3); herein, we assessed the microglial activation response 

in the CN following median nerve CCI using immunocyto-
chemical detection of OX-42 monoclonal antibody, which 
recognizes CR3.45 Previous work showed that the activation 
of microglia reaches a peak and mechanical hypersensitivity is 
most pronounced on day 7 after median nerve injury.6 There-
fore, in the current study, we chose day 7 as the time point for 
experimental observations.

Peripheral nerve injury evokes a barrage of injury discharges 
from the injured nerve fibers and their dorsal root ganglia. 
Then, these ectopic discharges prompt the release of excitatory 
amino acids, such as glutamate and aspartate, from damaged 
primary afferents, resulting in microglial activation and the 
development of neuropathic pain.33,46,47 In the CN, glutamate 
is one of the major neurotransmitters in the primary afferent 
terminals.48,49 Several studies have shown that sleep deprivation 
leads to a rise in glutamate concentrations50 and has an effect 
on the endogenous opioid system51 in the rat brain that may 
facilitate nociceptive transmission. Further, the electroenceph-
alographic study found that in patients with head injury, 24-h 

Figure 7—Photomicrographs showing OX-42 immunoreactivity in the 
ipsilateral cuneate nucleus (CN) of rats with chronic constriction injury 
(CCI) that received melatonin supplements during the sleep deprived or 
sleep period. The CCI rats underwent total sleep deprivation (TSD) (F-J) 
or were allowed to sleep (control for total sleep deprivation, TSDC) (A-E) 
for 3 days after surgery. In the meantime, vehicle or melatonin at a dose 
of 37.5, 75, 150, or 300 mg/kg was given to these animals at 23:00 once 
a day. Bar = 100 μm.

Figure 8—Western blot analysis showing the OX-42 levels in the ipsilateral 
cuneate nucleus (CN) of rats with chronic constriction injury (CCI) that 
were given melatonin treatment during the sleep deprived or sleep period. 
The rats were subjected to total sleep deprivation (TSD) or were allowed 
to sleep (control for total sleep deprivation, TSDC) for 3 days after CCI of 
the median nerve. During the same period of TSD or TSDC, the animals 
also received vehicle or different doses of melatonin at 23:00 once a day. 
The sham-operated rats were used as controls. β-actin was used as a 
loading control. Data are expressed as mean ± standard deviation (error 
bars); n = 7 rats per group. * Bonferroni-adjusted P < 0.05 when compared 
with sham-operated rats; # Bonferroni-adjusted P < 0.05 when compared 
with CCI rats treated with TSD and vehicle; § Bonferroni-adjusted P < 0.05 
when compared with CCI rats treated with TSDC and vehicle.
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sleep deprivation causes an increase in the neuronal discharges 
in regions of brain contusion.52 In the curreent study, post-CCI 
total sleep deprivation increased microglial activation in the 
CN and aggravated nerve injury-induced neuropathic pain. 
Based on these observations, it is thought that postinjury sleep 
deprivation could exacerbate injury-induced ectopic discharges 
from the median nerve and enhance glutamate release that in 
turn aggravates the activation of microglia and the develop-
ment of neuropathic pain. Additionally, in our previous study, 
we examined the microglial activation responses in the CN 
after median nerve CCI at different time points and found that 
the levels of OX-42 were evidently increased as early as 1 day 
after nerve injury.6 When the rats were subjected to TSD for 
3 days after CCI, microglia in the CN had already been acti-
vated. On the contrary, microglia were inactive in rats treated 
with TSD prior to CCI. It is speculated that TSD has influence 
only on activated microglia; accordingly, more profoundly 
activated microglia and more severe neuropathic pain were 
observed in rats treated with post-CCI TSD than those given 
pre-CCI TSD.

Pharmacological studies showed that in cultured microglia, 
glutamate leads to activation of the N-methyl-d-aspartate 
(NMDA) receptor, which depolarizes the cell membrane and 
thereby opens voltage-gated Ca2+ channels.53,54 A large influx of 
Ca2+ ions results in activation of microglia. Recent work demon-
strated that activated microglia release signal mediators, such as 
proinflammatory cytokines (IL-1β, IL-6, and TNF-α), cycloox-
ygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS), 
and these mediators appear contributory to different features of 
pathological pain.3,55,56 During the period of sleep deprivation, 
systemic administration of melatonin reduced inflammatory 
mediators in an animal model of lipopolysaccharide-induced 
lung injury.57 The current study found that oral administration 
of melatonin in CCI rats treated with TSD significantly attenu-
ated OX-42 immunoreactivity and proinflammatory cytokine 
levels in the CN and ameliorated nerve injury-induced neuro-
pathic pain. Several studies demonstrated that melatonin blocks 
the opening of voltage-gated Ca2+ channels by directly crossing 
the lipid bilayer of cell membranes or indirectly binding to 
two G-protein-coupled receptors (MT1 and MT2).31,58,59 These 
two melatonin receptors have recently been identified in the 
cell membranes of microglia.60 In addition, an electrophysi-
ological experiment showed that melatonin depresses activa-
tion of the NMDA receptor and its associated activity in an 
in vitro model.61 It is suggested that melatonin attenuates the 
release of proinflammatory cytokines from microglia and the 
development of neuropathic pain through the inhibition of Ca2+ 
influx-mediated microglial activation. Our study also showed 
that during the sleep deprived period, serum melatonin levels 
were low throughout the day. Moreover, microglial activation 
was aggravated and neuropathic pain worsened in CCI rats 
subjected to postinjury TSD as compared to those allowed to 
sleep after the injury. Prior studies demonstrated that reduced 
endogenous blood melatonin levels by pinealectomy increase 
contusion area after traumatic brain injury and abolish the 
analgesic action of melatonin.62,63 Thus, these results suggest 
that melatonin is an important neuroprotectant and a paucity 
of melatonin makes the rats more vulnerable to nerve injury-
induced neuropathy.

Figure 9—Histograms showing the proinflammatory cytokine expression 
in the ipsilateral cuneate nucleus (CN) of rats with chronic constriction 
injury (CCI) that received melatonin treatment during the sleep deprived 
or sleep period. The rats with CCI were subjected to total sleep deprivation 
(TSD) or were allowed to sleep (control for total sleep deprivation, TSDC) 
for 3 days after surgery. During the period, they were given vehicle or 
melatonin at a dose of 37.5, 75, 150, or 300 mg/kg at 23:00 once a day. 
Proinflammatory cytokines, tumor necrosis factor-α (TNF-α), interleukin 
(IL)-1β, and IL-6 levels in the CN were measured at 7 days after CCI. 
Data are expressed as mean ± standard deviation (error bars); n = 7 
rats per group. * Bonferroni-adjusted P < 0.05 as compared with sham-
operated rats; # Bonferroni-adjusted P < 0.05 as compared with TSD- and 
vehicle-treated CCI rats; § Bonferroni-adjusted P < 0.05 as compared with 
TSDC- and vehicle-treated rats with CCI.
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A couple of studies demonstrated that healthy rats would 
display mechanical hypersensitivity immediately after a period 
of sleep deprivation16,64; however, we did not find a similar 
result in the current study. Compared to prior work, the behav-
ioral testing was conducted in our sham-operated rats a number 
of days after TSD. This suggests that neuropathic pain behavior 
associated with the application of sleep deprivation could be 
resolved after normal sleep for a few days. Nonetheless, aggra-
vated mechanical allodynia and thermal hyperalgesia were still 
present after the same period of rest in our CCI rats subjected 
to postinjury TSD. This may be explained by insufficient mela-
tonin secretion during the sleep deprivation in that it worsens 
nerve injury-induced neuropathic pain; thus, it is speculated 
that a longer period of time is required for the neuropathy to 
subside. In addition, we found that melatonin supplements to 
restore its circadian characteristics ameliorated not only sleep 
deprivation-aggravated pain behavior but nerve injury-induced 
neuropathic pain.

Although inconsistent findings of experimental human 
studies on the effects of sleep deprivation on pain perception 
exist, there is a tendency of results indicating that sleep depri-
vation produces hyperalgesic changes in healthy subjects.64,65 
Moreover, patients with primary insomnia have lower pain 
thresholds, and sleep deprivation exacerbates pain in patients 
with rheumatoid arthritis.66,67 However, clinical observations 
found that restorative sleep is independently associated with 
the resolution of chronic widespread pain in a population-based 
prospective study,68 and measures to improve sleep, such as an 
extended bedtime and continuous positive airway pressure, have 
been shown to reduce pain sensitivity in mildly sleepy healthy 
subjects and patients with obstructive sleep apnea, respec-
tively.69,70 However, for ethical reasons, it is hardly possible to 
conduct human studies to precisely evaluate the reciprocal time 
relationship between a pain state and sleep. Our animal study 
is advantageous in this regard and shows that prenerve injury 
sleep deprivation had little, if any, effects on neuropathic pain; 
instead, postnerve injury sleep deprivation significantly intensi-
fied neuropathic pain. In addition, there remains an issue about 
identifying sleep related mediators of the decrease in pain 
sensitivity.71 Sleep deprivation in healthy subjects is associated 
with an increase in proinflammatory cytokines, such as IL-6, 
and TNF-α,65 that in turn have been shown to sensitize sensory 
neurons and facilitate pain.72 Although we demonstrated herein 
the beneficial effects of melatonin on reduction of inflamma-
tory mediators and neuropathic pain in sleep deprived rats, 
the application of melatonin in sleep management and pain in 
various clinical situations needs further investigation in human 
studies.

One of the limitations of this study is that the sleep was not 
recorded in the rats. Based on the study by Rechtschaffen et 
al.,37 the disc carrying the rats rotated only 23% of the total 
recording time, and total sleep was reduced by 87% in sleep 
deprived rats and 31% in control rats from baseline to experi-
ment. In the current study, the disc was rotated on a regular 
basis to occupy approximately one third of the sleep deprived 
period. Thus, it is anticipated that the methodology used here 
would be as effective to achieve sleep deprivation as that 
applied by Rechtschaffen et al.37 However, we should acknowl-
edge that without electroencephalogram recording, the exact 

role of different stages of sleep deprivation in pain modulation 
could not be in depth explored in this study.

In summary, inadequate sleep prior to nerve injury does not 
aggravate postoperative neuropathic pain; however, increased 
neuropathic pain behavior is observed when sleep depriva-
tion happens after nerve injury. Therefore, when patients with 
nerve injury encounter sleep problems, it should be seriously 
managed to prevent aggravation of neuropathic pain. Melatonin 
treatment to restore a circadian variation is a potential remedy 
in such a situation. Our study provides further knowledge about 
the interplay between neuropathy and sleep, and paves a way 
for the development of treatment modality.
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