
©
20

14
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te

 PaPer TyPe

www.landesbioscience.com Gut Microbes 369

Gut Microbes 5:3, 369–380; May/June 2014; © 2014 Landes Bioscience

SPeCIaL FOCUS reVIeW

Introduction

The diverse community of microorganisms lining the 
gastrointestinal canal has co-evolved with its host to build a 
mutually beneficial relationship. This location supports resident 
microbes with a reliable supply of nutrients and favorable 
temperatures for biological and biochemical reactions. A major 
role of the gut microbiome is to digest dietary fiber, otherwise 
refractory to the host’s enzymatic repertoire, into metabolic 
byproducts such as short chain fatty acids (SCFAs); acetate, 
propionate, and butyrate.1 Throughout evolution, these products 
of bacterial fermentation were likely to have afforded significant 
metabolic and immune fitness advantages to the host-microbe 
entity, referred to as the holobiont.2 Consequently, gut microbial 
metabolism is deeply intertwined with host metabolism3,4 and 
is an important contributor to the dynamic transfer of energy 
from the diet to the host (Fig. 1). During early life (conception to 
adolescence), this transfer of energy is essential to the expansion 
of tissues that require vast amounts of nutritional support for 

proper development, particularly the immune and central nervous 
system. Environmental perturbations which alter the collective 
metabolic capacity of the microbiome, and thus the availability of 
valuable metabolic precursors5 may directly, or indirectly, modify 
brain developmental trajectories and function in later life.

Here we provide a survey of the current literature and convey 
our perspective on the metabolic communication between 
the host and gut microbiome to highlight its relevance to 
neurodevelopment and brain function. We will focus primarily 
on the potential of SCFAs to affect the brain through (1) directly 
modulating host chromatin structure and gene transcription, 
(2) use as an energy source for ATP generation, and (3) the 
incorporation of SCFAs into energy reserves. We will then 
examine the potential of gut microbial driven changes in host 
systemic metabolism to impact brain development and function.

In utero, the developing embryo receives a maternally dictated 
nutrient supply. Postnatally, the newborn is exposed to a vast 
number of microbes, vertically transmitted from the maternal 
microbiome, which, in combination with protective maternal 
antibodies and nutrients provided by the breast milk, secures 
the first dramatic growth expansion in immediate early life. 
Together with early host intestinal response genes, breast milk is 
likely to shape the initial repertoire of early colonising microbes6,7 
through it being both a source of microbes per se8-10 and as a 
source of nutrients for the developing microbiome. These initial 
interactions are likely to be important steps in mediating infant 
development through shaping the efficacy of gut microbial 
nutrient harvest from the diet11 and providing metabolites 
important for developmental progression.12 Importantly, 
although the gut microbiome has been implicated as a modulator 
of normal brain development and function within an early life 
developmental window13,14 (recently reviewed in refs. 15-17), the 
involvement of host-microbe co-metabolism in this processes 
remains largely unknown.

The early life environment plays a pivotal role in shaping the 
way an individual’s brain develops and functions,18 including 
variations in nutritional intake (recently reviewed).19 Although 
the human brain represents 2% of the body’s mass, it consumes 
20% of the whole body energy budget, whereas in rodents, 
the brain mass represents only ~0.2% of body mass and thus 
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Brain development is an energy demanding process that 
relies heavily upon diet derived nutrients. Gut microbiota 
enhance the host’s ability to extract otherwise inaccessible 
energy from the diet via fermentation of complex 
oligosaccharides in the colon. This nutrient yield is estimated 
to contribute up to 10% of the host’s daily caloric requirement 
in humans and fluctuates in response to environmental 
variations. research over the past decade has demonstrated 
a surprising role for the gut microbiome in normal brain 
development and function. In this review we postulate that 
perturbations in the gut microbial-derived nutrient supply, 
driven by environmental variation, profoundly impacts upon 
normal brain development and function.



©
20

14
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te

370 Gut Microbes Volume 5 Issue 3

consumes only 2% of the body’s energy budget.20 This 
demonstrates the brain as being an incredibly energy demanding 
organ, regardless of species, but also that the human brain may 
be more vulnerable to metabolic dysfunction than rodents. 
Classic epidemiological studies on Dutch Hunger Winter 
sufferers revealed that nutrient deprivation within distinct 
gestational periods is associated with schizophrenia,21,22 anti-
social personality disorder,23 and major affective disorders,24 thus 
emphasizing the importance of adequate early-life nutritional 
support for normal brain development and function. For the 
developing brain, we hypothesize that changes in gut microbial 
metabolism during distinct critical developmental windows, such 
as in in early-life, may be key to understanding predispositions to 
various neurological disorders.

Endogenous Microbial Inhabitants:  
A Forgotten Organ

It is estimated that the number of microbial cells constituting 
the human gut microbiome outnumber the host’s by 10:1 and 
the number of genes by 100:1. The microbiota contains a myriad 
of organisms including yeasts, protozoa, archaea, and bacteria, 
with estimations at over 1000 species.25 Many of the beneficial 
effects that gut microbiota impart on host physiology is due to 
the production of SCFAs in the colon. Importantly, production 
of these metabolites is believed to be a major driving force 
behind the metabolic interactions between the host and gut 
microbiota.4,26

The significance of gut microbiota in host metabolism is 
perhaps best demonstrated by observations in mice lacking 
microbiota, referred to as germ-free, which are leaner than 
their colonised counterparts27, despite consuming more food26, 
and have a severely reduced survival rate upon starvation.28 
In addition, antibiotic treatment during early life increased 
adiposity, which was associated with shifts in the gut microbial 
composition in mice.29 These data demonstrate that gut microbes 
aid in nutrient retrieval and storage to enhance the hosts ability 
to fulfil caloric requirements. It is therefore plausible that 
changes to the gut microbial composition, and consequently the 
production of SCFAs, may interfere with the vital nutrient supply 

required for the intensely energy demanding process of brain 
development.

Microbial SCFA Production  
and Systemic Trafficking

The SCFA yield from a typical western diet constitutes 5–10% 
of a host’s daily energy needs.1,30 Factors limiting gut microbial 
production of SCFAs include (1) the availability of fermentable 
dietary fiber,31 (2) microbiota expressing the necessary 
machinery to import, degrade and metabolise dietary fiber into 
SCFAs,32,33 and (3) intra microbiome metabolic collaboration.34 
In addition, changes to the gut microbiome composition through 
antibiotic use,3,6,35,36 mode of delivery,36,37 caloric restriction,38 
age,39-41 gastric surgery,42,43 psychological stress,44-46 geography,41 
and diet6,47-54 are all either known to, or likely to, alter SCFA 
production throughout an individual’s lifetime.

Once produced in the colon, SCFAs are then either used 
locally as an energy source by colonocytes (particularly 
butyrate55) or drained to the liver via the portal vein where 
their fate depends on the metabolic status of the host. Typically, 
SCFAs are incorporated into energy stores via lipogenesis or 
gluconeogenesis4 however, they can also be distributed directly 
into the blood stream for dissemination to organs throughout the 
body,56,57 including the brain (Fig. 2). Acetate, propionate and 
butyrate display decreasing penetration into the blood stream 
respectively. This may be due to the preferential use of butyrate 
as an energy source by colonocytes and possibly decreasing 
diffusion due to their respective increase in carbon chain length.58 
Consistently, acetate appears to be the most abundant of these 
metabolites in the peripheral circulation followed by propionate 
and then butyrate.57,59-61 In humans, dietary manipulations 
designed to enhance colonic SCFA production lead to increases 
in serum acetate, propionate, and butyrate concentrations.62,63 
These changes can persist for hours as was demonstrated in men 
who ate a fiber rich evening meal and exhibited morning serum 
butyrate levels comparatively higher compared with those who 
ate a meal relatively low in fiber.64 These findings indicate that 
the concentrations of serum SCFAs are dynamic and fluctuate in 
response to dietary fiber manipulation.

Figure 1. The host-microbe holometabolome. environmental variations (yellow oval) leading to changes in the gut microbial metabolic capacity can 
induce alterations and compensations within the metabolic network. The consequence of a perturbed holometabolome will likely affect many different 
body systems, including brain development. The diet is likely to be a major environmental modulator of this system.
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Transcriptional and Metabolic 
Regulation by SCFAs

In mitochondria, SCFAs can be 
oxidized to generate ATP via the TCA 
cycle. Through a series of intermediate 
steps the carbon backbones of acetate 
and butyrate are converted into acetyl-
CoA which then enters the TCA cycle 
proximally, whereas propionate is 
converted to succinyl-CoA to enter at the 
distal end of the TCA cycle (Fig. 3A). 
In addition to their role as a source of 
ATP, SCFAs are also capable of host 
chromatin remodelling leading to global 
changes in host gene expression. In the 
nucleus, histones package host DNA 
into a conformational unit referred to 
as a nucleosome. Histone acetylation 
is accomplished by histone acetyl 
transferases (HATs). HATs transfer an 
acetyl groups onto histone lysine residues 
that neutralizes its positive charge and, 
in doing so, weakens the electrostatic 
interaction between histones and the 
negatively charged DNA (Fig. 3B). This 
loosening of the chromatin structure 
mediates active transcription by allowing 
greater access of transcription machinery 
to promoter regions. Conversely, 
transcription can be repressed by removal 
of the acetyl moieties from an acetylated 
lysine by a group of enzymes referred to as 
histone deacetylases (HDACs) (Fig. 3B). 
This latter form of transcription repression 
can be blocked by HDAC inhibitors 
(HDACi) (Fig. 3B). SCFAs, particularly 
butyrate and propionate, and even 
acetate (albeit at a far lower potency), are 
capable of inhibiting HDAC activity.65,66 
Therefore gut microbiota-derived SCFAs 
likely possess the capacity to influence 
host gene expression by remodeling 
host chromatin structure. It is thereby 
plausible that dietary induced fluctuations 
in colonic SCFA production reflected in 
host serum,57,62,63 is capable of altering host 
gene expression far beyond the colon, including organs such as 
the liver, muscle, and brain.

Epigenetic regulation by histone acetylation has recently been 
shown to be intimately connected with host cell metabolism. In 
a landmark study, it was demonstrated that acetyl-CoA, derived 
from glucose and ATP-citrate lyase (ACL), can provide the acetyl 
substrate for histone acetylation67 (Fig. 3B). Gut microbiota 
have been shown to modify the availability of circulating energy 
metabolites in blood, including glucose and other metabolites 

readily used to generate ATP via the TCA cycle.68 It is therefore 
plausible that changes to the gut microbiota composition, and 
consequent perturbations in serum metabolite concentrations, can 
mediate changes to brain histone acetylation (Fig. 3B). This may 
be of particular significance if fluctuations in these circulating 
metabolites occur during early life when epigenetic control of 
developmental trajectories is vital to the later life function of a 
given organ, especially the brain due to its high energy demands. 
Similarly, during aging, a reduction in the availability of serum 
energy metabolites, as has been observed in a mouse model for 

Figure  2. Gut microbiota supply nutrients to the developing brain. This hypothetical model 
illustrates the route by which gut microbiota supply nutrients to the developing brain. Upon 
draining to the liver via the hepatic portal vein, SCFas are incorporated into either lipogenic or 
gluconeogenic pathways for energy storage, depending on the metabolic state of the host, or 
disseminated directly into the bloodstream. Gut microbial regulation of blood metabolites, which 
are required to build a healthy brain, may modify developmental trajectories. In utero, nutrients 
for normal brain development are transported to the infant across the placental barrier via the 
umbilical vein. Two thirds of the nutrient and oxygen loaded blood passes through the liver while 
the remaining bypasses the liver via the ductus venosus and is diverted directly into the blood 
stream of developing fetus.
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aging and cognitive decline,69 may also mediate reduced histone 
acetylation observed in the aging mouse hippocampus.70

In vitro experiments demonstrate that butyrate can modify 
neuronal gene expression and signal transduction,71,72 but to 
our knowledge, such high butyrate concentrations used in these 
experiments (1–6 mM) have not been reported in human or 
rodent blood under physiological conditions. In vivo models 
exploiting the potent HDACi activity of butyrate, again albeit at 
concentrations unlikely to be observed under normal conditions, 
has revealed its surprising ability to enhance cognitive function. 
Consistently, butyrate has been shown to reinstate histone 
acetylation in the mouse hippocampus (a brain region important 
for learning and memory) and was correlated with improved 
learning and memory.73 Similar results were observed in models 

for depression,49 age-associated cognitive decline,70 Alzheimer 
disease,74 and Huntington disease.75 The corollary of these 
combined findings might suggest that reduced HDACi activity, 
potentially as a consequence of reduced gut microbial metabolite 
production or age dependent metabolite trafficking deficiencies 
of such metabolites,76 may underlie changes to the way an 
individual’s brain functions, including psychological state and 
neurodegenerative processes.

Gut Microbiota Regulation of Energy Reserves

At birth, newborns must adapt to a relatively high fat, low 
carbohydrate diet provided by the mother’s milk instead of 

Figure 3. external metabolic cues regulate histone acetylation via the tricarboxylic acid (TCa) cycle. This hypothetical model illustrates how gut microbial 
regulated serum metabolites, which are readily used by mitochondria to generate aTP, may influence host cell gene transcription. (A) SCFas are produced 
in the colon and disseminated directly into the blood stream or trafficked to the liver and released as glucose or β-hydroxybutyrate, depending on 
the host’s metabolic status. These metabolites are then used by cells within the CNS to generate aTP via the TCa cycle. (B) aTP-citrate lyase (aCL) uses 
mitochondrial derived citrate to generate acetyl-Coa in the cytoplasm and nucleus. In the nucleus, histone acetyl-transferases (HaTs) transfer the acetyl 
group from acetyl-Coa onto histone lysine residues to facilitate cell proliferation and the expression of genes important for learning and memory. Histone 
deacetylases (HDaCs) remove acetyl groups from histones to suppress gene transcription. HDaCs can be inhibited bya histone deacetylase inhibitors 
(HDaCi), including gut microbial regulated serum metabolites, e.g., β-hydroxybutyrate, butyrate, and propionate. This is illustration is not to scale.
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a glucose rich nutrient supply across the placental wall. This 
metabolic shift relies heavily upon the infant being able to 
produce and utilize the ketone (D)-3-hydroxybutyrate as an 
energy source during intermittent feeding within the suckling 
and weaning period,77 a process referred to as ketogenesis.78 
When blood glucose is low, ketones are produced through 
fatty acid β-oxidation in the liver and then disseminated via 
the blood stream. This glucose replacement ensures sufficient 
nutritional support for the body, especially the brain, during 
infant development. Similarly in adults, when blood glucose 
is low due to prolonged exercise, starvation or a ketogenic 
diet (low carbohydrate); millimolar concentrations of (D)-3-
hydroxybutyrate are produced as an alternate energy source to 
support the adult’s metabolic needs.79,80 Gut microbiota play a 
key role in enhancing (D)-3-hydroxybutyrate production during 
starvation81 and moderating the steady-state ketogenic profile 
and is thought to be a consequence of the enhanced stored energy 
afforded by gut microbial SCFA production.27 Considering 
that (D)-3-hydroxybutyrate has recently been demonstrated as 
a potent HDACi,82 it remains to be seen whether it and other 
gut microbial-regulated serum metabolites capable of HDACi 
(i.e., butyrate, propionate, and (D)-3-hydroxybutyrate) can alter 
brain development via its use as an energy source, HDACi or 
both.

Metabolite Sensing  
by G-Protein Coupled Receptors

Upon activation by an external ligand, G-protein coupled 
receptors (GPCRs) initiate an intracellular signaling cascade 
resulting in a specific host cell response. Gut microbiota 
derived SCFAs acetate, propionate and butyrate activate 
host cell G-protein coupled receptors (i.e., GPR43 [FFAR2], 
GPR41 [FFAR3], and GPR109A[HM74a{human}/PUMA-
G{mouse}]) with different potencies. Activation of GPR43 
and GPR41 expressed beyond the colon mediate host immune 
responses83,84 and systemic metabolic regulation.85-88 Blood 
SCFA concentrations can serve as a useful proxy for determining 
the physiological concentrations of circulating SCFAs to which 
many cells throughout the body are exposed. Serum acetate 
(~50–1000 µM) and propionate (~5–150 µM) concentrations 
capable of GPR43 and GPR41 activation respectively, have been 
observed during fasting and dietary fiber manipulation.60-63,87,89 
Serum butyrate concentrations observed after dietary fiber 
manipulation (1–5 µM)62 however, are unlikely to cause 
significant activation of GPR109a in peripheral organs.90 In 
peripheral tissue, GPR109a is activated by the ketone (D)-3-
hydroxybutyrate which can reach as high as 6–8 mM during 
prolonged fasting.78 These observations indicate that under 
certain physiological conditions where colonic SCFA production 
is enhanced, or (D)-3-hydroxybutyrate production is increased, 
gut microbial-regulated metabolites in the circulation are 
capable of directly mediating effects on host cells via GPCR 
signaling.

Metabolite Sensors in the Sympathetic  
and Central Nervous System

GPCRs are major facilitators of neural transmission through 
their role as neurotransmitter receptors in both the sympathetic 
and central nervous system. The SCFA receptor GPR41 is highly 
expressed in the sympathetic ganglia91 and GPR109a expression 
has been demonstrated in the mammalian brain.92,93 GPR41, also 
known as the free fatty acid receptor 3, has been shown to play 
a key role in the sympathetic nervous system (SNS)91 including 
the regulation of blood pressure,94 likely through mediating 
the release of the neurotransmitter norepinephrine (NE).95 In 
addition, (D)-3-hydroxybutyrate, a metabolite also subject to 
gut microbial regulation,27,81 was recently shown to antagonize 
GPR41-mediated SNS activation. Together, these observations 
demonstrate the potential for gut microbiota-regulated GPCR 
ligands in the blood to tweak neuronal activation of the SNS and 
potentially the central nervous system (CNS). A comprehensive 
characterization of SCFA receptor expression in the brain is 
needed to determine their relevance to direct CNS activation by 
gut microbial metabolites.

Gut Microbiota Dynamics  
during Brain Development

Pre and post-natal brain development is an intensely 
energy demanding process that progresses through distinct 
developmental windows.5,96 The period of increasing brain 
weight, referred to as the “brain growth spurt,” occurs at different 
times in different mammals.5 The human brain growth spurt 
occurs perinatally whereas rat the rat brain growth spurt occurs 
comparatively later during the postnatal period. This intensely 
energy demanding process is mainly attributed to glial cell 
proliferation and myelination.5

Human infant brain growth is accelerated in the months leading 
up to, and directly after birth97; a temporal neurodevelopmental 
window paralleled by major shifts in the maternal98 and infant 
microbiota composition.39-41 Comparisons between 1st and 3rd 
trimester microbiota compositions from humans revealed an 
increase in species of Proteobacteria and Actinobacteria and an 
overall reduced microbial diversity.98 Interestingly, gut microbiota 
from the 3rd trimester exhibited a distinct metabolic phenotype 
capable of promoting greater energy storage compared with first 
trimester microbiota.98 This suggests an important role for the 
maternal microbiome in harvesting additional energy from the 
diet to sustain in utero infant development.

Postnatal neurodevelopment was examined using an animal 
model to compare Cesarean and vaginally delivered rats; 
two modes of delivery known to result in distinct microbial 
compositions.37 Using a rat model, reduced neuronal spine density 
in pre-frontal cortex (PFC) neurons and hippocampal pyramidal 
neurons at postnatal day 35 (P35), which were then normalized 
by P70, was observed in Caesarean born animals compared with 
vaginally born controls.99 Considering the likely differences in 
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gut microbial colonization in this model, it will be interesting to 
elucidate whether these phenotypes are a consequence of differing 
microbial composition or colonization kinetics.

Gut Microbiota-Host Co-Metabolism  
and Brain Development

The role of the gut microbiome, and manipulations thereof, 
in modulating brain function has seen a recent flurry of detailed 
reviews.15,17,100-103 In particular, deregulation of the hypothalamic-
pituitary-adrenal (HPA) axis, a pathway implicated in several 
neurological disorders including depression and anxiety, 
has been demonstrated in various models of gut microbial 
manipulation and generally appears to be overactive in the 
absence of gut microbiota.14,104-106 Pioneering work by Sudo 
and colleagues demonstrated that gut microbiota possess the 
capacity to modulate brain gene expression and that the HPA 
axis is programmed by microbial colonization during early-life.14 
However, the causal factors mediating gut microbial activation of 
the HPA axis remain unclear. The HPA axis can be programmed 
by dietary conditions in early-life (recently reviewed in 106). As 
the diet is also a strong modulator of gut microbial composition 
and its metabolic output, it is therefore worth considering the 
contribution of gut microbial derived metabolites in setting the 
parameters for HPA axis activation.

A recent demonstration of the vital role for SCFA production in 
host development was demonstrated using germ-free Drosophila 
mono-associated with the commensal Acetobacter pomorum. 
This powerful model revealed the striking observation that the 
absence of Drosophila microbiota results in developmental arrest 
at the larval stage when exposed to nutrient limiting conditions. 
This phenotype could be rescued by monocolonisation with A. 
pomorum.12 This growth factor-like property of A. pomorum was 
shown to be indirectly related to the production of the SCFA 
acetate, which activated the insulin and/or insulin-like growth 
factor signaling (IIS) pathway. This remarkably thorough 
study clearly illustrates the fundamental importance of SCFA 
production by microbiota for invertebrate development, which 
may also be reflected in vertebrate development. Curiously, 
acetate production by A. pomorum was also implicated in the 
induced expression of Drosophila insulin-like peptides (DILPs) 
in the larval brain,12 a pathway analogous to the mammalian 
IIS pathway and implicated in Drosophila peripheral and CNS 
development.107 This demonstrates integration between microbial 
SCFA production and brain development.

Another microbial regulated metabolite relevant to brain 
development and function is tryptophan. Tryptophan is the 
metabolic precursor to the neurotransmitter serotonin, but 
unlike tryptophan, serotonin cannot cross the blood-brain-
barrier and thus must be synthesized de novo in the brain from 
blood derived tryptophan. Thus, blood tryptophan provides 
the pool of available precursors for brain serotonin synthesis, 
which is modulated by gut microbiota.108,109 Indeed, we have 
demonstrated higher serotonin turnover in the striatum of germ-
free mice compared with conventional counterparts.13 Others have 

recently demonstrated gut microbiota-dependent changes to the 
hippocampal serotonergic pathway in germ-free male mice, but not 
females.110 Considering the importance of serotonin for postnatal 
brain development,111 it will be of great interest to decipher the role 
of gut microbial tryptophan metabolism in this process.

Under nutrient limiting conditions, energy is rationed out 
to organs where it is most needed, with the brain and muscle 
taking priority. The cognitive cost of this process was recently 
demonstrated using Drosophila where memory formation was 
disabled during starvation.112 A germ-free mouse is somewhat 
reminiscent of a nutrient deprived animal as reflected by 
diminished fat stores,26 a more ketogenic profile under non-
stressed conditions,27 lower serum glucose and metabolites 
available for ATP production.68 As memory consolidation is an 
energy demanding process,112 it will be of profound interest to 
determine whether this systemic scarcity of energy availability 
in germ-free mice is responsible for mediating impaired learning 
and memory observed in these mice.106 Furthermore, cognitive 
enhancement has also been observed in mice treated with the 
probiotic bacterium Lactobacillus rhamnosus (JB-1).105

In a recent study, Lactobacillus rhamnosus (JB-1) was shown to 
alter GABA receptor expression in a brain region specific manner.105 
This differential gene expression was associated with reduced 
anxiety-like behavior and reduced stress induced corticosterone 
production.105 Curiously, L. rhamnosus (JB-1) treated mice also 
displayed enhanced memory to an aversive cue. An important 
outcome of this seminal work was that specific neurochemical and 
behavioral effects were not observed in vagotomised mice, thus 
implicating the vagus nerve as an important communication route 
between gut microbiota and the brain. Although anxiety-like 
behavior in this model was shown to be mediated via the vagus 
nerve, it remains to be determined whether L. rhamnosus (JB-1) 
enhances cognitive function via the same route, or whether these 
effects are mediated by metabolic signals from the blood stream.

Separately, L. rhamnosus has been shown to suppress diet 
induced obesity in mice.113 More recently, we demonstrated that 
Lactobacillus paracasei decreased fat storage and enhances serum 
very low-density lipoprotein (VLDL) concentrations and serum 
levels of the lipoprotein lipase inhibitor, ANGPTL4.114 The ability 
of L. paracasei to induce ANGPTL4 expression in vitro was 
mediated by PPAR-γ and PPAR-α activation which may in part 
be attributed to the SCFA butyrate.115 Both L. rhamnosus and L. 
paracasei have been shown to modify gut microbiota composition 
and SCFA production which was correlated with altered hepatic 
lipid metabolism and circulating lipoprotein levels.116 It will be 
important to understand whether systemic metabolic changes 
that occur upon Lactobacilli administration are responsible for 
enhancing cognitive function, as was observed for L. rhamnosus 
(JB-1).105

Gut Microbial Modifications to Host Metabolism: 
Consequences for Brain Function

Gut microbiota have been implicated as major mediators of 
obesity and Type 2 Diabetes (T2D)117,118 (reviewed in ref. 4). 
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Recently, insulin sensitivity was shown to be regulated via GPR43 
activation by acetate.87 Furthermore, dietary administration of 
butyrate was shown to improve insulin sensitivity and enhance 
mitochondrial function in peripheral tissue.119 The brain is not 
entirely protected from metabolic disturbances and many of the 
molecular mediators of T2D, including insulin and leptin, have 
been associated with dementia120-122 (reviewed in refs. 123,124). 
In support of this, a T2D mouse model, characterized by poor 
insulin sensitivity, exhibited hippocampal dysfunction and 
plasticity.125 This phenotype could be ameliorated by maintaining 
normal physiological levels of corticosterone,125 a hormonal 
mediator of the HPA axis which has independently been shown 
to be regulated by gut microbiota.14,105

Leptin is another T2D relevant hormone subject to gut 
microbial regulation and plays a role in brain function.126,127 
Leptin is a host derived hormone which acts as an appetite 
suppressant and is strongly implicated in obesity and T2D. In 
humans, higher levels of circulating leptin have been associated 
with a reduced risk of dementia and Alzheimer disease.128 In 
support of this, leptin has been shown to increase adult mouse 
hippocampal neurogenesis129 and rat hippocampal dendritic spine 
morphology.130 Interestingly, germ-free mice display low levels of 
circulating leptin126 and reduced cognitive function.106 Perhaps, 
lower levels of circulating leptin levels in germ-free mice126 reflect 
the lack of SCFA mediated GPR41 and/or GPR43 activation 
which has been shown to stimulate leptin production.131,132 It 
will therefore be of profound interest to delineate the mechanism 
of gut microbial leptin regulation and its implications for host 
metabolism and brain function.

Regarding behavior and cognition, diets designed to enhance 
gut microbial fiber fermentation in the colon have provided 
useful insight. Using dietary manipulations that enhance gut 
microbial fiber fermentation in the cecum and colon, a positive 
correlation was observed between lactic acid and volatile fatty acid 
(VFA) production with anxiety-like behavior and aggression.133 
Subsequently, the same group demonstrated a positive 
correlation between serum lactate levels and the ability of rats to 
discriminate between a familiar and novel object,134 suggesting 
improved cognitive performance. These results suggest that 
cognitive function may be modified by enhancing gut microbial 
fiber fermentation efficiencies. Considering that SCFAs can 
cross the blood-brain-barrier (BBB),135,136 it will be worthwhile 
determining whether SCFAs, and associated metabolites such 
as lactate, in peripheral circulation can mediate direct effects on 
cognition.

Microbial Behavior

Different gut microbiota compositions have been shown to 
encode specific behavioral traits from inter-strain microbiota 
transplantation experiments.137 These authors exploited 
the inherent high anxiety-like behavior of BALB/c mice by 
comparing them to the less anxious NIH Swiss mouse strain. 
Microbiota transplants of BALB/c microbiota into germ-free 
NIH Swiss mice increased their anxiety-like behavior whereby 

the opposite was observed for the reverse transplantation into 
germ-free BALB/c mice. These data demonstrate that distinct 
gut microbiota compositions from individual mouse strains 
can impart behavioral functionality on the host. In support 
of these findings, we have also observed strain differences in 
relation to anxiety-like behavior when comparing germ-free 
NMRI and C57Bl6/J mice to conventionally raised specific 
pathogen free (SPF) counterparts (Fig. 4). This data supports 
previous observations that mouse strain specific differences in 
the gut microbiome composition can impose distinct behavioral 
characteristics and capable of either promoting or suppressing 
anxiety-like behavior.137 More research designed to exploit the 
inherent behavioral traits of laboratory animals may yield more 
interesting insight into the role of gut microbiota in anxiety-like 
behavior.

An intriguing observation was recently made regarding the 
requirement of microbiota for social development in mice.138 
In these experiments, germ-free mice exhibited reduced social 
motivation and preference for social novelty. Although social 
cognition appeared to be established in the pre-weaning phase 
of this model, the development of social avoidance may be 
subject to microbial disturbances in later life. These findings 
may have clinical relevance to autism spectrum disorder (ASD), 
a developmental brain disorder characterized by deficits in social 
interaction which has been associated with differences in gut 
microbiota composition.139 It remains to be addressed whether 
differences in gut microbiota composition139 or elevated faecal 

Figure 4. Strain differences in anxiety-like behavior between germ-free 
C57Bl/6J and NMrI mice. In the light-dark box test, a behavioral test for 
anxiety, mice were individually placed into a dark box and allowed 10 
min of free exploration and the amount of time spent exploring the 
light box was recorded. an aNOVa showed significant main effects of 
strain of mice used and of being germ-free. Bonferroni-corrected t tests 
showed that within each strain, the C57Bl/6J and NMrI, the germ-free 
mice had significantly different anxiety-like behaviors from their SPF 
counterparts. Germ-free C57Bl/6J mice (n = 11) spent significantly less 
time exploring the light box compared with SPF counterparts (n = 14). 
NMrI germ-free mice (n = 5) spent significantly more time exploring the 
light box, and were significantly less anxious than their SPF counterparts 
(n = 7). P ≤ 0.05 (*), P ≤ 0.01 (**), P ≤ 0.001 (***).
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