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SPeCIaL FOCUS reVIeW

Functional Gastrointestinal Disorders

For the last few decades physicians have struggled to 
understand functional gastrointestinal disorders that escape the 
objective diagnosis of organic pathology and are characterized by 
non-structural symptoms that undermine patients’ quality of life. 
The following statement describes a functional gastrointestinal 
(GI) disorder: There is no evidence of an inflammatory, anatomic, 
metabolic, or neoplastic process that explains the patient’s 
symptoms.1 FGIDs rise from the combination of genetic2 and 
environmental factors, including exposure to infections, use of 
antibiotics, sexual or physical abuse, and also family influences on 
illness expression, that synergistically shape one’s psychological 
development and susceptibility to gut dysfunctions.1,3-6 Therefore 
a FGID is the clinical product of the interaction of altered gut 
physiology and psychological factors via the gut-brain axis, where 
brain and gut symptoms are reciprocally influencing each other’s 

expression. The communication between the “GI brain” (the 
enteric-nervous system; ENS), and the central nervous system 
(CNS) is key in the pathophysiology of FGIDs.7 The latest FGIDs 
classification is the Rome III criteria system, which groups FGIDs 
into 6 categories: esophageal, gastroduodenal, bowel, functional 
abdominal pain syndrome, biliary, and anorectal.1 In order to 
ascribe reported gut symptoms to FGID, the symptoms must 
have occurred for the first time ≥6 months before the patient 
presents to the physician practice and their presence had to be  
≥3 days a month during the last 3 months.8 However the adoption 
of Rome III criteria is still matter of debate due to inadequate 
validation of the criteria and consequent low utilization,9 but 
also due to low sensitivity of the criteria to diagnose FGIDs 
and in particular IBS.10-12 FGIDs include irritable bowel 
syndrome (IBS), functional dyspepsia (FD), functional bloating, 
functional constipation, and functional diarrhea.1,13 For purposes 
of simplification this review will focus on IBS and FD.

IBS is the most common functional bowel disorder worldwide 
that affects between 7 to 10% of population.14 Its prevalence varies 
across the world according the diagnostic criteria (Manning, 
Rome II, Rome III, self-diagnosed), the population selected, 
the access to health care, and culture.15 IBS is one of the most 
common reasons of healthcare seeking with significant impacts 
on health care expenses,4,16 and the most studied FGID.15,17 IBS 
classifies into 4 different categories according to bowel habits 
and stool form using the Bristol Stool Scale:8 IBS-constipation 
(IBS-C), IBS-diarrhea (IBS-D), Mixed IBS, and Unsubtyped 
IBS.8 IBS affects patients across the lifespan but there is an 
overall strong female predominance.15 Men are more likely to 
suffer from IBS-D while women from IBS-C.18,19 Moreover, sex 
hormones are likely to affect GI function and the severity of IBS 
symptoms.19 IBS has been associated with abnormal gut motor 
function, enhanced visceral perception, abnormalities in central 
pain processing, and altered gut microbiota, besides psychosocial 
and genetic factors.

FD is the second most common FGID with a great impact on 
the quality of life of the patients,20,21 although it often remains 
unreported to physicians. Pathophysiological mechanisms 
underlying FD include delayed gastric emptying,13,20,22 impaired 
gastric accommodation to a meal, visceral hypersensitivity, and 
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Functional gastrointestinal disorders (FGIDs) are highly 
prevalent and pose a significant burden on health care and 
society, and impact patients’ quality of life. FGIDs comprise a 
heterogeneous group of disorders, with unclear underlying 
pathophysiology. They are considered to result from the 
interaction of altered gut physiology and psychological 
factors via the gut-brain axis, where brain and gut symptoms 
are reciprocally influencing each other’s expression. Intestinal 
microbiota, as a part of the gut-brain axis, plays a central 
role in FGIDs. Patients with Irritable Bowel Syndrome, a 
prototype of FGIDs, display altered composition of the gut 
microbiota compared with healthy controls and benefit, at 
the gastrointestinal and psychological levels, from the use of 
probiotics and antibiotics. This review aims to recapitulate the 
available literature on FGIDs and microbiota-gut-brain axis.
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duodenal sensitivity to acids,20,23 as well as psychosocial and 
genetic factors.20

The Role of the CNS in Functional GI Disorders

Psychological and psychosocial factors are important in the 
understanding of the pathophysiology of FGIDs. Psychiatric 
disorders such as anxiety, depressive disorder, and neuroticism, 
are common comorbidities in patients with FGIDs.24-33 However, 
it is unclear whether the brain abnormalities drive the gut 
symptoms or the changes in the gut alter brain function through 
vagal and sympathetic afferents. A recent 12-year prospective 
study aimed at determining the role of the brain-gut mechanism 
in IBS and FD and concluded that the brain-gut pathway is 
bidirectional, as brain-gut and gut-brain dysfunctions both 
occur in FGIDs.34 FGID patients are also characterized by 
abnormalities in autonomic nervous system, neuroendocrine 
and immune functions, which are influenced by psychological 
distress35 in the model of emotional motor system (EMS), which 
reacts to interoceptive and exteroceptive stress. Specific brain 
structures involved in the EMS, including the anterior cingulate 
cortex (ACC), amygdala, hippocampus, hypothalamus, and 
periaqueductal gray, communicate to the gastrointestinal tract 
through the hypothalamus-pituitary-adrenal (HPA) axis, 
autonomic nervous system, the endogenous pain modulation 
system, and ascending aminergic pathways.36

An important player in the EMS is corticotrophin-releasing 
hormone (CRH) located in effector neurons of the paraventricular 
nucleus (PVN) of the hypothalamus, the amygdala, and the locus 
coeruleus complex that activate both the autonomic nervous 
system and HPA axis.36 Activation of the HPA axis followed by 
secretion of corticosteroid hormones from the adrenal cortex (i.e., 
cortisol in humans and corticosterone in rodents) is considered 
a physiological response to stress.37,38 Patients with FGID display 
dysregulation of the HPA-axis response to stress and changes in 
free cortisol secretion, which correlate with the gastrointestinal 
symptoms.39 Moreover, in response to a visceral stressor, IBS 
patients’ basal cortisol levels positively correlate with anxiety 
symptoms scores.40,41 HPA axis alterations and stress have also 
been related to abnormalities in gut motor function.42 Indeed, 
psychological stress appears to be a sensitive and specific predictor 
of symptoms in FD patients.31,43

Studies in animal models have shown that acute stress alters 
intestinal permeability through mechanisms involving CRH,44 
while chronic stress induces low-grade inflammation and can 
lead to visceral hyperalgesia.45 Enhanced stress responsiveness 
has been implicated as a potential mechanism contributing 
to the pathophysiology of IBS, as stress reactivates previous 
enteric inflammation and enhances the response to subsequent 
inflammatory stimuli.46 Early life stress can permanently affect 
the development of the HPA-axis, contributing to altered visceral 
pain modulation, and behavioral changes associated with stress-
related disorders.47 Corticotrophin-releasing factor (CRF) has 
thus been proposed as a possible mediator in IBS, as central CRF 
administration mimics acute stress-induced colonic responses 

and enhances colorectal distension-induced visceral pain, whereas 
peripheral CRF alters neuromotor gut function.48-50

Neuroimaging research has allowed for the investigation 
of underlying mechanisms of altered visceral perception in 
patients with IBS. Abnormal brain activation in response to 
visceral stimuli and dysregulation of the CNS has been found 
in FGIDs patients compared with healthy controls.51-54 However, 
it is unclear whether the reported abdominal pain reflects an 
abnormal afferent input to the brain, or central alterations in the 
signals from the gut or both. IBS patients have greater engagement 
of regions associated with emotional arousal and endogenous 
pain modulation, but similar activation of regions involved in 
processing of visceral afferent information, whereas controls have 
greater engagement of cognitive modulatory regions.52 Another 
study showed that upregulated emotional arousal circuitry 
and altered serotonergic modulation of this circuitry may play 
a role in centrally mediated visceral hypersensitivity in female 
patients with IBS.52,55 Indeed, these patients seem to present 
altered engagement of descending pain modulation systems that 
increases the excitability of the dorsal horn resulting in increased 
ascending input to brain regions processing interoceptive 
input.56 Inhibition of neurokinin-1 receptor, which is involved in 
augmented nociceptive response and behavioral and autonomic 
responses to stress, reduced central pain amplification during an 
acute experimental stimulus in women with IBS.57 A recent study 
has suggested that changes in gray matter density in regions 
involved in cognitive and/or evaluative functions are specifically 
observed in patients with IBS, whereas changes in other brain 
areas are associated with levels of anxiety and depression.58 These 
functional and gray matter abnormalities in IBS patients are 
also accompanied by white matter changes, which are possibly 
responsible for the emotional aspect of pain in IBS.59 Similarly, 
abnormalities in brain activity in response to visceral stimuli as 
well as during the resting state have been reported in patients 
with FD,60-65 and very recently abnormalities in white matter 
microstructure have been reported in patients with FD.66

Summary: FGIDs patients present with abnormalities in 
visceral perception, neuroendocrine and immune functions, 
which are influenced by psychological distress. Abnormal brain 
activation in response to visceral stimuli, or altered engagement 
of descending and ascending pathways, have been implicated in 
the pathophysiology of FGIDs,

The Gut Microbiota

The gut microbiota is a key player in determining gut health 
and function.67 The gut microbiota is composed mainly by 
bacteria but also by archaea, viruses, and protozoa that roughly 
reach 1014 cells, outnumbering the human cells in our bodies by 
a factor of ten.68 The human gut is rapidly colonized at birth 
and this ecosystem is under constant evolution until adult-like 
communities stabilize. The microbiota undergoes selective 
pressure from the host as well as from microbial competitors and 
once the ecosystem reaches homeostasis, some species will occur 
in high and others in low abundance.69-71 However, out of the 



©
20

14
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te

www.landesbioscience.com Gut Microbes 421

numerous phyla described in the literature only 19 are present 
in the human GI tract,72 and five of them are predominant 
(Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, and 
Actinobacteria).72 Three genera have been used to determine 
the main “enterotypes” under which humans can be categorized 
(Bacteroides, Prevotella, and Ruminococcus)73,74; however, this 
categorization has recently become a matter of debate and the term 
“enterogradients” has been proposed instead, to describe bacterial 
communities with prevalence of Bacteroides or Prevotella.75 
These autochthonous genera stably colonize the gastrointestinal 
tract and are present in a majority of individuals. Even though 
the gut microbiota still differs greatly between subjects in 
membership and community structure, the microbiomes appear 
largely functionally equivalent and necessary for the proper 
development of the host. Known functions of the gut microbiota 
include the conversion of non-digestible carbohydrates (dietary 
fiber) to short-chain fatty acids (SCFAs), transformation of bile 
acids, the provision of a barrier against pathogenic bacteria, and 
modulation of the innate and the adaptive immune systems (for 
review see ref. 69).69 The importance of the gut microbiota is 
highlighted by the increasing number of studies performed in 
germ-free animals, which demonstrate physiologic and metabolic 
abnormalities compared with conventional animals. Indeed, 
germ-free mice have an immature and deregulated immune 
system,76-80 with abnormal IgA production81,82 and decreased 
numbers of intestinal mast cells.83 Germ-free mice have also 
impaired capacity for harvesting energy from the diet.84 The 
absence of microbiota protects against diet-induced obesity85,86 
and excessive energy storage in the liver and in the skeletal 
muscle.86 Interestingly, transplanting the microbiota from obese 
mice or mice fed high-fat diet induce the same donor phenotype 
in germ-free recipients,87-89 meaning that the gut microbiota plays 
a role in obesity and weight gain. Several studies showed that 
germ-free animals have an enlarged cecum reflecting abnormal 
gut motility,84,90,91 increased expression of genes encoding 
transporters throughout the gut,70 as well as altered perception of 
inflammatory pain.92

Summary: Gut microbiota has evolved with its host and plays 
a pivotal role in host’s physiology and homeostasis.

Gut Microbiota  
and Functional Gastrointestinal Disease

Alterations in the gut microbiota composition have been 
well described in several functional gastrointestinal disorders 
and are reviewed exhaustively in a recent report by the Rome 
Working Team.93 Multiple studies have shown differences in 
the composition of the gut microbiota between IBS patients and 
healthy controls.94-115 However, the results of these studies are 
inconsistent and no unique IBS bacterial signature and/or profile 
has been identified, due in part to different detection methods as 
well as different patient populations.94,116 A pair of recent studies 
confirmed that IBS is associated with a decrease in the stability 
and biodiversity of the gut microbiota.117,118 However there is not 
a clear consensus on what constitutes a healthy microbiota.

Post-infectious (PI) FGID represent a category within the 
general FGID classification.119,120 The occurrence of infectious 
gastroenteritis has been well documented by several studies in 
both IBS and FD, showing that the risk to develop a functional 
disorder is greater in exposed individuals.119,121,122 Some studies 
also reported the incidence of FGIDs after a viral infection.123,124 
The underlying mechanisms involved in PI-FGIDs are still to be 
fully elucidated, although several studies have shown evidences 
of low grade “immune activation” in IBS patients.125 It has been 
proposed that transient inflammation could lead to subtle but 
permanent changes in the structure and function of the digestive 
system, such as in lymphocytes, mast cells, enterochromaffin 
(EC) cells, and enteric nerves, which, in turn, induce the 
symptoms.120 The microbiota is deeply perturbed at the site of 
the infection126 and it might act synergistically with ongoing 
inflammation and increased epithelial permeability, increasing 
the sensitivity to develop a FGID in prone individuals.127

Small intestinal bacterial overgrowth (SIBO) is another 
condition that has been associated with IBS and that may be 
responsible for symptom generation in some patients with IBS. 
SIBO is defined as a quantitative alteration of the small intestinal 
microbiota.128 Its role in IBS is controversial, partly as the scientific 
community has not reached a consensus on the detection method 
to use: the breath tests are not well validated and the jejunal 
aspirates are not always accurate.129-132 Bacterial overgrowth 
results in unusual fermentation with increases in gas production, 
abdominal bloating, malabsorption, abdominal pain, diarrhea, 
and abnormal gastrointestinal motility.133-135 It remains unclear 
whether SIBO is actually fundamental to the pathophysiology 
of IBS, or is just a complicating phenomenon. However, several 
studies suggested that treatment of SIBO with non-absorbable 
antibiotics improves gut symptoms in a proportion of patients 
with IBS.136-138

Summary: Patients with IBS have different composition of the 
gut microbiota but no unique bacterial profile has been identified. 
It is unclear whether this dysbiosis is a cause or a consequence of 
gut dysfunction.

Microbiota-Gut-Brain Axis

There is growing evidence that there is a complex interaction 
between the host and specific bacterial species or their 
metabolites. Striking examples are found in nature: Toxoplasma 
gondii, an obligate intracellular protozoal parasite is able to 
convert the natural fear of its intermediate host mice against cat 
urine into attraction, facilitating the transmission of the parasite 
from mice to its specific host, the cat.139,140 It has been shown 
that tachyzoites and bradyzoites (cysts) of Toxoplasma gondii 
impair neuronal function in a mouse model.141 Another example 
comes from clinical practice: laxatives and oral antibiotics are 
used to treat patients with hepatic encephalopathy, a disorder 
that likely results from the systemic accumulation of gut-
derived neurotoxins in patients with impaired liver function and 
portosystemic shunting.142,143 The use of different antibiotics, on 
the other hand, has been reported to induce acute psychosis with 
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symptoms resolved after cessation of antibiotics.144,145 Although 
controversial, there is some evidence of abnormal microbiota 
composition and partial improvement in symptoms after 
treatment with antibiotics in patients with late onset autism (for 
review see ref. 146).146 An association between Major Depressive 
Disorder and altered gut microbiota has been also suggested as 
carbohydrate malabsorption has been linked with increased risk 
to develop mental depression.147-150 The scientific community has 
begun to accept the concept that gut microbiota is implicated 
in brain autoimmunity in Multiple Sclerosis (for review see  
ref. 151).151 The commensal intestinal bacteria appear to be 
essential in triggering immune processes, leading to a relapsing-
remitting autoimmune disease.152 Antibiotic treatment effectively 
reduces the severity of the disease in mouse model of experimental 
autoimmune encephalomyelitis (EAE) and germ-free mice are 
more resistant than conventional mice to develop EAE.153,154

Germ-free mice display abnormalities within the CNS with 
a dysregulated HPA stress response,155 altered level of brain-
derived neurotrophic factor in the hippocampus,155-158 reduced 
anxiety-like behavior,157,158 altered expression of genes known 
to be involved in second messenger pathways and synaptic 
long-term potentiation,157 and altered tryptophan availability 
and metabolism.156 Non-absorbable antibiotic treatment in 
conventional BALB/c mice induced changes in intestinal 
microbiota composition, with increased levels of Firmicutes, 
phylum dominated by Lactobacillus species but including also 
some species of sulfate-reducing bacteria (SRB), and decreased 
levels of γ-Proteobacteria and Bacteroidetes.159 These microbial 
alterations were accompanied by increased levels of hippocampal 
BDNF and an autonomic-independent anxiolytic behavior in 
mice.159

Summary: Accumulating data suggest that gut microbiota 
influences CNS function and host’s behavior. Underlying 
mechanisms are unclear but likely involve immune, humoral, 
and neural pathways.

Microbiota-Gut-Brain Interactions in FGIDs

A recent study has shown that IBS-C patients have higher 
numbers of SRB than healthy controls.96 These bacteria use lactate 
and H

2
 as substrates for H

2
S production, reducing availability 

of lactate for butyrate and propionate producing bacteria and 
increasing the levels of H

2
S in the gut.160 Interestingly, luminal 

H
2
S and NaHS (an H

2
S donor) have been reported to play 

pronociceptive roles in mouse colon, through activation of T-type 
Ca2+ channels,161 but also antinociceptive roles in a rodent model 
of visceral pain.162 Bacterial secretion of H

2
S has been also shown 

to alter the effectiveness of many clinically used antibiotics.163 
Thus, it appears that H

2
S might affect visceral perception in 

patients with FGIDs; however the literature is controversial, 
and further studies are warranted in order to clarify H

2
S’ role 

in visceral nociception and inflammation in FGIDs. Several 
specific bacterial probiotic strains have been shown to improve 
symptoms severity and abdominal pain in IBS patients,164-182 
although their mechanism of action remains unclear. There are 

some species that in clinical trials appear to be more effective 
than others, such as Bifidobacterium species (B.infantis 3564 
and B.bifidum MIMBb75)172,176,178 and Lactobacillus species 
(Lactobacillus acidophilus-SDC 2012, 2013, L. paracasei B2106, 
L. plantarum 299V, and L. rhamnosus GG).164,170,171,175,177 These 
probiotics appear to be effective in reducing abdominal pain 
and discomfort in adults and in children (L. rhamnosus GG). 
Several studies have also suggested that combinations of different 
probiotic strains, such as VSL3# or mixtures of Bifidobacterium 
and Lactobacillus species, are able to decrease abdominal pain and 
discomfort in patients with IBS.166,180-183

As discussed previously, gut bacteria have been shown to 
affect depression- and anxiety-like behavior in animal models. 
The first study to suggest psychological benefits of a probiotic 
supplementation in human involved 132 healthy adults; a 
subset of the individuals with depressive symptoms at baseline 
appeared to improve their mood after consuming a L. casei 
fermented product.184 However, administration of this probiotic 
seemed to worsen their cognitive performance. Another study in 
healthy adults found that the combined supplementation with 
L. helveticus R0052 and B. longum R0175 for 30 days decreased 
scores for anxiety, depression, and psychological distress.185 
Moreover, the same group subsequently reported improved well-
being (anxiety, depression, and somatization) in those individuals 
who had the lowest urinary free cortisol.186 A recent study using 
fMRI has demonstrated that administration of probiotic mixture, 
containing B. lactis can affect brain regions concerned with the 
central processing of afferent signals from the gut, and reduce 
the impact of the brain regions involved in emotional arousal on 
the central processing of gut afferent signals.187 However, these 
studies were performed in healthy volunteers and its relevance to 
disease remains to be demonstrated.

Summary: Probiotics are widely used in FGIDs patients, 
either as single species or their mixtures. Probiotics appear to 
improve gut symptoms, but also affect anxiety, depression, and 
psychological distress.

Microbiota-Gut-Brain Axis  
in Animal Models of FGIDs

Animal models of functional bowel disorders have been used 
extensively to study effects of probiotics. L paracasei NCC2461 
was found to improve post-infective neuromuscular dysfunction 
in mice.188 B.infantis 35624 reduced visceral sensitivity to 
colorectal distension in rats,189,190 likely through improvement in 
tissue inflammation. A similar effect was reported with B. lactis 
CNCM I-2494,103 and VSL3#.162,191 In another study, L paracasei 
NCC2461 reduced visceral perception via reduction of MPO 
activity and substance P.192 In parallel, L. acidophilus was shown 
to induce analgesic receptors193 which could contribute to visceral 
pain reduction. Other studies have shown barrier enhancing 
effects of several probiotics associated with normalization of 
visceral pain perception.103,191,194 Thus, the beneficial effects 
of probiotics in animal models of IBS demonstrate a variety of 
mechanisms and targets that may be strain dependent.
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Maternal separation in rodents is widely used as a model 
of early life stress that mimics some of the features of IBS.195-

197 Maternally separated mice display long-lasting hyperactivity 
of the HPA-axis,196,198,199 anxiety-like behavior,198,200-202 visceral 
hypersensitivity,203-205 and altered cholinergic activity in the gut,196 
accompanied by increased intestinal permeability.196,201,203,206 The 
behavioral and physiological changes induced by early life stress 
are accompanied by altered gut colonization,205 and the use of 
probiotics ameliorates the detrimental effects of stress.162,207-209 
Furthermore, the effects of maternal separation on anxiety and 
depression are absent in mice raised in germ-free conditions,210 
suggesting that intestinal microbiota plays an important role in 
this animal model of IBS.

Infection models are commonly exploited to study the 
mechanisms responsible for generation of FGID symptoms. 
Chronic H. pylori infection in mice alters the gastric motility and 
increases visceral sensitivity, leads to abnormal feeding behavior 
and altered expression of pro-inflammatory cytokine TNF-α in 
the hypothalamus and regulatory peptide propiomelanocortin 
(POMC) in the arcuate nucleus.211,212 Citrobacter rodentium 
infection in mice has been used to mimic PI-IBS following 
bout of gastroenteritis by E. coli. C. rodentium results in a self-
limiting colitis that induces chronic hyperexcitability of colonic 
dorsal root ganglia (DRG) neurons and hyperalgesia, a dominant 
feature of PI-IBS in humans.213-215 Combined with stress, C. 
rodentium infection results in increased intestinal permeability,216 
increased levels of epinephrine and corticosterone, exaggerated 
neuronal excitability, and visceral hyperalgesia and/or 
allodynia.217 The ability of C. rodentium to colonize the intestine 
is significantly enhanced by stressor-induced changes in the 
microbiota.213 The initial phase of infection with C. rodentium 
also coincides with the development of anxiety-like behavior 
and the activation of vagal sensory neurons.218 Similarly, early 
phase of infection with Campylobacter jejuni, known to cause 
most of the food-borne gastroenteritis in humans,219 has been 
reported to induce anxiety-like behavior in mice, in the absence 
of immune response.220 The infection with C. jejuni activates 
viscerosensory pathways involved in identification and response 
to internal challenges, noradrenergic neurons and serotonergic 
neurons in different portions of the brain.221,222 Moreover, it 
affects central viscerosensory pathways that interface with stress-
related and “defensive” network nuclei in the hypothalamic 
PVN, the amygdala, and the bed nucleus of the stria terminalis 
(BST), previously established as nodal points for the integration 
of psychological or processive stress with behavioral responses to 
potential threats or threatening situations.223 The above described 
effects of early infection appear to be purely neural in origin, 
however changes in behavior and brain biochemistry have been 
also observed in models of chronic low-grade colitis. Chronic 

infection with a non-invasive parasite, Trichuris muris, and mild 
chemically-induced colitis, induce anxiety-like behavior in mice 
and decreased levels of hippocampal BDNF expression224,225 via 
immune mediated mechanisms, including pro-inflammatory 
cytokines and altered tryptophan/kynurenine metabolism. 
Interestingly, probiotic B. longum, but not L. rhamnosus, was 
able to revert the abnormal behavior in both studies in a vagal-
dependent manner.224,225 A recent study in healthy mice has 
demonstrated that administration of probiotic L. rhamnosus 
decreases anxiety and depression-like behaviors and alters 
expression of GABAergic receptors in the CNS, and this effect 
was also dependent on the integrity of the vagal nerve.47 Similarly, 
treatment with a probiotic combination of L. rhamnosus R0011 
and L. helveticus was able to revert the memory impairment, 
accompanied by decreased BDNF levels in the hippocampus and 
c-fos expression, induced by C. rodentium infection.226

Summary: Animal models have been widely exploited to 
study the role of bacteria in pathophysiology of FGIDs and 
beneficial effects of probiotics, and have demonstrated a variety 
of mechanisms and targets that may be strain dependent.

Conclusions

Despite growing research on the microbiota-gut-brain axis, 
our knowledge of underlying mechanisms remains rather limited. 
It is unclear which pathways are involved in the communication 
between the intestinal microbiota or specific bacterial strains, the 
gut, and the brain, both in health and disease. Accumulating data 
suggest that, in a significant percentage of patients, the microbiota 
plays an important role in the genesis and maintenance of FGIDs. 
Probiotic supplementation appears to be of therapeutic value, 
although the clinical data to date remain controversial.227-229 This 
may be due to heterogeneity in underlying pathophysiological 
mechanisms, as well as the use of multiple probiotic bacteria with 
divergent mechanisms of action, as described in animal models, 
and which may not directly apply to the human condition. 
Further research should address whether specific probiotic 
treatment should be tailored to a particular host’s microbiota and 
whether the administration of a single strain is more effective 
than strain combinations.
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