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Abstract

The prevalence of obesity is growing at an alarming rate, placing many at risk for developing

diabetes, hypertension, sleep apnea, or a combination of disorders known as “metabolic

syndrome”. The evidence to date suggests that metabolic syndrome results from an imbalance in

the mechanisms that link diet, physical activity, glucose-insulin control, and autonomic

cardiovascular control. There is also growing recognition that sleep-disordered breathing and other

forms of sleep disruption can contribute significantly to autonomic dysfunction and insulin

resistance. Chronic sleep deprivation resulting from sleep-disordered breathing or behavioral

causes can lead to excessive daytime sleepiness and lethargy, which in turn contribute to

increasing obesity. Analysis of this complex dynamic system using a model-based approach can

facilitate the delineation of the causal pathways that lead to the emergence of the metabolic

syndrome. In this paper, we provide an overview of the main physiological mechanisms associated

with obesity and sleep-disordered breathing that are believed to result in metabolic and autonomic

dysfunction, and review the models and modeling approaches that are relevant in characterizing

the interplay among the multiple factors that underlie the development of the metabolic syndrome.

Index Terms
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I. Introduction

The term “metabolic syndrome” has been used to characterize the clustering of symptoms

that include obesity, insulin resistance, hypertension and dyslipidemia. The first

standardized definition of metabolic syndrome (MS) was provided by the National

Cholesterol Education Program (NCEP) Adult Treatment Panel III report in 2001 [2].

According to the criteria established in the report, MS is diagnosed when three or more of

the following measures are found in a subject: 1) elevated waist circumference (≥ 102 cm in

men, ≥ 88 cm in women); 2) elevated triglycerides (≥ 150 mg/dL, or 1.7 mmol/L) or on drug

treatment for elevated triglycerides; 3) reduced high-density lipoprotein cholesterol, HDL-C
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(< 40 mg/dL or 1.03 mmol/L in men, <50 mg/dL or 1.3 mmol/L in women) or on drug

treatment for reduced HDL-C; 4) elevated blood pressure, systolic blood pressure or ≥85

mmHg diastolic blood pressure, or on antihypertensive drug treatment in a patient with a

history of hypertension; 5) elevated fasting glucose (≥ 110 mg/dL) or on drug treatment for

elevated glucose. The NCEP definition was subsequently updated [3] to use a cutoff of

fasting glucose ≥ 110 mg/dl, consistent with the current American Diabetes Association

definition of impaired fasting glucose [4].

Using the NCEP criteria, the National Health and Nutrition Examination survey (NHANES)

conducted between 2003 and 2006 found that approximately 34% of all US adults have MS

[5]. There was a strong association with age in these data: for subjects 20–39, 40–59 and

>60 years, the prevalence rates were approximately 18%, 39% and 53%, respectively. MS

was slightly more prevalent in males compared to females, except in the >60 group, where

the trend was reversed. Prevalence of MS increased also with body mass index (BMI) in

both sexes. Obese males were 32 times more likely to have MS compared to their under- and

normal weight counterparts. Indeed, the prevalence of MS over the past few decades has

increased in tandem with the prevalence rate of obesity [6]. This is a phenomenon that has

been observed to occur not only in the US and other western countries, but also in

developing countries, such as India and Mexico, where growing affluence, urbanization and

the corresponding changes in lifestyle and diet are pushing prevalence rates progressively

higher [7]. Since the components of MS, either individually or in combination, constitute

risk factors for cardiovascular disease [8]–[10] and Type 2 diabetes [11], the implications

for future healthcare costs and management appear challenging.

The evidence to date suggests that metabolic syndrome results from an imbalance in the

mechanisms that link diet, physical activity, glucose-insulin control, and autonomic

cardiovascular control with one another. There is also growing recognition that the added

factors of sleep-disordered breathing (SDB) and other forms of sleep disruption can

contribute significantly to autonomic imbalance and insulin resistance [12]–[14]. Moreover,

chronic sleep deprivation resulting from SDB or behavioral causes can lead to excessive

daytime sleepiness and lethargy, which in turn can contribute to increasing obesity [15]. The

complex nature of this multifactorial system makes it difficult to establish the causal links

that connect one factor to another. Apart from some preliminary efforts, no comprehensive

model of MS exists to date. But it is precisely because of the complexity of this problem that

a closed-loop systems approach, that takes into account multiple feedforward and feedback

loops, should be useful in allowing us to better understand the underlying pathophysiology

of autonomic and metabolic dysfunction in MS [16].

II. Measures of Metabolic, Automatic and Sleep Impairment

The physiological systems that regulate glucose metabolism, autonomic cardiovascular

control, respiratory control and the sleep-wake cycle are in themselves complex and each

constitutes the basis for an entire medical specialty. Thus, it is useful at the outset to define

the terminology and lay out the basic concepts connected with each of these systems. Since

much of these are closely tied to the methodology with which the key indicators of function
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are measured or assessed, we will briefly review the main techniques used for assessment of

the parameters in question.

A. Measuring Metabolic Dysfunction

Insulin resistance refers to the condition in which some or all body tissues are unable to

metabolize glucose at normal rates for the same amount of insulin delivered by the

bloodstream. This is generally the starting point for the development of Type 2 diabetes. In

response to insulin resistance, the pancreas exerts a compensatory response by producing

more insulin. As insulin resistance worsens, for instance with progressive obesity, the beta

cells of the pancreas eventually become dysfunctional. As such, glycemic control becomes

impaired, leading to a condition known as “impaired glucose tolerance” (also referred to as

“prediabetes”). With progressive deterioration of the beta cells, the body becomes

hyperglycemic even under fasting conditions, at which point, overt Type 2 diabetes emerges

[17].

Different methods have been proposed for measurement of the degree of insulin resistance

of an individual. The hyperinsulinemic euglycemic clamp [18] has been usually regarded as

the gold standard for quantifying the degree of insulin resistance. In this procedure, plasma

glucose concentration is infused and held constant at the basal arterial plasma glucose

concentration level, by periodically adjusting the glucose infusion, based on the negative

feedback principle. In other words, if the actual glucose concentration is higher than the

desired set point, the infusion is decreased, and vice-versa. Since this test maintains the basal

glucose level after insulin administration, it avoids the physiological responses to

hypoglycemia and thus provides a reliable estimate of tissue sensitivity to insulin.

Another commonly used surrogate measure for insulin sensitivity is the Homeostasis Model

Assessment of Insulin Resistance, or HOMA-IR index. Since this score requires the use of

only fasting plasma glucose and insulin, it is a more simple and inexpensive alternative to

the determination of insulin resistance. The HOMA method derives an estimate of insulin

sensitivity from the mathematical modeling of fasting plasma glucose and insulin

concentrations [19]. A model of insulin-glucose interactions is used to determine an array of

fasting plasma insulin and glucose concentrations that would be expected for varying

degrees of -cell deficiency and insulin resistance. From this array, the insulin resistance and

deficient -cell function which might have been expected to give the fasting plasma glucose

and insulin concentrations observed in a patient can be estimated. High HOMA scores

denote high insulin resistance. Since the HOMA score estimates the spontaneous

homeostatic characteristics by inferring what degree of insulin sensitivity is compatible with

the homeostatic characteristics of the metabolic system in each individual, it is less accurate

than the clamp method for assessing insulin sensitivity. Even so, Bonora and colleagues [20]

have shown that the HOMA score can account for 65% of the variability in insulin

sensitivity assessed by the glucose clamp technique (p < 0.0001). Because of the need for

only fasting blood assays, the HOMA index has been used frequently in large-scale or

epidemiological studies. The authors do mention, however, that comparing HOMA scores

obtained from different studies cannot be done unless the insulin assay is standardized

across studies.
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The oral glucose tolerance test is a dynamic test that stimulates both glucose disposal and

insulin secretion. After overnight fasting, the subject ingests 75 g of anhydrous glucose over

a period of 5 minutes; subsequently, blood is sampled 2 hours after the glucose bolus and

plasma glucose is measured. The subject is said to have “impaired glucose tolerance” if the

2-hour glucose level exceeds 140 mg/dL but remains below 200 mg/dL [21]. Although the

oral glucose tolerance test is a relatively simple test that activates the insulin-glucose

homeostatic process, measuring glucose tolerance is not synonymous to measuring insulin

resistance, since the response includes endogenous insulin secretion [22].

Relative to other tests that are commonly applied in the clinical setting, the frequently-

sampled intravenous glucose tolerance test yields a more complete characterization of the

dynamics of glucose metabolism in the presence of insulin, providing more accurate

estimates of insulin resistance and also information about beta cell function. This involves,

after collection of 2 baseline blood samples following overnight fasting, the intravenous

infusion of a bolus of glucose (300 mg/kg of body weight) over a period of 2 minutes,

followed by the timed collection of 6 sequential blood samples within 19 minutes of glucose

administration. Then, at 20 minutes, insulin (0.02 units per kilogram body weight) is

administered, followed by the subsequent collection of 11 timed blood samples over 3 hours

following glucose administration. The 19 blood samples are assayed for plasma glucose and

insulin concentrations and the dynamics of insulin-glucose interaction are analyzed using the

Bergman minimal model [23], [24]. The model consists of two coupled differential

equations: one characterizes the insulin-dependent and insulin-independent dynamics of

glucose uptake by the body tissues; the second equation models the kinetics of insulin

transport from plasma into the interstitial space where it exerts its physiologic actions on

glucose disposal. From the model, one can estimate through nonlinear least squares fitting of

the plasma glucose concentration profile, the insulin sensitivity (SI, which is inversely

related to insulin resistance) and the glucose effectiveness (the effect of glucose on its own

disposal independent of insulin action). From the endogenous response of insulin to the

intravenous bolus of glucose (following external glucose administration and before

intravenous administration of exogenous insulin), the acute response of insulin to glucose

(AIRg) is deduced – which provides an indication of pancreatic beta cell function. The

product of SI and AIRg is known as the “disposition index” (DI). If SI were to be reduced

but AIRg were to compensate perfectly for the decrease in insulin sensitivity (or

equivalently, the increase in insulin resistance), then DI would remain constant. Decreases in

DI would indicate a reduced ability for the pancreatic beta cells to compensate for an

increase in insulin resistance.

B. Measuring Autonomic Dysfunction

There is a substantial amount of evidence that points to abnormal autonomic control as a

major contributor to the hypertension component of MS. Animal studies have demonstrated

that overfeeding can lead to sympathetic overactivity [25]. Baseline sympathetic activity in

humans has been shown to be increased in obesity [26]. Adiposity, hyperinsulinemia and

elevated sympathetic drive all predispose strongly to hypertension [27]. Thus, apart from

directly measuring blood pressure, many studies of MS have employed more direct methods

of measuring autonomic function. The most direct assessment of sympathetic activity
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involves measurement of muscle sympathetic nerve activity using peroneal

microneurography, but this method has been limited to the research setting since it requires

considerable technical expertise and is highly susceptible to artifactual noise introduced by

limb movements [28]. Moreover, microneurography gives only a regionally-confined

assessment of sympathetic tone, which can be quantitatively different in the heart and

various parts of the vasculature [29]. Radiotracer dilution methodology has been used to

determine norepinephrine spillover in various organ systems as a measure of regional

sympathetic activity [30], but these kinds of measurements are expensive, intrusive and

technically challenging. Plasma or urinary catecholamine concentrations provide an

integrated measure of sympathetic outflow over a period of many hours, and as such, are

limited in sensitivity and temporal resolution [29]. Furthermore, plasma catecholamine

levels can be confounded by the variability in the subject’s psychological state just prior to

or as a consequence of the blood sampling process [31]. Autonomic stress tests are not

commonly applied as they have been shown to be quite insensitive and to depend critically

on subject cooperation [32].

Spectral analysis of heart rate variability (HRV) has been used extensively as a noninvasive

and nonintrusive means of measuring cardiac autonomic function [33], which makes it an

attractive and low-cost method for detecting autonomic dysfunction in MS. However, there

are important limitations that are often overlooked. For instance, power in the high-

frequency band (0.15 to 0.4 Hz) is highly sensitive to differences or changes in ventilatory

pattern [34]. This caveat is particularly important when spectral analysis of HRV is

performed in subjects under various conditions with irregular or periodic forms of

ventilation [35]. The low-frequency power or the ratio of low-frequency to high-frequency

power (LHR) is frequently cited as measures of sympathetic nervous system activity, but it

is now fairly well established that these indices contain a substantial parasympathetic

contribution [36]. Saul et al. [37] found no significant correlation between low-frequency

power of HRV or the LHR and baseline peroneal sympathetic nerve activity. Indeed, one

frequently overlooked premise in this technique is that HRV assesses fluctuations in heart

rate, which in turn reflect fluctuations in autonomic activity but not necessarily autonomic

tone [38].

The limitations inherent in using heart rate variability or blood pressure variability to infer

autonomic function can be circumvented to some extent by focusing not on the oscillations

themselves but on how they are correlated with each other [39]. The simplest example is the

relationship between spontaneous fluctuations in blood pressure and those of heart rate –

i.e., the determination of “spontaneous” baroreflex sensitivity (BRS). Spontaneous BRS can

be estimated in the time domain using the “sequence” technique or in the frequency domain

using the “spectral” method [40]. A further refinement of this approach involves the explicit

incorporation of the very significant effects of respiration on heart rate and blood pressure,

and consideration of feedback effects in a closed-loop model configuration [41]–[43].

Determining BRS may be a means of early detection of MS since it has been shown in a

study on diabetic patients that impaired baroreflex function can precede the occurrence of

daytime hypertension or overt autonomic dysfunction [44]. BRS has been shown to be

impaired in elderly subjects with MS and negatively correlated with insulin resistance, as
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measured by HOMA-IR [45]. In another study on healthy non-diabetic subjects with no

history of cardiovascular disease, BRS was also found to be negatively correlated with

HOMA-IR [46]. Beske et al. [47] found BRS to be negatively correlated with increasing

levels of abdominal visceral fat.

C. Measuring the Effects of SDB and Sleep Disruption

The measurements recorded in a standard clinical polysomnographic study include as the

electroencephalogram, electrooculogram, electromyogram, electrocardiogram, respiratory

airflow, respiratory effort (changes in ribcage and abdominal circumference), snoring, body

position, and oxy-hemoglobin saturation. With these measurements, the sleep parameters

that are generally taken to reflect severity of SDB include [48]: (a) apnea-hypopnea index

(AHI), which is defined as the average number of apneas (greater than 90% decrease in

airflow from baseline value) and hypopneas (between 50% and 90% decrease in airflow

from baseline value) per hour of sleep; (b) desaturation index, a measure of the degree of

exposure to intermittent hypoxia in SDB, defined as the number of events per hour of sleep

in which oxyhemoglobin saturation is reduced by 3% or more from baseline; (c) arousal

index, the average number of arousals per hour, which may be a superior marker of sleep

fragmentation and better explain daytime sleepiness when compared with the apnea-

hypopnea index; and (d) SpO2_nadir, which is the lowest value of arterial oxyhemoglobin

saturation for detecting hypoxia, measured via pulse oximetry.

III. Obesity, Impaired Glucose Metabolism and Autonomic Dysfunction

Obesity results from a breakdown in the energy balance that relates ingestive behavior to

energy storage in adipose tissue and energy expenditure. Although the influences that shape

this regulatory system are multifactorial and complex, many studies have shown that the

sympathetic nervous system plays an important role by regulating adipose tissue storage

[49], as well as modulating energy expenditure through diet-induced thermogenesis [50]. As

well, the ventromedial and lateral hypothalamus modulate hunger and the feeling of satiety

through both branches of the autonomic nervous system [51]. Animal models have

demonstrated that reduced sympathetic activity can play a causative role in the development

of obesity [50], [51]. Thus, an early hypothesis was that obesity should be accompanied by

low sympathetic activity, since the latter would reduce thermogenesis and thus lead to

weight gain [52]. However, subsequent studies have shown the opposite in humans: that

baseline sympathetic activity is increased in obesity [26], [53].

Although the question has not been totally resolved, the general consensus to date is that

obesity is associated with sympathetic overactivity, and that this elevated sympathetic tone

represents the body’s compensatory response aimed at achieving weight stabilization [54],

[55]. Food intake triggers the release of insulin which acts to regulate glucose metabolism.

However, in obesity, excessive feeding can lead to chronic hyperinsulinemia, which

predisposes to insulin resistance. Since insulin stimulates sympathetic activity, it has been

suggested that hyperinsulinemia, which is more prevalent in obese than non-obese humans,

may be largely responsible for sympathetic overactivity associated with obesity [25], [27].

Thus, the current evidence suggests that diet, physical activity, glucose-insulin control, and

the insulin-mediated regulation of sympathetic activity are tied together in a delicate balance
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that, if disrupted, can lead to obesity and obesity-related disorders. Such obesity-related

disorders include Type 2 diabetes, hypertension, and the combination of autonomic and

metabolic dysfunction that is now recognized as MS. Since the prevalence of SDB in obese

adults is between 2 and 3 times as high as that in the general population [56], and

approximately half of all SDB patients are overweight or obese [57], it is likely that SDB is

also important as another risk factor in the development of MS.

IV. Effects of Sleep-Disordered Breathing and Sleep Disruption on

Autonomic Control

Over the past decade or so, epidemiological studies, such as the multi-center Sleep Heart

Health Study, have provided strong evidence suggesting that SDB constitutes an

independent risk factor for the development of systemic hypertension, coronary artery

disease, heart failure and stroke [58]–[60]. Three major factors accompany each cycle of

SDB: large changes in intrathoracic pressure when efforts to breathe continue during upper

airway obstruction, progressive hypercapnia and hypoxia, and finally, transient arousal from

sleep, which restores upper airway patency and allows re-ventilation of the lungs. Several

recent studies involving animal models have provided useful insight into the relative

importance of these individual factors in producing the chronic abnormalities of

cardiovascular control associated with SDB [61]. Using an elegant canine model of

obstructive apnea, Brooks et al. [62] were able to produce nocturnal and daytime

hypertension by exposing the animals to artificially-induced periodic airway obstructions for

several weeks. On the other hand, sustained exposure to periodic acoustically-induced

arousals without prior upper airway obstruction led only to nocturnal hypertension with no

carry-over effect in the daytime. In a rat model, sustained hypertension developed after a

few weeks of exposure to intermittent hypoxia without any accompanying upper airway

obstruction [63]. In a porcine model, the cardiovascular effects of simulated central apneas

were found to be greater than those resulting from obstructive apneas of similar durations

[64]. These studies, taken together, suggest that although SDB is characterized by large

intrathoracic pressure changes and arousal-induced sleep fragmentation, intermittent

hypoxic stimulation appears to be the dominant factor that produces the chronic alterations

in cardiovascular control.

There are a number of mechanisms through which intermittent hypoxia, produced by SDB,

can lead to hypertension and other forms of cardiovascular disease, but abnormal autonomic

control appears to play a major role. Studies utilizing peroneal microneurography or testing

of plasma catecholamines have shown that sympathetic tone is abnormally high in subjects

with SDB in both sleep and wakefulness [65], [66]. Treatment with continuous positive

airway pressure (CPAP) partially reverses these effects [67]–[70]. CPAP therapy has been

shown also to improve vagal control of heart rate, the degree of improvement varying

directly with compliance level [71]. To determine whether exposure to intermittent hypoxia

leads to changes in autonomic control, several prospective studies in normal humans have

been carried out. Xie et al. [72] found that exposing healthy young subjects to intermittent

asphyxia over a period of 20 min led to sympathetic activation that continued even after the

stimulus was removed. In another study [73], prolonged sympathetic activation was

Khoo et al. Page 7

IEEE Rev Biomed Eng. Author manuscript; available in PMC 2014 September 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



produced after 20 min exposure to intermittent hypoxic apnea. The results were similar

regardless of whether these exposures occurred against a background of hypercapnia or

isocapnia, confirming that the primary mediator for the increase in sympathetic activity was

the intermittent hypoxia. In two other studies [74], [75], healthy young subjects exposed to

repetitive hypoxic apneas for a total duration of 30 mins displayed, in the post-recovery

period, a small and short-lasting increase in mean arterial blood pressure, along with a more

sustained and substantial increase in muscle sympathetic nerve activity. The mechanism

relating cyclic intermittent hypoxia to sustained sympathetic activation, that outlasts the

hypoxic stimulus, may be associated with augmentation of peripheral chemoreflex

sensitivity and direct effects on sites of central sympathetic regulation [76]. Baroreflex

impairment in patients with SDB has also been proposed as a possible explanation of altered

autonomic function [77]–[79].

V. Effects of Sleep-Disordered Breathing and Sleep Deprivation on

Metabolic Control

Recognition of an association between SDB and various manifestations of abnormal glucose

metabolism, ranging from increased fasting insulin to overt Type 2 diabetes, emerged with

early studies on this topic in the 1990s. A number of excellent reviews provide

comprehensive coverage of these early studies as well as more recent ones [80]–[82]. The

most compelling evidence of the association between SDB and abnormal glucose

metabolism has come from 3 relatively recent studies. Ip and colleagues [83] studied a total

of 270 subjects who had undergone polysomnography as a part of a community study or

who were referred to the sleep laboratory for suspected sleep apnea. Using fasting blood

glucose and insulin levels to assess insulin resistance, they found severity of SDB (assessed

in terms of AHI and minimum arterial oxyhemoglobin saturation) to be significantly

correlated to insulin resistance, independent of obesity (measured using BMI, waist

circumference and waist/hip ratio). Punjabi et al. [84] performed oral glucose tolerance tests

on 150 middle-aged overweight males who had undergone polysomnography, and found

increasing AHI to be associated with impaired glucose tolerance as well as insulin

resistance, calculated from fasting blood insulin and glucose levels, even after discounting

for obesity in these subjects. In a subsequent study, analysis of data obtained from 2,656

community-dwelling participants of the multi-center Sleep Heart Health Study demonstrated

that severity of SDB, as assessed using AHI and average oxyhemoglobin saturation during

sleep, was associated with impaired glucose tolerance, independent of other confounding

variables such as age, gender, weight, and body fat distribution [85]. More recently, two

studies, employing the intravenous glucose tolerance test and the Bergman minimal model

for subsequent analysis, found insulin sensitivity to be inversely correlated with SDB

severity, represented in terms of either AHI or oxyhemoglobin desaturation [86], [87]. On

the other hand, there have been some studies that have failed to find a significant association

between SDB and insulin resistance; in these cases, obesity appeared to be the dominant

factor affecting insulin resistance [88], [89].

Since cross-sectional studies, such as those cited above, only demonstrate association,

several recent longitudinal studies have been conducted to test the hypothesis of a causal
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link between SDB and glucose intolerance by determining whether CPAP treatment can at

least partially reverse the abnormalities in metabolic function. Harsch and colleagues [90],

in a study with 40 adult non-diabetic patients with insulin responsiveness measured by a

hyperinsulinemic euglycemic clamp technique, found that CPAP treatment (used on average

for 5.2 hours per night) improved insulin sensitivity in as early as 2 days after beginning of

treatment, with the beneficial effects remaining stable after 3 months of treatment. However,

insulin sensitivity in patients with BMI greater than 30 kg/m appeared to be least affected by

the treatment, suggesting that in obese individuals, SDB may not be as important a

determinant of insulin resistance. Babu and colleagues [91] studied the effects of CPAP

treatment of SDB on glycemic control in a group of 25 obese adult patients with type II

diabetes. Using a 72-hour continuous glucose monitoring system to measure interstitial

glucose levels, they found that for patients who used CPAP for more than 4 h/day there was

a correlation between days of CPAP use and reduction in hemoglobin A1C level, a measure

of long-term serum (4 weeks to 3 months) glucose regulation. Another study [92] reported a

correlation between adherence to CPAP treatment (more than 4 h/night for 6 months) and

reduction in hemoglobin A1C levels in adult non-diabetic SDB patients, but found no effect

of CPAP on markers of insulin resistance. The authors also found a negative correlation

between average sleep oxyhemoglobin saturation and fasting insulin levels. In the study

conducted by Coughlin et al. [93], 34 obese males with confirmed diagnosis of SDB

participated in a randomized placebo-controlled blinded crossover protocol in which each

subject was first assigned to 6 weeks of either CPAP therapy or sham CPAP (pressures were

set to 1 cm H2O or less); subsequently, the same subject was crossed over to the other

treatment for another 6 weeks. Fasting insulin and fasting glucose were measured at the end

of each 6-week treatment limb. The difference between the values at the end of each

treatment period was taken to reflect the effectiveness of CPAP on improving glycemic

control. However, it was determined that there was no significant change in insulin

resistance following CPAP treatment for 6 weeks. Thus, at this time, no definitive

conclusion can be drawn regarding the effectiveness of CPAP in improving metabolic

function in people with SDB.

A likely mechanism linking SDB to insulin resistance in humans is increased lipolysis and

fatty acid availability resulting from the sustained sympathetic activation produced by

intermittent hypoxia [94]. Intermittent hypoxia from SDB can also lead to pro-inflammatory

states and elevated cytokine levels [95], [96]. The desaturation-reoxygenation effect of

intermittent hypoxia can also lead to oxidative stress and consequently impaired glucose

metabolism [97]. Sleep deprivation may also play a role in the association of SDB and

insulin resistance. There may be an indirect pathway between lack of sleep and the

metabolic syndrome through its relation with obesity, the latter being a known risk factor for

the metabolic syndrome. Gangwisch and colleagues [98] studied longitudinal data of the

1982–1984, 1987, and 1992 NHANES I follow-up studies and cross-sectional analysis of

the 1982–1984 study in adults, and found a nearly inverse linear relationship between

weight and sleep time. Sleep deprivation may also be directly implicated as a risk factor for

metabolic syndrome. Healthy young adult subjects sleep deprived for six consecutive days

have been found to show reduced glucose tolerance and a blunted insulin response to

glucose, along with an increase in sympathetic activity [99]. Shigeta and colleagues [100]
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have shown that sustained sleep debt is associated with obesity and an increase in insulin

resistance. In a recently published study [101], 812 community participants were evaluated

via questionnaires for sleep disturbances related to insomnia or SDB and tested for

metabolic abnormalities at baseline and subsequently after 3 years. The study found that

sleep symptoms, such as difficulty falling asleep and loud snoring, predicted the

development of MS in this pool of subjects.

VI. Modeling the Development of Metabolic Syndrome

A. Key Questions and Hypotheses

While the cumulative evidence has shown that obesity, and in particular, visceral obesity,

plays a key role in the pathogenesis of cardiovascular disease and Type 2 diabetes, the

intermediate steps in the longitudinal process that lead eventually to one or both of these

outcomes remain unclear. The available evidence also suggests that SDB can independently

contribute to the development of cardiovascular disease and diabetes. In fact, the term

“Syndrome Z” has been used to describe the clustering of symptoms that include

hypertension, obesity, insulin resistance, hyperlipidemia and SDB [102]. But what are the

major steps in this progression and what mechanisms are involved? Fig. 1 displays a

simplified schematic that suggests the major possibilities that may individually or in

combination constitute pathways to MS:

1. Overfeeding stimulates insulin-mediated glucose metabolism in the cells of the

ventral medial hypothalamus, which in turn reduces neural traffic along an

inhibitory pathway to the brain-stem sympathetic centers that subsequently increase

central sympathetic outflow [103]. Obesity also leads to the dysregulation of a

number of endocrine, neural, inflammatory and cell-intrinsic mechanisms that

interact to produce insulin resistance [104]. As a result of the insulin resistance, the

pancreas compensates by secreting more insulin, thus causing hyperinsulinemia

and further sympathetic overactivity. Sustained sympathetic overactivity leads

through a variety of mechanisms to hypertension [105].

2. Obesity leads to a reduction in arterial compliance, which in turn leads to reduced

BRS [106]. The depressed baroreflex gain leads to sympathetic overactivity which

produces hyperglycemia and subsequent hyperinsulinemia, thus increasing insulin

resistance. Sympathetic overactivity also leads subsequently to hypertension.

3. Chronic exposure to intermittent hypoxia and repetitive sympathetic surges that

accompany arousals in the obese patient with SDB leads to increased sympathetic

activity and eventually hypertension. Sympathetic overactivity leads to increased

catecholamine production, which stimulates glycogenolysis and lipolysis, thus

promoting insulin resistance.

4. Intermittent hypoxia could directly impact glucose metabolism through a leptin-

related mechanism and thus increase insulin resistance [107]. Then, the

hyperinsulinemia that follows produces sympathetic overactivity, which

predisposes to the development of hypertension.
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B. Mathematical Models of Metabolic and Autonomic Dysregulation

The hypotheses listed in the previous section are by no means exhaustive, but they do

represent, albeit rather simplistically, the main potential pathways through which insulin

resistance and hypertension could develop in obese individuals, without or with the added

complication of SDB. To test these hypotheses and to determine whether the postulated

pathways could act in parallel and which may be the more dominant ones, an approach

based on computational modeling provides the most systematic way to proceed. More

specifically, an approach that applies both “minimal” and “structured” modeling in parallel

would likely yield the greatest dividend. “Minimal” modeling is important in allowing us to

estimate all key parameters from the observable data from a given experiment – since, under

practical circumstances, not all physiological variables can be measured at the same time.

On the other hand, minimal modeling does not generally provide insights into the details of

the underlying physiology. In contrast, “comprehensive” or “structured” models allow our

knowledge of the underlying physiology to be systematized and encapsulated concisely into

an efficient library of mathematical “rules”. The presence of model parameters that are

isomorphic to key physiological entities greatly simplifies the problem of interpretation vis-

a-vis some forms of minimal models that are expressed as nonparametric functions.

However, because of the large number of parameters, estimation of all these parameters

from experimental data is generally not practicable or feasible. On the other hand,

simulations performed with the structured model can provide insight into which

physiological parameters are more important in the mediation of the process under study,

and this insight can be used in the development of the corresponding minimal models that

can be employed to refine the parameter estimates.

Since the introduction of the simple dynamic model by Bolie [108] in 1961, a broad variety

of mathematical models of the regulation of glucose and insulin have appeared in the

literature [109]–[119]. Some of these fall into the “structured model” category, involving a

multi-parameter characterization of glucose, insulin and glucagon dynamics and their

interactions such that most model compartments can be identified with the physiological

entities that they were designed to represent [109]–[113]. At the same time, minimal models

have been employed ubiquitously to derive useful indices that quantify insulin resistance,

pancreatic beta cell function and other physiological parameters related to metabolic control

and insulin-glucose regulation [114]–[119]; a recent comprehensive review is given by

Cobelli and colleagues [120]. Most of these models were designed to simulate the body’s

responses to various types of glucose or insulin challenges, and different parameter values

were employed to represent “normal” versus “diabetic” or “prediabetic” responses. More

challenging has been the quest to develop computational models that can simulate the

progression from normal to prediabetic state to overt Type 2 diabetes. Using data collected

from a longitudinal study of Type 2 diabetes, Bagust and Beal [121] developed an empirical

model characterizing the loss of beta-cell function over time. Their analysis was consistent

with a two-phase process in beta-cell function deterioration: an initial long phase with very

slow beta-function decay followed, after a critical point in the disease progression process,

by a much faster phase of metabolic dysregulation. Topp et al. [122] augmented a minimal

model of insulin-glucose regulation with a much slower dynamical component representing

the dependence of beta-cell mass on glucose. Their model predicted a steady state operating
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point with relatively stable beta-cell mass under conditions of mild hyperglycemia.

However, it also predicted that more severe levels of hyperglycemia would lead to reduction

of beta-cell mass, thus creating a positive feedback effect, which drives the model towards

diabetes. The predictions of the Topp model are thus consistent with the two-phase

progression process suggested by Bagust and Beal. However, all these models of diabetes do

not explicitly take into account the dynamics associated with the regulation of body weight,

which is the focus of a number of existing models of energy homeostasis [123]. For

instance, Hall’s model [124] characterizes in exquisite detail how changes in the intake of

carbohydrates, fat and protein can lead to changes in body weight and body composition

over time scales of days or longer. On the other hand, this model and others that focus on the

development of obesity do not explicitly include considerations of glucose-insulin

regulation.

Computational models of cardiovascular control also have had a long history that may be

traced back to the pioneering works of Guyton [125] and Grodins [126] in the late 1960’s

and early 1970’s. However, it was only in the past decade and a half that detailed and

physiologically validated representations of the heart and autonomic neural control were

added to produce more realistic dynamic simulations of the key cardiovascular reflexes

[127]–[133]. As well, some of these models incorporated respiratory mechanics and

pulmonary gas exchange in order to simulate the cardiovascular responses to Valsalva

maneuvers [132] or inhalation of hypoxic or hypercapnic gas mixtures [128], [129]. More

recently, the model of Cheng et al. [133] integrated sub-models of respiratory,

cardiovascular and sleep regulation to characterize the dynamic interactions among these

systems during SDB. To date, the Guyton model [134], [135] remains the dominant and

accepted model in guiding our understanding of the development of hypertension. However,

this model focuses only on the cardiovascular and renal systems, and therefore, it is limited

in its application to MS.

C. A Structured Model of Autonomic-Metabolic Interaction

As implied in the previous section, while a large number of models of glucose-insulin,

cardiovascular and respiratory control have been developed over the past several decades,

none have been used to explore the interactions between autonomic and metabolic

dysfunction, such as what might be expected to occur in MS. We have made some

preliminary efforts in the development of a structured model of autonomic-metabolic

interactions [136] by extending the existing sleep-cardiorespiratory control model of Cheng

et al. [133] to incorporate a metabolic sub-model. The metabolic portion of the new model is

a hybrid that includes features from both the Bergman minimal model [118] and the model

by Roy and Parker [119] that includes the regulation of free fatty acids (FFA). Glucose and

FFA metabolism in this “extended minimal metabolic model” are also assumed to be

influenced by plasma epinephrine levels using the formulation employed by Kim et al. [137]

in which their model was designed to explore the effects of exercise on whole-body

metabolism. Inputs from the dietary intake of glucose and external interventions, such as

insulin injections, have also been incorporated into the model. The primary connection

between the sleep-cardiorespiratory portion of the model and the extended metabolic portion

is the efferent sympathetic output produced by the former. Changes in sympathetic output
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from the cardiorespiratory portion of the model, as well as changes in sleep-wake state, lead

to changes in epinephrine production, which in turn affects the metabolism of glucose,

insulin and FFA. Sympathetic activity sends epinephrine to the heart, muscle and pancreas

compartments. The sum of all the metabolic fluxes that result from these impacts works as

internal inputs for the glucose and FFA compartments. Inputs from the dietary intake of

glucose and external interventions, such as insulin injections, along with changes in

metabolism produced by changes in sleep-wake state, are also incorporated into the model.

An important feature is the incorporation of “feedback” from the metabolic component to

the autonomic portion of the model. This “feedback” comes in the form of changes in

insulin level, which lead to changes in sympathetic tone. A schematic illustration of this

large scale simulation model is displayed in Fig. 2.

The model allows the comparison of daytime blood pressure, generalized sympathetic tone

(represented by epinephrine level), and blood glucose, FFA and insulin levels between the

conditions simulating a normal subject and the conditions simulating an individual with

SDB. The results of model simulations that have been run for several days indicate higher

levels of blood pressure, epinephrine, FFA and insulin, along with slightly elevated plasma

glucose levels. Essentially, SDB produces sympathetic overactivity, elevating epinephrine

levels which stimulate glycogenolysis and gluconeogenesis, increasing blood glucose. This,

along with the elevated epinephrine level, stimulates the production of insulin, which helps

to attenuate the rise in blood glucose. The system ends up in a hyperinsulinemic state.

Although the parameters of the metabolic sub-model that collectively represent insulin

sensitivity remain unchanged in the model, whole-body insulin resistance is effectively

increased. The model predicts that increased severity of SDB, as reflected in an increase in

AHI, leads to higher levels of fasting plasma insulin (Fig. 3). However, the time course of

“disease progression”, as currently predicted by the model in terms of the development of

elevated epinephrine, insulin and FFA levels, is substantially more rapid than one might

expect based on clinical observation. This is largely related to the fact that the model

parameters in both the autonomic and metabolic subsystems remain unchanged, even though

the model variables (e.g., mean blood pressures, insulin levels and FFA levels) are altered

by the presence or absence of SDB. As well, the current model structure allows for only one

of many pathways through which metabolic dysfunction can develop.

D. Future Directions

The model presented in the last section should be viewed as merely a starting point of the

quest to obtain a better understanding of how the key physiological subsystems that

represent the autonomic, metabolic and sleep regulation may interact dynamically to yield

“symptoms” that are consistent with MS. However, with the basic structure of the model in

place, future efforts can be launched to incorporate other avenues of interaction among the

different subsystems of the model. For instance, the present capabilities of the model are

currently limited to addressing the question of whether SDB can independently lead to

expected changes in autonomic and metabolic function. What additional features are

required to be added to the model in order for us to simulate the development of insulin

resistance and/or hypertension in an individual as a consequence of progressive obesity? It is
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clear that some, if not many, of the model parameters would change slowly with time as the

“disease” progresses. But what are the time courses of these parameter changes?

To address this question, the ideal solution would be to conduct large-scale prospective

longitudinal studies in which the participating subjects are each tested for autonomic

cardiovascular function, metabolic function and severity of SDB (if present). This approach

is not likely to be feasible due to cost considerations and the intrusiveness of the

experimental protocols involved. Thus, a more practical approach might be to conduct cross-

sectional studies in which multiple measurements reflecting adiposity, autonomic activity,

metabolic function and SDB status are made in each individual, but the individuals are

sampled from a large population pool with a broad range of clinical characteristics,

including normal to low values of insulin resistance, normal to high BMI values, and normal

to severe SDB. The Bergman minimal model [118] would be used to estimate the key

metabolic parameters (SI, AIRg, Sg) and the minimal model of cardiorespiratory control of

Blasi et al. [138] would be employed to estimate autonomic parameters such as baroreflex

gain. This would allow functional relationships between the metabolic and autonomic

parameters to be determined for subjects with different levels of adiposity (which is best

measured using dual-energy Xray absorptiometry or DEXA) and severity in SDB (as

determined from polysomnography). A schematic representation of this multimodal

approach is displayed in Fig. 4. The empirically derived functional relationships that link

obesity, autonomic and metabolic function, and SDB severity would need to be interpreted

and “translated” into the physiological context so that the information can be employed for

the construction of a disease progression model of MS, similar to what was done by Bagust

and Beal [121] to characterize loss of beta-cell function over time. This approach is the basis

of some of the ongoing work in this research direction in our laboratory; some preliminary

findings have been reported in the form of a conference report [139].

Depending on the kinds of nonlinearities that reside in the model structure, gradual changes

in the parameter values with time may not always translate to a slow progressive

deterioration in metabolic or autonomic function. For instance, in the model of Topp et al.

[122], the slow dynamical mechanism representing the effect of glucose on beta-cell mass

produces rapid deterioration in metabolic function only after a threshold level of

hyperglycemia has been exceeded. Another example is the simplified model of MS

introduced by Kitano and associates [16]. Here, they focused on the long-term control of

blood glucose via the regulatory feedback loops that involve tumor necrosis factor (TNF)-

and adiponectin. As overfeeding continues, increased adipocyte size leads to increased TNF-

secretion inhibiting adiponectin, the net result of which is reduced insulin-mediated

peripheral glucose utilization and increased glucose production by the liver. Thus,

hyperglycemia and hyperinsulinemia occur. Increased TNF- enhances lipolysis in the

adipocytes leading to increased plasma FFAs, which in turn increases TNF- from skeletal

muscle and the liver. This can transform what was originally a stable negative feedback

system into one with an unstable operating point dominated by positive feedback.

An important piece of the puzzle that is missing from the handful of existing quantitative

MS models is the link between diet and sympathetic nervous system activity, an observation

established by Landsberg and colleagues in a series of elegant experimental studies since the
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late 1970’s [140]. Insulin-mediated glucose metabolism in the neurons of the ventromedial

hypothalamus is increased with overfeeding; this leads to a reduction in the inhibitory

influence of these neurons on the brainstem sympathetic centers, resulting in an increase in

central sympathetic outflow. Thus, in this case, hyperinsulinemia is the primary driving

force for the elevated sympathetic activity, rather than the other way around. Obesity also

leads to an increase in leptin levels which are meant to reduce overfeeding by suppressing

appetite; however, this occurs at a price, since elevated leptin levels lead to increased

sympathetic activity [141]. In our view, incorporating these pathways is crucial for the

development of an all-encompassing model of MS.

In summary, while there is great contemporary interest in modeling the mechanisms

underlying MS at the molecular level [142], we contend that adopting a “systems” approach

to understanding the development and progression of this syndrome is likely to yield the

highest practical dividends.
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Fig. 1.
Schematic representation of the plausible causal pathways through which obesity, insulin

resistance, autonomic activity and sleep-disordered breathing can interact to produce the

metabolic syndrome.
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Fig. 2.
Block diagram of the integrative model of autonomic and metabolic interactions by Cheng

and Khoo [136]. Figure as originally published in Cheng L and Khoo MCK (2012)

“Modeling the autonomic and metabolic effects of obstructive sleep apnea: a simulation

study”. Front. Physio. 2:111. doi: 10.3389/fphys. 2011.00111.
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Fig. 3.
Model-predicted fasting insulin levels are positively correlated to severity of sleep-

disordered breathing, as represented by the apnea-hypopnea index.
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Fig. 4.
Schematic representation of the “multimodal” approach in which minimal models of

glucose-insulin regulation (e.g., Bergman [118]) and cardiovascular autonomic control (e.g.,

Blasi et al. [138]) can be employed along with measures derived from polysomnography and

dual-energy Xray absorptiometry to establish functional relationships that link autonomic

and metabolic function with obesity and severity of sleep-disordered breathing.
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