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Abstract

Foundational studies in decision making focused on behavior as the most accessible and reliable

data on which to build theories of choice. More recent work, however, has incorporated neural

data to provide insights unavailable from behavior alone. Among other contributions, these studies

have validated reinforcement learning models by demonstrating neural signals posited on the basis

of behavioral work in classical and operant conditioning. In such models, the values of actions or

options are updated incrementally based on the difference between expectations and outcomes,

resulting in the gradual acquisition of stable behavior. By contrast, natural environments are often

dynamic, including sudden, unsignaled shifts in reinforcement contingencies. Such rapid changes

may necessitate frequent shifts in the behavioral mode, requiring dynamic sensitivity to

environmental changes. Recently, we proposed a model in which cingulate cortex plays a key role

in detecting behaviorally-relevant environmental changes and facilitating the update of multiple

behavioral strategies. Here, we connect this framework to a model developed to handle the

analogous problem in motor control. We offer a tentative dictionary of control signals in terms of

brain structures and highlight key differences between motor and decision systems that may be

important in evaluating the model.

Prying open the black box of the decision maker to study the brain inside offers the potential

to advance our understanding of behavior in situations where the reward contingencies

present in their environment change abruptly. By investigating the system responsible for

translating environmental inputs into behavioral outputs, we may discover the underlying

algorithms responsible for choice behavior and formulate a systematic account of decision

making. Indeed, because real agents are biological organisms with behaviors adapted to a

broad set of nested and competing goals— from maximization of evolutionary fitness to

food intake, reproduction, and competition, to minimization of free energy or motor error or

sensory uncertainty (Friston, 2010; Knill & Pouget, 2004; Todorov, 2004; Todorov &

Jordan, 2002)—a formulation of decision making in these terms may resolve apparent

behavioral paradoxes by subsuming principles like rationality within a more accurately

formulated biological optimization framework (Giraldeau & Caraco, 2000; Smith, 1982; D.

W. Stephens, Brown, & Ydenberg, 2007; D.W. Stephens & Krebs, 1986).
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Among this program’s early successes, the most promising involves the discovery of a

neural basis for reinforcement learning models developed in both machine learning and

conditioning experiments in animals (Mackintosh, 1974; Pearce & Bouton, 2001; Pearce &

Hall, 1980; Rescorla & Wagner, 1972; Sutton & Barto, 1998). In such models, the algorithm

attempts to set the value of a relevant parameter in a model of action selection. This

parameter may be the associative strength of a cue, for example, or the value of an action.

Reinforcement learning models posit that, subsequent to environmental feedback, the

relevant parameter, v, should be updated according to

where ṽ is the observed value of the parameter and α is a learning rate. That is, when v is

predicted and ṽ observed, the algorithm shifts the estimate of v incrementally in the

direction of ṽ. In the most common situation, v is the reward value of a given action, and the

second term is proportional to the difference between the observed and predicted rewards,

the so-called reward prediction error (RPE) (Sutton & Barto, 1998).

In typical learning problems, we are interested in updating V(s), the reward value (summed

over all future actions) of the present state of the world, given a model for action selection.

Most often, actions are assumed to be selected by examining the options available at s and

choosing the one most likely to maximize V(s′), the value in the subsequent state. However,

during learning, agents must also explore the space of possible alternative actions, which

may yield higher-value outcomes. To do so, they often employ a second system for handling

this explore/exploit tradeoff, the “actor” of so-called “actor-critic” theories, which is

responsible for translating valuation into action (Sutton & Barto, 1998). By occasionally

choosing unknown or undersampled options, the actor computational module gathers

information about the rewards accruing to alternative strategies. The critic, a separate

computational module, then uses the RPE for these outcomes to update the value function.

Over the course of learning, as the critic converges on an optimal behavioral response, the

need for exploration diminishes, and the actor simply chooses options that maximize the

value function (Rescorla & Wagner, 1972; Sutton & Barto, 1998).

However, more efficient models also adjust learning rates in response to changes in

environmental contingencies. Unexpected outcomes may signal a need to renew or

accelerate learning, as in attentional theories of conditioning (Pearce & Bouton, 2001;

Pearce & Hall, 1980). These theories posit an additional “surprise,” “salience,” or

“attentional” signal proportional to the unexpectedness of an outcome, which subsequently

increases learning rate. Indeed, both the RPE and the surprise signal are integrated in online

Bayesian models of learning like the Kalman filter (Courville, Daw, & Touretzky, 2006;

Daw & Courville, 2008; Dayan & Kakade, 2001; Dayan, Kakade, & Montague, 2000).

Mounting evidence suggests that these models, grounded in machine learning and classical

and operant conditioning experiments, are instantiated in the brain. Most famously, in

studies of single neurons recorded in monkeys performing a classical conditioning task,

Schultz and collaborators showed that a RPE signal is encoded in the firing of dopamine-

releasing neurons located in the substantia nigra pars compacta and the ventral tegmental
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area of the midbrain (Schultz, 2007; Schultz, Dayan, & Montague, 1997). That is, these

neurons fired in response to receipt of unexpected rewards but only to cues, not receipt, of

predicted rewards. More recently, Deisseroth and collaborators have demonstrated that this

signal is sufficient for place preference conditioning in mice (Adamantidis et al., 2011; Tsai

et al., 2009). In addition surprise-like signals conforming to the assumptions of Pearce-Hall

models have been observed in midbrain, amygdala, and cortex (Bromberg-Martin,

Matsumoto, & Hikosaka, 2010; Hayden, Heilbronner, Pearson, & Platt, 2011; Roesch, Calu,

Esber, & Schoenbaum, 2010). In the cortical case, single neurons in the anterior cingulate

cortex (ACC) of monkeys performing a choice task between risky options fired more

strongly to unexpected than expected outcomes (Hayden, Heilbronner, et al., 2011). Visual

cues informed monkeys of the relative probability of receiving each of two potential

outcomes (a large or small reward), with probabilities varied parametrically. As in the case

of amygdala, the ACC neurons’ firing was modulated by the surprisingness of the event,

whatever the outcome. Received large rewards that were a priori unlikely elicited greater

neural activity than those that were a priori unlikely, and the same was true for small

rewards. Taken together, these results strongly suggest that neural circuits implement an RL-

like algorithm for both learning and action selection.

The necessity of change detection

Despite these advances, it remains abundantly clear that the natural environments in which

many decisions are made are not amenable to the most naïve forms of reinforcement

learning. In dynamic environments, the underlying values of options may drift, requiring a

continual updating of estimates (Behrens, Woolrich, Walton, & Rushworth, 2007; Daw,

O'Doherty, Dayan, Seymour, & Dolan, 2006; Pearson, Hayden, Raghavachari, & Platt,

2009). Variability in returns requires that decision makers alter their learning rates—faster

for more rapidly changing environments, slower for more static ones—in a way that makes

the best use of the available data (Courville et al., 2006; Daw & Courville, 2008; Dayan et

al., 2000; Gallistel, Mark, King, & Latham, 2001). When the quantities to be learned are

moving targets, more and more sophisticated assumptions about the environment come into

play, and the problem of estimating the values of available options becomes a sophisticated

problem in optimal filtering.

Furthermore, environments do not always change smoothly and gradually. Sudden jumps in

the value of options—for instance, the discovery that a piece of fruit is rotten, or that a

nearby bush contains a predator—may drastically alter outcome contingencies associated

with particular choices and thus require rapid behavioral adaptation. In such cases, the

incremental approach of reinforcement learning may prove maladaptive (Gallistel et al.,

2001; Pearson, Heilbronner, Barack, Hayden, & Platt, 2011; Wolpert & Kawato, 1998). A

more effective approach may require rapidly shifting between behavioral strategies. Indeed,

this is precisely what agents do when confronted with sudden changes (Gallistel et al., 2001;

Nassar, Wilson, Heasly, & Gold, 2010). They make an inference (often Bayesian) about the

existence of a shift in the environment and switch strategies entirely.

Consider, for example, a situation in which an animal is presented with a pair of options

inside an experimental apparatus, perhaps two levers tied to differing reward schedules.
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Furthermore, assume that the entire apparatus can be configured in two or more states in

which the optimal behavioral responses differ. For instance, in one state, both levers may be

programmed to yield equal reward every five and every ten presses, respectively (i.e., fixed-

ratio schedules, FR 5 and FR 10). In that case, the optimal response is for the animal to

ignore the lever associated with the more stringent FR schedule. In the second, state,

however, both levers are programmed with variable interval (VI) reinforcement schedules,

in which case matching behavior is the reward-maximizing response. Finally, assume that

the apparatus shifts between these two reward contingencies unpredictably with a given

hazard function, which encodes the probability density of switching in the next moment as a

function time since the last switch.

Likewise, in multi-agent competitive situations, animals may be required to change

behavioral modes (e.g., producer vs scrounger, hawk vs dove) in response to an opponent’s

strategy (Smith, 1982). This may be true either across opponents (when a player’s type is

fixed but hidden) or across time against a single opponent, herself capable of adopting

multiple behavioral modes. Here in particular, the ability to detect sudden change in the

world and react appropriately should prove valuable.

How is an animal to respond? In the first scenario, the most simplistic RL framework simply

updates the value of pressing each lever each time the animal receives a reward. The values

of the respective levers are updated independently, and each time the state of the apparatus

changes, the value of each lever gradually changes via the update equation given above. In

other words, each time world changes, the animal begins the process of learning all over

again.

But an optimal agent is capable of much better performance. A model-based RL algorithm

might learn, for instance, that the values of the levers are strongly correlated and thus

learning about one lever yields information about the other. A Bayesian agent might use

knowledge of the hazard function and recent outcomes to infer the probability that the

underlying state of the apparatus has changed. Indeed, experiments have shown that animals

are capable of making rapid changes between behavioral patterns in response to sudden

changes in reward contingency, changes much too fast to be based on naïve reinforcement

learning (Daw & Courville, 2008; Gallistel et al., 2001). In this case, the animal changes

behavior abruptly soon after the change in reward contingencies, close to the performance of

an ideal observer.

At issue, of course, is not what performance is mathematically possible, but what

performance is possible with biologically plausible online learning algorithms. To a first

approximation, the ability to respond to such sudden jumps in the state of the world requires

two key ingredients: 1) a set of neural algorithms capable of detecting sudden environmental

change and, 2) a set of algorithms for rapidly adjusting behavior. The problem of change

detection in response to noisy signals has received significant attention in the statistics

literature (Adams & MacKay, 2007; Wilson, Nassar, & Gold, 2010), but the connection with

underlying biology remains to be made. As for the second ingredient, there is always the

possibility, once change is detected, of increasing the learning rate in an RL algorithm so

that only recent outcomes contribute. In general, this will result in faster but noisier learning,
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with the added disadvantage of throwing away information pertinent to the previous

environment. That is, if the previous state of the world ever recurs, a decision maker using

this approach would need to relearn her behavioral response to each set of environmental

contingencies from scratch.

Alternatively, agents could learn multiple, separately maintained strategies, with the option

of switching between them as conditions warrant. Such a system would have the advantages

of rapid adaptation to environmental change and access to well-learned, specialized systems

on demand, albeit with the computational burden of updating, storing, and selecting among

the multiple models. An algorithm for precisely such a system, called MOSAIC (Wolpert &

Kawato, 1998), has been proposed for optimal motor control. Here we review data on the

anatomical substrates of change detection and then propose a tentative identification of

elements of the MOSAIC model with neural circuits within the brain.

Change detection in the brain

Clearly, if change detection comprises a core competency for decision makers in dynamic

and uncertain environments, change detection algorithms should be instantiated within the

brain. However, the problem of change detection is embedded within the larger problem of

learning, for which we have a better understanding of the underlying biology. In broad

strokes, learning is known to depend crucially on the basal ganglia, particularly the ventral

striatum/nucleus accumbens (Balleine, Liljeholm, & Ostlund, 2009; Graybiel, Aosaki,

Flaherty, & Kimura, 1994; Knutson, Adams, Fong, & Hommer, 2001). The basal ganglia are

thought to filter wide-ranging inputs from cortex for conjunctions of signals relevant for

triggering learned behaviors, and for implementing these behaviors by modulating cortico-

basal ganglia-thalamo-cortical loops (Houk & Davis, 1994). In addition, other brainstem

structures such as the VTA (Schultz, 2007), habenula (Matsumoto & Hikosaka, 2007), and

the rostromedial tegmental nucleus (Hong, Jhou, Smith, Saleem, & Hikosaka, 2011) are

known to be part of a circuit responsible for processing rewards, aversive outcomes, and

prediction errors (Bromberg-Martin et al., 2010), while the amygdala carries salience signals

useful for adjusting learning rates (Roesch et al., 2010; Schoenbaum, Chiba, & Gallagher,

1998). In the cortex, dopaminergic signals project primarily to frontal areas, in particular

orbitofrontal and anterior cingulate regions, thought to be important for cue-related

prediction (Schoenbaum, Roesch, Stalnaker, & Takahashi, 2009) and action valuation

(Amiez, Joseph, & Procyk, 2006; Kennerley, Behrens, & Wallis, 2011; Kennerley, Walton,

Behrens, Buckley, & Rushworth, 2006; Wallis, 2011), respectively. More lateral prefrontal

regions are thought to implement executive control functions, including strategic decision

making (Barraclough, Conroy, & Lee, 2004; Bechara, Tranel, & Damasio, 2000;

Venkatraman, Payne, Bettman, Luce, & Huettel, 2009). Though the overall picture remains

incomplete, these regions are all known to make important contributions to the learning of

simple action patterns and outcome associations.

Yet the question of which, if any, brain structures contribute to change detection and

consequent switching between behavioral modes has received comparatively little attention,

probably due to the difficulty of characterizing behavior in dynamic environments (Behrens

et al., 2007; Daw, O'Doherty, et al., 2006; Gittins, 1979; Whittle, 1988). A handful of
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experiments have implicated frontopolar regions (hypothesized to sit atop the executive

hierarchy (Boorman, Behrens, Woolrich, & Rushworth, 2009; Christoff & Gabrieli, 2000;

Soon, Brass, Heinze, & Haynes, 2008; Tsujimoto, Genovesio, & Wise, 2011)) and posterior

midline regions (Behrens et al., 2007; Daw, O'Doherty, et al., 2006; Pearson et al., 2009) in

behavioral adjustment in the face of continuously changing reward contingencies, with these

regions more active in cases of exploratory behavior. More generally, one of these regions,

the posterior cingulate cortex (CGp), is thought to be involved in the type of inwardly-

directed cognition necessary for long-term strategic planning (Gerlach, Spreng, Gilmore, &

Schacter, 2011; Leech, Braga, & Sharp, 2012; Spreng, Stevens, Chamberlain, Gilmore, &

Schacter, 2010).

In a recent work (Pearson et al., 2011), we reviewed evidence for the hypothesis that CGp is

part of a circuit involved in detecting environmental change and signaling the need for

commensurate changes in behavioral mode. As work in non-human primates has shown,

CGp firing rates encode a filtered sum of rewards received over the last several trials

(Hayden, Nair, McCoy, & Platt, 2008), encode the volatility of uncertain rewards in

monkeys choosing between risky and safe options (McCoy & Platt, 2005), and signal

exploratory versus exploitative choices in a task with dynamically changing rewards

(Pearson et al., 2009). Moreover, when CGp neurons are electrically stimulated, this causes

a switch in choice preference from preferred to less preferred options (Hayden et al., 2008).

In each case, across a variety of value-based decision tasks, CGp encodes a key variable

necessary to reallocating behavior, and stimulation of this area plays a causal role in

effecting behavioral change. All of this is commensurate with a role for CGp in

accumulating evidence of environmental change and signaling a need to alter behavioral

mode. In keeping with numerous theories of change detection, we hypothesized that this

signal might represent the log posterior odds of a shift in the underlying environment, a

Bayesian measure of confidence in the brain’s current model of the world (Pearson et al.,

2011). In our model, the anterior cingulate cortex captures local, moment-to-moment

information about outcomes, and this information is subsequently maintained online and

filtered by CGp. Unexpected outcomes contribute evidence for a change in the outcome

contingencies of the environment, with multiple such outcomes resulting in a change in

behavior. Below, we examine a previously published model for how multiple such strategies

may be learned and adjudicated, suggesting a potential correspondence between brain areas

in our model and components of the learning algorithm.

Multiple controllers for flexible behavior: the MOSAIC model

As we have noted above, the need for rapid adaption to changing environmental

contingencies argues for the inadequacy of a single incremental system implementing

reinforcement learning to account for all behavioral change. This holds true not only for

decision making, but for the systems responsible for motor control, where the timescale of

behavioral adjustment is often much faster. Here again, the suggestion that the brain

maintains multiple strategies or control systems, with the option of switching between them

as evidence warrants, forms the basis for a compelling proposal, which Wolpert, Kawato,

and collaborators dubbed “modular selection and identification for control” (MOSAIC)

(Haruno, Wolpert, & Kawato, 2001,2003; Sugimoto, Haruno, Doya, & Kawato, 2012;
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Wolpert & Kawato, 1998). In MOSAIC, the brain maintains and learns multiple control

modules for movement, each to be implemented under a broad set of conditions.

Figure 1 shows a schematic of this computational process. More specifically, for each

module, given a state of the world represented by the vector × and a control signal given by

u, both at time t, we have both a forward model for how the system evolves

and an inverse model for control given a desired state of the system, x*

such that the two are inverses of one another:

That is, for each control module—in our case, behavioral mode—agents both make

predictions about the environment’s response to their actions and the necessary actions

required for desired environmental responses. The rat presented with two levers in an

apparatus in one of two possible states behaves as if making predictions for each lever for

each possible state, and determines which actions are most likely to lead to maximal reward

given current evidence for each state of the apparatus.

In practice, the desired state of the system is determined by minimizing some cost function

(equivalent to maximizing the value function in typical RL models), and modules are

learned by performing gradient descent on the parameters of the forward model:

where x̂ is the prediction of the forward model and x is the measured state of the

environment. In other words, the animal adjusts its behavior incrementally in the direction of

improved prediction.

The key idea behind MOSAIC is that all such models learn and operate simultaneously. This

is done through the assignment of a responsibility weight λ to each model, encapsulating an

internal estimate of confidence in that model’s predictions:

That is, λ is determined by a normalized error measurement between the observed state of

the world (sensory evidence, reward rates, etc.) and each model’s prediction. In a Bayesian

context, this responsibility weight may be defined as a posterior confidence in the
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correctness of each model, updated as new data are observed. These weights can then be

used to make averaged predictions (x̂ = ∑iλix̂i) and control signals (u = ∑iλiui) across models

and thus differentially update models according to their applicability to the current

environment:

In this way, models that do not accurately predict the dynamics of the current environment

are minimally updated, while models that apply in the current context are more strongly

updated. Thus, model switching and model learning happen within the same prediction error

framework, which can be given a Bayesian formulation in terms of optimal inference about

the world (Friston, 2011; Todorov, 2004; Todorov & Jordan, 2002; Wolpert & Kawato,

1998).

The MOSAIC formulation provides a natural formalization of our change detection model,

as illustrated in Figure 2. (Pearson et al., 2011). Predictions of environmental states and

rewards take the place of limb positions, with prediction errors (signed and unsigned)

encoded in ACC. These errors are accumulated across trials in CGp, in a signal that can be

viewed as useful for incremental updating of the responsibility weight. In other words, the

accumulated errors across trials track the change in model confidence associated with a shift

in the underlying environment. Moreover, these signals should gate learning by apportioning

the RL update of model parameters in accordance with responsibility weight, potentially

through modulatory connections with parahippocampal gyrus.

In the case of the rat confronted by a pair of levers, in an apparatus in one of two states,

MOSAIC predicts that with each lever press, the rat behaves as if making a prediction for

the outcome of the lever press for each of the two states, weighted by an estimate of the

probability that each state obtains. At the neural level, ACC signals the difference between

expectation and result for individual trials, while CGp accumulates this information,

analogous to the responsibility weight. As evidence for an environmental shift builds, CGp

firing should increase, with behavior shifting between modes when this firing reaches a

critical threshold. Thus activity in the change detection circuit should precede a behavioral

switch, as suggested by results in previous studies (Hayden et al., 2008; Pearson et al.,

2009).

However, several key differences complicate the adaptation of MOSAIC from motor to

decision systems. First, because the neural distinction between motor planning and output

and the decision process is poorly understood at present. Neural representations for pure

value and for value as tied to specific movements may overlap to varying degrees in separate

neural circuits. Second, and more clearly for our purposes, the primary inference problem in

motor control is that of effecting a desired movement, apart from its reward value. The key

unknown is the physics of the object being manipulated, not the cost function determining

efficient muscle movement, which is taken as given. In most decision-making formulations,

however, we are interested in costs apart from the motor outputs that make decisions

manifest, and it is the value function of different actions that changes between environments
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(though the forward Markov model governing state transitions may also change).

Fortunately, MOSAIC can also adapt to multiple cost functions, successfully transitioning

between them (Sugimoto et al., 2012). More importantly, while CGp neurons do appear to

encode outcomes across multiple trials, they also appear to react more strongly to violations

of expectation than would be anticipated from a gradual transition from one model to

another. This suggests either a very small region of overlap in model predictions, a low

tolerance for errors when making inference (small σ2), or perhaps both. Indeed, such rapid

shifts in beliefs are often the result of Bayesian, rather than gradient descent, inferences

(Gallistel et al., 2001).

More intriguing, however, may be the contrast between the predictions of MOSAIC for

motor control and our application of its formalism to decision making. By now, it is well

known that subjects performing many perceptual and simple motor tasks exhibit Bayesian-

like inference (Braun, Ortega, & Wolpert, 2009; Gold & Shadlen, 2007; Raposo, Sheppard,

Schrater, & Churchland, 2012; Trommershäuser, Maloney, & Landy, 2008), but in simple

decision tasks involving probabilities given in mathematical or written form produce strong

departures from optimality (Gigerenzer & Selten, 2002; Gilovich, Griffin, & Kahneman,

2002; Trommershäuser et al., 2008). Furthermore, while the graded nature of muscular

control may allow for composition of control signals from different models (weighted by

responsibility weights), the discrete nature of many choice paradigms renders this process

latent, at best. Lastly, working memory, attentional, or other representational constraints

may also limit the number of models that may be effectively tracked or evaluated. Together,

these factors lead us to conjecture that a MOSAIC-like model for decision making might

strongly limit the number of nonzero responsibility weights, in much the same way that cue

competition enforces parsimony in classical conditioning (Gallistel & Gibbon, 2000). In this

case, models would need to be evaluated one (or perhaps two) at a time, in a manner more

akin to hypothesis testing. Such a constraint would represent a key difference between

decision and motor or perceptual systems.

Discussion

We have proposed an identification of major components of the brain’s system for decision

making with elements of MOSAIC, a modular model of control. The learning processes

necessary to adaptive decision making face many of the same issues as those of motor

control, including the need to maintain and refine multiple controllers for a variety of tasks

and environments, and MOSAIC offers a convenient formalization of and solution to this

dilemma. We suggest that cingulate cortex plays a key role in signaling both feedback from

actions and model confidence, and in particular that the posterior cingulate cortex plays a

key role in the switch between models and modulation of learning in the face of changing

environmental contingencies. We also propose, in contradistinction to multi-module

accounts of motor control, that decision systems suffer from a cognitive bandwidth limit on

the number of models that may be countenanced or simultaneously updated. Thus, while

sensation and movement may often exhibit Bayesian integration over models, many

cognitively demanding decisions do not. Such a suggestion was also recently made in a

model of learning in open and dynamic environments, where it was proposed that only a few
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models, perhaps four or fewer, could receive simultaneous consideration, with only the

highest posterior probability model updated by learning (Collins & Koechlin, 2012).

Testing these theories presents a challenge for neural studies of decision making. Most

decision tasks consist of repeated choices of a few types and are essentially static. More

dynamic tasks (Daw, Courville, & Touretzky, 2006; Nassar et al., 2010; Pearson et al.,

2009) are difficult to analyze and may not have known optimal solutions. But tasks capable

of studying dynamic decision making should clearly satisfy some key conditions. First, they

must exhibit reliable behavioral control, regular enough to be modeled mathematically

(Gold & Shadlen, 2007; Hayden, Pearson, & Platt, 2011). Second, they must require

inference about environmental change of a nontrivial type, which poses a training challenge

for non-human subject. Finally, they must require the implementation of multiple decision

strategies unique enough to be disambiguated behaviorally.

Nevertheless, dynamic decision making forces us to confront the brain in its most natural

functional context. By focusing on the feedback and control aspects of decision algorithms,

we stand to learn much more about the interacting networks that give rise to its most flexible

processing, as well as its most intriguing cognitive phenomena.
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Figure 1.
The MOSAIC control model. In MOSAIC, multiple forward and inverse models,

corresponding to multiple systems of control, combine to produce a single control signal, u.

Control signals ui from the various inverse models are combined according to responsibility

weights λi, which are calculated from the discrepancy between the observed state of the

environment, x (that is, all available sensory information, plus reinforcement from the

environment) and each model’s prediction, x̂i. These weights represent a confidence in the

applicability of each model to the current state of the environment, and apportion learning

across the different models (not pictured). This scheme allows for simultaneous learning of

and rapid switching between multiple control systems.
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Figure 2.
A multiple controller model of decision making. Sensory feedback from the environment is

divided into task-specific variables, which are compared with forward predictions to form

errors, |x − x̂|. These errors are used to both update the currently active policy (δw) and the

responsibility weights for both the current an alternative models δλi. Change detection

corresponds to the accumulation of sufficient error from the current policy (∑δλ), which

results in the selection of a new control module corresponding to maximum responsibility

weight. Tentative identifications for the anatomical substrate of model elements are listed in

red, though each component is likely to involve multiple regions, and a given region may be

associated with multiple functions.
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