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Abstract

Transcription factors (TFs) bind in a combinatorial fashion to specify the on-and-off states of

genes; the ensemble of these binding events forms a regulatory network, constituting the wiring

diagram for a cell. To examine the principles of the human transcriptional regulatory network, we

determined the genomic binding information of 119 TFs in 458 ChIP-Seq experiments. We found

the combinatorial, co-association of TFs to be highly context specific: distinct combinations of

factors bind at specific genomic locations. In particular, there are significant differences in the

binding proximal and distal to genes. We organized all the TF binding into a hierarchy and

integrated it with other genomic information (e.g. miRNA regulation), forming a dense meta-

network. Factors at different levels have different properties: for instance, top-level TFs more

strongly influence expression and middle-level ones co-regulate targets to mitigate information-

flow bottlenecks. Moreover, these co-regulations give rise to many enriched network motifs -- e.g.

noise-buffering feed-forward loops. Finally, more connected network components are under

stronger selection and exhibit a greater degree of allele-specific activity (i.e., differential binding

to the two parental alleles). The regulatory information obtained in this study will be crucial for

interpreting personal genome sequences and understanding basic principles of human biology and

disease.

A central goal in biology is to understand how a limited cohort of transcription factors (TFs)

is able to choreograph the large diversity of gene-expression patterns in different cell types

and conditions. Over the past decade, system-wide analyses of TF binding patterns have

been performed in unicellular model organisms, such as E. coli and yeast, and have revealed

a great deal of information about the organization of regulatory information1-8. Such studies
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have provided insights into such features as network hubs1, connectivity correlations9,

hierarchical organization10,11, and network motifs12,13. Moreover, more complex networks

that integrate disparate forms of genomic and proteomic data, such as protein-protein

interactions and phosphorylation, have related gene regulation to other biological

processes14-16. However for humans, systems-level analyses have been a challenge due to

the size of the TF repertoire and genome, and only specific regulatory sub-networks with a

handful of factors have been reported thus far17-19. The large-scale data from the ENCODE

project now begins to enable such analyses20. Moreover, with the vast amount of human

polymorphism data and genome sequences of many mammals21,22, it is possible to obtain an

unprecedented view of how selection relates to networks.

Here, we present an analysis of the genome-wide binding profiles of 119 transcription-

related factors, including sequence-specific, general, and chromatin-acting factors. (For

simplicity, we abbreviate all of these as TFs, and we use TFSS to denote canonical

sequence-specific factors). We first use the TF-binding data to analyze the co-association

patterns between different TFs, as well as their differential patterns in promoter-proximal

and distal regulatory regions. We then organize the binding patterns into a stratified

hierarchy representing the overall systems-level regulatory wiring. To this, we add other

forms of network information, including ncRNA regulation (especially miRNAs)23,24,

protein-protein interactions25,26, and protein phosphorylation27. We analyzed this “meta-

network” for properties that differ based on hierarchical level and connectivity (e.g., hubs

vs. non-hubs) and also searched for enriched network motifs. Finally, we surveyed the

pattern of sequence variation over the network, examining selective pressure and allelic

effects (preferential binding to the maternal or paternal allele).

Several of our key findings include:

* Human TFs co-associate in a combinatorial and context-specific fashion; different

combinations of factors bind near different targets, and the binding of one TF often

changes the preferred binding partners of others. Moreover, TFs often show different

co-association patterns in gene-proximal and distal regions.

* Different parts of the hierarchical TF network exhibit distinct properties. For instance,

the middle level has the most information-flow bottlenecks and, offsetting this, tends to

have the most regulatory collaboration between TFs. Conversely, higher-level TFs have

the greatest connectivity with other networks (e.g., the phosphorylome).

* The occurrence of the feed-forward loops is strongly enriched in the TF network, as

are a number of motifs in which two genes co-regulated by a TF are bridged by a

protein-protein interaction or regulating miRNA.

* Highly connected network elements (both TFs and targets) are under strong

evolutionary selection and exhibit stronger allele-specific activity (this is particularly

apparent when multiple TFs are involved). Surprisingly, however, elements with allelic

activity are under weaker selection than non-allelic ones.
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Overview of Data and Processing

The ENCODE project has generated ChIP-seq datasets for 119 distinct TFs over five main

cell lines (SOM/B.1, Tables S1 and S2a). Each dataset contains at least two biological

replicates. In addition, for a select set of factors (Fig. S1c), siRNA experiments were

performed, where the TF was depleted and expression changes were quantified by RNA-seq

(SOM/B.2). Most of the factors (88, 74%) are TFSSs that can be subcategorized based on

their DNA-binding domain sequences (Table S2a)28. A small subset (16, 13%) comprises

POL2 and general transcriptional machinery; a final subset (15, 13%) consists of chromatin-

modifying and remodeling factors.

In order to allow effective integrative analysis of these diverse datasets, we developed a

uniform processing pipeline and quality-control measures (SOM/B.1, Figs. S1a,b and S2a,

data at www.encodeproject.org). In total, we identified 7,424,765 peaks; 2,948,387 (~40%)

were proximal (within +/−2.5 Kbp) to annotated gene transcription start sites (TSSs).

Context-specific TF Co-association

We first examined the genome-wide co-association of all pairs of TFs by analyzing the

overlap between peaks of all pairs of factors20. Although many general trends can be

identified, this approach does not take into account the context-specificity of TF binding

(i.e., the fact that TFs bind together in distinct combinations at different genomic locations,

and that the co-binding of one pair of TFs is often affected by the binding of another TF;

SOM/C.1). Therefore, we developed a framework focusing on the specific genomic regions

bound by a particular TF (the focus-factor) and examined the co-association of all other TFs

(partner-factors) within this context (Fig. S2a). For each ~350 bp region in the focus-factor

context, we extracted normalized binding signals of overlapping peaks of all TFs, generating

a co-binding map. Fig. 1a shows such a map for the GATA1 context. Here, factors that

consistently co-associate with each other and a substantial proportion of GATA1 peaks are

termed ‘primary partners’ (e.g., group 6 TFs such as GATA2 and TAL1 in Fig. 1a). In

addition to these factors, there are also groups of ‘local partners’ that co-associate with each

other in the presence of GATA1, but only at specific subsets of GATA1 binding peaks (e.g.,

JUN in group 7 and MAX in 3; Fig. 1a and S2c-1). These biclusters, typically containing 2

to 5 TFs, can be mutually exclusive or partially overlapping.

To systematically identify all primary and local partners for each focus-factor context, we

used a machine-learning approach. We learned non-linear, combinatorial models of each

focus-factor's co-binding map relative to randomized control maps (SOM/C.2; Figs. S2a,b).

Analysis of multivariate rules in these models, in turn, identified pairs and higher-order

clusters of significantly co-associated TFs. Moreover, these co-associations are robust to

peak overlap and calling thresholds (SOM/C.4).

The first statistic derived from the models is a relative-importance (RI) score (SOM/C.

2.4.2), which gives the overall importance of a TF in the model. It reflects the ‘size’ of the

biclusters to which a particular TF belongs, and it is related to the number of co-binding

factors and the fraction of peak locations involved. For the GATA1 context (Figs. 1b and

S2c-2), primary partners TAL1, GATA2 and POL2, as well as local partners MAX and
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JUN, have high RI scores. To further manifest the partnering in a particular context, we

computed co-association scores between all pairs and higher-order sets of TFs (SOM/C.

2.4). These scores measure the impact of the co-dependency implicit in a particular pair on

the model as a whole, and they more directly probe the co-occupancy of TFs in the focus-

factor context than does the RI score. For the GATA1 context, the co-association scores

revealed both expected and novel pairings (e.g., MYCMAX-E2F6 and CCNT2-HMGN3,

respectively; Figs. 1b and S2c-2 and SOM/C.3.1.4). Furthermore, GATA1 is usually

associated with enhancer activity. However, the co-association score shows that it is

connected to both repressive (e.g., NRSF, HDAC2) and activating TFs (e.g., P300). This

“two-faced” behavior has been observed previously29; here, it is borne out by expression

studies and knockdowns (SOM/C.3.1.4). In particular, after GATA1 knockdown, we found

that 94 targets of GATA1 were significantly up-regulated, and only 54 were down-regulated

(Fig. S2e-4). Finally, we analyzed the functions of genes that lie near clusters of co-

associated TFs, and found that many are enriched for specific biological functions (Fig.

S2e-2). For example, one bicluster involving E2F6 (E2F6-GATA1-GATA2-TAL1) was

enriched for genes related to myeloid differentiation, while another (E2F6-SP1-SP2-FOS-

IRF1) was involved in DNA damage response (SOM/C.3.3). Thus, distinct combinations of

factors regulate specific types of genes.

Comparing Co-association Across Contexts

Aggregate RIM & PPM

After establishing the co-binding structure in each TF context, we compared our co-

association statistics across contexts. In particular, we combined the RI scores for each TF

into a single matrix (RIM, Fig. S2a). Clustering reveals nine functionally distinct classes of

TF contexts that fall into four broad groups: proximal, distal, repressive, and mixed (Fig. 1d;

S2f-1; SOM/C.3.4.1). Next, combining the co-association scores from all focus-factors

across different contexts provides an overall view of all the primary partners of each TF in

the form of a primary-partner matrix (PPM, Fig. S2f-4). The RIM reflects the overall

similarities in the binding context of focus factors, whereas the PPM highlights the specific

factors that tend to co-bind with each other (mutual primary partners). To some degree, one

can see the PPM as a subset of the relationships implicit in the RIM. That is, two factors can

have similar binding contexts without explicit co-association - e.g., two factors that tend

both to bind promoters but near different sets of genes. Overall, the PPM shows well-known

sets of co-associated TFs, such as FOS-JUN (the AP1 complex30,31) and CTCF-RAD21-

SMC3 (the cohesion complex32,33), as well as many novel co-associations, such as CHD2-

ZBTB33, EGR1-ZBTB7A, and ZNF143-CTCF-SIX5 (SOM/C3.6.2). We confirmed one

novel co-association (CEBPB-TAL1) using co-immunoprecipitation and mass spectrometry

(Table S3a).

Variability Map

The variability map shows the degree of variability in the partners of a given TF over

contexts (as determined by the co-association score). For instance, Fig. 1e shows that

GATA1 has mostly the same partners in many contexts (e.g., TAL1 and GATA2 are

partners over almost all contexts). However, a few partners (e.g., JUND) are present in only
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some contexts. An extreme example is FOS, which completely changes its partners in

different contexts (Fig. 1e, S2l-2 and SOM/C.3.6.1).

Relating Co-association to Cell-type and Genomic Location

Cell-type Differences

We analyzed TF co-association in the 5 main ENCODE cell types (SOM/C.3.4). The

GM12878 and K562 cell-lines have the most (31) common TF datasets (SOM/C.3.5).

Comparative analysis showed that over 80% of the TF pairs had no significant change in co-

association between K562 and GM12878. However, there were a few dramatic examples of

cell-line differences. For instance, FOS and JUND co-associate in K562 but not in

GM12878 (SOM/3.5.1), despite the fact that most of the other partners of FOS are

maintained in both cell lines.

Proximal vs. Distal Differences

Overall, we found distinct partner preferences at proximal and distal sites. These results

were robust to the choice of the distance used to define proximal and distal regions (Fig.

S2c-3). In particular, for the GATA1 context, we found that RI scores change dramatically

between proximal or distal sites (Fig. 1c; S2c-3): typical core promoter TFs (e.g., POL2,

E2F6, MAX and ELF1) have a significant proximal promoter bias, while JUND, JUNB,

JUN and P300 show preferential co-association with distal sites. Another way of analyzing

differences between proximal and distal sites is in the framework of the variability map, in

which one can observe the changing partners of a TF in different contexts. For instance,

FOS has completely different partners with which it co-associates proximally and distally

(Fig. 1e; S2l-2 and SOM/C.3.6.1).

Assembling Pairwise Interactions into Hierarchies

Analysis of co-associations specifies the relationships between the DNA-binding profiles of

multiple regulators. To obtain a systems-level perspective, we recast TF associations as a

network (Fig. S4a), wherein the nodes are regulators or their targets, and the edges designate

regulatory relationships. Here, we focus on the global wiring pattern across all cell types.

We expect different subnetworks within this framework to be active to different degrees in

different cells.

Using our binding-site list, we identified an initial set of regulatory targets from genes

having promoter-proximal binding sites. The resulting raw network consists of 500,542

promoter-associated interactions between TFs and all their putative targets, of which 4,809

are between pairs of TFs (networks at encodenets.gersteinlab.org). We filtered this to

identify the most confident interactions using a probabilistic model, giving 26,070 total

interactions, with only 338 between TFs34 (SOM/D.1). We validated the performance of the

filtering using the siRNA experiments; for each case, the targets identified by our model

were more differentially expressed in siRNA-treated cells than were those identified by a

simple peak-based method (Figs. S1c-e).
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We next computed common connectivity statistics for individual TFs, namely, out-degree

(O), in-degree (I), and betweenness, which were then used to identify hubs and information-

flow bottlenecks (SOM/K). Of particular interest is the difference between out- and in-

degree (O-I), which measures the direction of information flow (Fig. S3a). A positive value

suggests that a TF is located “upstream” in the network, whereas a negative value indicates

that a TF is “downstream.” We further defined a normalized version of this “hierarchy

height” metric, h=(O-I)/(O+I). We found this can be approximated by 3 levels (Fig. S3c),

with top-level, “executive” TFs regulating many other factors (h ~ 1), and bottom-level

“foreman” TFs more regulated than regulating (h ~ −1). For purposes of visualization, we

used a simulated-annealing procedure to optimally and robustly arrange the 119 TFs into 3

discrete levels (with the number of downward-pointing edges maximized) (Fig. 2a, SOM/D.

2).

Layering on Distal, ncRNA and Protein Interactions

The filtered TF hierarchy consists of the strongest promoter-associated interactions.

Building upon this skeleton, we added additional types of connections.

Interactions involving distal regulatory elements (e.g., enhancers) are more difficult to

identify than those involving proximal elements. Here, we employed a statistical model 35.

This identifies distal sites with potentially many binding TFs using chromatin features.

These regions were associated with a gene if their changing pattern of chromatin marks

across cell lines correlates with the expression of that gene (SOM/E.1). Overall, the model

identified 19258 distal edges (Fig. 2a).

The regulatory interactions between TFs and ncRNAs constitute an additional layer of

information to add to the meta-network. We used TF peaks proximal to ncRNAs to identify

TF-to-ncRNA regulation. Next, we incorporated miRNA-to-TF regulatory interactions from

TargetScan36 (SOM/E.2). Finally, we incorporated physical protein-protein interactions26,

as well as predicted phosphorylations (SOM/F.3 and Fig. S7a). Overall, these different

interactions form a dense meta-network that was further analyzed for interesting biological

properties.

Relating Network Connectivity and Genomic Properties

We next correlated measures for the connectivity and hierarchical position of each TF with a

wide variety of genomic and proteomic properties (Fig. 2c, Tables 1 and S4, p-values in the

later).

Correlations with Distal Edges

Distal edges have a different degree distribution than do proximal edges (Figs. 2a and S5).

Inspection reveals that many point upward in the TF hierarchy, opposite to most proximal

edges. Furthermore, we found many TFs with low in-degree in the proximal network but

high in-degree in the distal one, suggesting that they are heavily regulated through enhancers

(Fig. S5a). Some of these are well known condition- and tissue-specific regulators (e.g.,

IRF4 and GATA1)37.
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Correlations within the Proximal Network

Upper-level TFs tend to have more targets than lower-level ones, both overall and when

considering only other TFs as targets. As measured by betweenness in proximal regulation,

middle-level TFs form information-flow bottlenecks (Fig. 2c). Moreover, betweenness in the

proximal TF network is correlated with more distal regulation. This tends to increase the

information flow through mid-level bottlenecks even more. (See SOM/F.3.6 for clarification

on implications.)

Correlation with Protein Interactions and the Phosphorylome

We found that top-level TFs tend to have more partners in the protein-interaction network

than do lower-level TFs (Figs. 2c and S4e and Table 1). We further studied how TFs in

different levels are regulated by kinases. Though there is no significant difference in terms

of the number of kinases regulating TFs at different levels, we found that if the

phosphorylome is arranged into a hierarchy using the same approach used for organizing the

TF network, kinases at the bottom tend not to phosphorylate TFs, but they tend to be

regulated by them (particularly by top-level TFs; Fig. S7).

Correlation with ncRNAs

We found that top- and middle-level TFs have the highest total number of ncRNA targets

(Figs. 2c, S6a and Table 1), consistent with our findings for protein-coding targets. We then

developed a score indicating the fraction of a TF's total regulation devoted to ncRNAs,

relative to protein-coding genes (SOM/E.2); this identified several TFs that preferentially

target ncRNAs, such as BDP1 and BRF2 (Figs. S6b,c).

Matching the pattern for ncRNAs in general, most of the TFs involved in miRNA regulation

tend to be top- or middle-level TFs (Fig. 2c). Moreover, highly connected TFs tend to

regulate more miRNAs and to be more regulated by them (Table 1 and Fig. 2b). However,

when we analyze TF-miRNA regulation in detail we find that the TFs most involved in

miRNA regulation tend to either largely regulate or be regulated by miRNAs (Fig. 2b, S4d).

That is, there are few high-degree TFs with “balanced regulation” (similar numbers of

incoming and outgoing edges, relative to a control; Fig. S3m). The same pattern can be seen

for miRNAs (Fig. S3l).

Correlation with families and functional categories

Chromatin-related factors are enriched at the top of the hierarchy, while TFSSs are enriched

in the middle (Table S5a and SOM/F.1). Also, TFSSs exhibit a greater degree of tissue-

specificity and are more highly regulated by miRNAs than are general and chromatin related

factors (SOM/F.4), suggesting they may be more finely tuned in their expression. Examining

functional enrichment, we found that TFs on the top tend to have more general functions,

and TFs on the bottom tend to have more specific functions (Table S5c and SOM/F.1).

Correlation with Network Dynamics

We studied how TFs change their binding patterns among different cell types, principally

K562 vs. GM12878. We quantified the amount of “rewiring” as the fraction of unshared
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targets, normalized by the union of two target sets (SOM/F.3.5). We found that this

“rewiring score” is negatively correlated with hierarchy height (Fig. 2c and Table 1). This

means that the targets of lower-level TFs tend to change more between cell types, consistent

with their role in more specialized processes.

Correlation with Gene Expression

We calculated the average expression levels of TFs across 34 tissues26; highly connected

TFs tend to be highly expressed. We further examined the relationship between connectivity

and expression by calculating, for each TF, the correlation between its binding signal around

its targets and the level of target expression (SOM/F.3.4). This binding-expression

correlation is positively correlated with TF connectivity. Moreover, TFs at the top and

middle levels exhibit a greater correlation. Thus, more “influential” TFs tend to be better

connected and higher in the hierarchy. (This degree of “influence” becomes even clearer

when one considers weighting the correlation by the number of TF targets, given that

higher-level TFs tend to have more targets.) However, somewhat surprisingly, a model

integrating the binding-expression relationships of all the highly connected TFs has about

the same predictive power for expression as a model integrating all the less connected ones,

indicating that the weak binding-expression relationships of the less influential TFs are

collectively quite influential (SOM/F.3.4)38.

Collaboration between Hierarchy Levels

We explored how TFs in the top, middle, and bottom (T, M, and B) levels of the hierarchy

collaborate, in terms of both inter- (TM, MB, TB) and intra- (TT, MM, BB) level

relationships (Fig. 3a). We examined three kinds of collaboration: co-association (as

described earlier), physical interactions , and target-expression cooperativity. We defined

two TFs as being cooperative if their shared targets are significantly different in expression

from their unshared targets (SOM/G.2). Overall, we find that collaborations involving the

middle (and to lesser, extent the top) levels tend to be enriched. In particular, TM and MM

TF pairs influence gene expression cooperatively. Next, all co-associations involving top-

and middle-level TFs are enriched, whereas those involving the bottom level are depleted. A

similar pattern is observed for protein-protein interactions, with TT and TM co-regulation

more likely to occur between physically interacting TFs (Fig. 3a and SOM/G.1).

Finally, we analyzed how proximal and distal sites “collaborate”. We identified pairs of TFs

that bind to the promoter and distal regulatory regions of the same target gene (SOM/G.3)

and studied their respective locations in the TF hierarchy. We found an asymmetry between

proximal and distal regulation, with TFs associated through promoter regulation more likely

to reside in upper levels (Fig. 3b).

Enriched Network Motifs

Apart from its global structure, we further studied the network from the perspective of its

constituent building blocks - i.e., network motifs, which are small connectivity patterns that

carry out canonical functions39. We systematically searched for motifs, first in the promoter-

regulation hierarchy and then in the meta-network including distal, miRNA, and protein-
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protein interactions. Our procedure was to instantiate all possible motifs for broad “template

patterns” and then determine which of these were significantly over- or under- represented

relative to a random control40 (SOM/H). For instance, starting with all possible “3-TF

motifs” in the proximal network (Fig. 4a), we found the most enriched motif to be the well-

studied feed-forward loop (FFL)39. In agreement with the observed collaborations within the

hierarchy, many FFLs involve the middle level (Fig. S9a). Moreover, by analyzing the

expression levels of the constituent genes of the FFLs over many tissues, we found many

were positively correlated, highlighting the tight regulation implicit in the motif (Fig. 4a and

SOM/H.1). Finally, we found further enriched 3-TF motifs containing an additional

regulation on top of that in a FFL. This creates a mutual regulation between a pair of TFs,

instantiating a toggle-switch, which has been shown to play an essential role in cell-fate

determination41.

Next, we analyzed another template: all possible multiple-input modules (MIMs, defined in

SOM/K) involving promoter and distal regulation and a protein-protein interaction

(proximal-distal-PPI MIMs, Fig. 4b). We found that co-regulating TFs are likely to

physically interact, suggesting that they work together as a complex. Moreover, the motif

ranking second in enrichment consists of a distal regulatory relationship, a promoter

regulatory relationship, and a protein-protein interaction. This is suggestive of a common

picture of DNA looping, with an interacting complex of TFs binding to the promoter and

enhancer simultaneously.

The connection between co-regulated entities extends to miRNA regulation. We survey all

possible instances of a miRNA regulating two TFs (“miRNA-SIM,” Fig. 4c) and find that

the miRNAs are more likely regulate a pair of physically interacting TFs. This enrichment

suggests that, in order to avoid unwanted cross-talk, a miRNA tends to shut down an entire

functional unit (i.e., TF complex) rather than just a single component. Similarly, we found

that miRNAs tend to target a pair of TFs binding both proximally and distally (Fig. 4c). This

suggests that miRNA represses the expression of both promoter and distal regulators in

order to completely shut down a target. Apart from miRNAs, we also studied motifs

involving other kinds of ncRNAs. Amongst motifs involving a TF regulating two ncRNAs

(“TF-ncRNA-SIM”), there is great enrichment for both ncRNAs to be lincRNAs (SOM/H.

2).

Finally, we found the network to be enriched for auto-regulators (28 of 119 TFs), a simple

but important motif, which are commonly found in networks exhibiting multi-stability42.

Moreover, we found that the auto-regulators tend to be repressors, representing a well-

known design principle for maintaining steady state39 (Fig. 4d).

Allelic Behavior in a Network Framework

We examined the relationship between sequence variation and TF regulation. In particular,

we investigated the coordination between allele-specific binding and expression (ASB and

ASE)43,44. We used the sequenced datasets for GM12878, which has a deeply sequenced

diploid genome (SOM/I.1). We extended pairwise analysis of allele-specific behavior20 to

study higher-order coordination of multiple TFs regulating a common target. We first
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generated the unfiltered, promoter-regulation network for GM12878 and then identified a

sub-network within it with 4,798 TF-target edges showing allele-specific regulation (SOM/I.

2). This subnetwork is shown in Fig. 5a, where edges are colored red or blue to represent

predominantly maternally or paternally regulated targets; the targets are similarly colored to

indicate predominantly maternal or paternal expression. We find that of the 4,798 ASB cases

of a single TF regulating its associated target, 57% show coordinated allelic binding and

expression. We then find that for the cases in which two TFs regulate a common target, 63%

are consistent (i.e., both TFs bind to the same allele that is expressed). For those cases in

which triplets of TFs regulate a common target, the consistency increases to 65%. This trend

continues, demonstrating that, as one increases the degree of combinatorial regulation, there

is a progressively stronger relationship between expressed and regulated alleles.

The degree of allele-specific behavior of each TF can be quantified by a statistic we call

“allelicity”. The allelicity of a TF is defined as the fraction of SNPs that exhibit ASB out of

all the SNPs that may potentially exhibit it (SOM/I.3). Thus, qualitatively, allelicity may be

thought of as the sensitivity of a TF's binding to maternal-vs-paternal variants. Using our

network described here, we find that TFs with higher degrees of allelicity tend to have more

target genes, suggesting that less specific TFs tend to vary more in their binding with

sequence (Table 1). Finally, and somewhat intriguingly, we find that small insertions and

deletions (indels) tend to cause disproportionally more of these allelic events than do SNPs

(Table S6g).

Selection in a Network Context

Previous studies have examined the relationship between evolutionary selection and position

in the human protein-protein interaction network45. However, the analogous relationship in

the regulatory network has not yet been explored.

Selection

To address this, we first analyzed the selective pressure on both TFs and their targets. We

predominantly used non-synonymous SNP density from the 1000 Genomes Pilot21 to

determine selection amongst modern-day humans (SOM/J). We also verified our results

using other measures of selection (i.e. derived allele frequency (DAF) and the pN/pS

statistic (SOM/J). For selection over longer time scales, we calculated the ratio of non-

synonymous to synonymous substitution in human-chimp ortholog alignments (dN/dS). We

find significant negative correlation between the regulatory in-degree of target genes and

both their non-synonymous SNP density and dN/dS values (Tables 1 and S6e). Thus, target

genes regulated by more TFs are under stronger negative selection. Similarly, we find that

there is a significant negative correlation between TF regulatory out-degree and non-

synonymous SNP density (Tables 1 and S6d). We observe a consistent result with TF dN/dS

values and other measures of selection, although these are not all as statistically significant

(Table S6d and SOM/J). This shows that TFs regulating more targets tend to be under

stronger negative selection. Moreover, within the TF hierarchy, we find that TFs at the top

are under significantly stronger negative selection (Fig. 2c, Tables 1 and S6b).
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Consistent with all these results relating connectivity with constraint, we find that genes

tolerant of loss-of-function mutations46 are under weaker negative selection and have a

significantly lower total degree (I+O) than other genes (SOM/J).

Selection and Allelic Effects

Finally, we attempted to relate selection and allelic effects. We extracted TF binding peaks

in promoters and gene bodies showing ASB, and compared the selective pressure in these

against a control (binding peaks within the same regions without ASB). We find that TF-

binding peaks exhibiting allelic effects have higher SNP densities relative to the control

(Fig. 5b). Moreover, binding peaks with no allelic effects show a skew in the DAF spectrum

toward rarer SNPs, relative to ASB ones (Fig. 5b and S10c). The same trend holds true for

indels and structural variations (Figs. 5b and S10b,c). Interestingly, these results indicate

that allelic regulation appears to be under less selective constraint.

Discussion

This study provides the first detailed analysis of how human regulatory information is

organized. A number of clear design principles emerge from it. Many of these are shared

with model organisms (Table S7), demonstrating that they are general features of TF

regulation. First, we find that the connectivity and hierarchical organization of regulatory

factors is reflected in many genomic properties. For instance, top-level TFs have their

binding more strongly correlated with the expression of their targets, perhaps indicating that

they are more “influential”, as reported for model organisms47. Next, the middle-level

contains information-flow bottlenecks and much connectivity with miRNA and distal

regulation. Targeting these bottlenecks (e.g., by drugs) is likely to most strongly affect the

flow of information through regulatory circuits. To some degree, the cell mitigates the effect

of bottlenecks by having pairs of middle-level TFs collaborate in regulation. (Co-regulation

reduces the degree of “bottleneckness”.) Third, the regulatory network appears to be built

from repeated reuse of small, modular motifs. In particular, regulation between levels

involves many feed-forward loops, which could be used to filter fluctuations in input

stimuli. Again, these properties are shared with model organisms; the network motifs and

cooperating middle-level have been observed in yeast48.

In contrast, the differences in proximal and distal regulation appear to be a unique feature of

human regulation. This finding is evident in the analysis of both TF co-association and

network structure. The proximal-distal differences reflect the much larger intergenic space

in humans than model organisms and the commensurately larger amount of distal binding.

Finally, analysis of conservation indicates that more highly connected parts of the network

are under stronger selection, consistent with results from model organisms. However, one

unique finding for humans is the “allelic” effects. More highly connected TFs are more

likely to exhibit allele-specific binding. Interestingly, we found that the actual allele-specific

binding sites tend to be under less selection. Unraveling this interplay between selection and

regulatory networks will be crucial to interpreting variants in the many personal genome

sequences expected in the future.
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Methods Summary

Detailed methods associated with each section of the paper are in a similarly titled section of

the Supplementary Online Material (SOM); see SOM Table of Contents and overview

(SOM/A). In particular, an overview of our data processing pipeline is in SOM/B.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. TF Co-association
(a) The co-binding map for the GATA1 focus-factor context in K562 shows the binding

intensity of peaks of all TFs in K562 (rows) that overlap each GATA1 peak (columns). The

colored rectangles represent 8 key clusters consisting of different combinations of co-

associating partner-factors.

(b) The GATA1 context-specific relative importance scores (RI) of all partner-factors (top)

and the matrix of co-association scores (CS) between all pairs of TFs (bottom). Primary and

local partners of GATA have high RI scores. The co-association score matrix captures the 8

clusters observed in (a).

(c) Different partner-factors are preferentially enriched at gene-distal (positive differential

RI) and proximal (negative differential RI) GATA1 peaks.

(d) The aggregate factor importance matrix, obtained by stacking the RI of all partner-

factors (columns) from all focus-factor contexts (rows) in K562, shows 9 functionally

distinct clusters (C1 to C9) of contexts that can be broadly grouped as distal, proximal,

mixed, and repressive. The blue rectangles highlight representative partner-factors with high

RI in the clusters. The arrow from (b) to (d) indicates that the GATA1 context-specific RI

scores form one row in this matrix.

(e) Co-association variability map of partners (columns) of GATA1 (left panel) and FOS

(right panel) over all K562 focus-factor contexts (rows). TAL1 and GATA2 show

consistently high CS with GATA1 over most focus-factor contexts, but JUND shows

context-specific co-association. FOS shows dramatic changes in CS of partner-factors over

different contexts (e.g. FOS-JUND in distal contexts and FOS-SP2 in proximal ones).

(More details in Fig. S2c, S2f-1, S2d, S2l-2.)
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Figure 2. Overall Network
(a) Close-up of the TF hierarchy. The nodes depict the TFs: TFSSs are triangles, and non-

TFSSs are circles. At the left we show the proximal-edge hierarchy with downward pointing

edges colored in green, and upward pointing ones colored in red. The nodes are shaded

according to their out-degree in the full network (as described in Table 1). The right part

shows the TFs placed in the same proximal hierarchy but now with edges corresponding to

distal regulation colored green and red, and nodes recolored according to out-degree in the

distal network. We see that the distal edges do not follow the proximal-edge hierarchy.

(b) Close-up of TF-miRNA regulation. The outer circle contains the 119 TFs, while the

inner circle contains miRNAs. Red edges correspond to miRNAs regulating TFs; green

ones, TFs regulating miRNAs. TFs and miRNAs each are arranged by their out-degree,

beginning at 12 o'clock and decreasing in order clock-wise. Node sizes are proportional to

out-degree. For TFs, the out-degree is as described in Table 1; for miRNAs, it is according

to the out-degree in this network. Red nodes are enriched for miRNA-TF edges and green

nodes are enriched for TF-miRNA edges. Gray nodes have a balanced number of edges

(within ±1).

(c) Average values of various properties (topological, dynamic, expression-related, and

selection-related -ordered consistently with Table 1) for each level are shown for the

proximal-edge hierarchy. The top, middle, and bottom rows correspond to the top, middle,

and bottom of the hierarchy, respectively. The sizing of the grey circles indicate the relative

ordering of the values for the three levels. Significantly different values (P<0.05) using the

Wilcoxon-rank-sum test are indicated by black brackets. The proximal-edge hierarchy

depicted on the right shows non-synonymous SNP density, where the shading corresponds

to the density for the associated TF.

(More details in Fig S4.)
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Figure 3. Collaboration between Levels
(a) Enrichment of collaborating TF pairs from different levels (T,M,B). The TFs are

represented by two nodes below each bar graph. The dashed orange line indicates the

expected level of collaboration. Significant enrichment above or depletion below that level

are marked by asterisks (P<0.05). (More details in SOM/G.1,2.)

(b) Enrichment of proximal and distal co-regulatory pairs in the network hierarchy. Co-

regulatory pairs from different levels are shown by the two nodes below each bar.
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Figure 4. Motif Analysis
Motifs are accompanied by the occurrence frequency, N. Enriched motifs are highlighted in

green, and depleted ones, in red. An occurrence frequency with a star means that the

corresponding enrichment/depletion is statistically significant (P=1e-5). The motifs are

sorted such that those at the ends have more significant p-values. (More details in Fig. S9h.)

(a) Systematic search of 3-TF motifs. The most enriched motif is the FFL. A particular

example formed by STAT1, STAT3 and RUNX1 is highlighted. Here, the “+” sign on an

edge indicates that the correlation between the gene expression of the source and the target

across tissues is positive. Other motifs containing a toggle-switch regulation on top of the

basic FFL design are also indicated.

(b) Proximal-Distal-PPI MIMs. Here we searched all motifs involving the co-regulation of

two TFs (which could be either proximal or distal) with (or without) a protein-protein

interaction between them. We found the motifs containing the protein-protein interaction

tended to be enriched.

(c) miRNA-SIMs. This figure shows the 2 enriched motifs resulting from enumerating all

motifs in which a miRNA targets two TFs that are connected in various ways. These 2

motifs contain a protein complex of 2 TFs and a cooperative pair of promoter and distal

regulatory TFs.

(d) The auto-regulator motif is enriched in the TF-TF network: 28 of all TFs are auto-

regulators. Moreover, auto-regulators are more likely to be repressors (-) relative to non-auto

regulators, and they tend to have more ncRNAs as their targets.
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Figure 5. Allelic Effects
(a) An “allelic effects network” depicting the increasing coordination between ASB and

ASE as the number of TFs regulating a target increases. Central white nodes denote TFs,

and peripheral nodes denote targets, which are blue (red) if they are expressed from the

paternal (maternal) allele. Blue (red) edges denote ASB to the paternal (maternal) allele.

This network represents the strongest differences between the paternal- and maternal-

specific regulatory networks. As one goes around the larger circle counterclockwise

(clockwise), each of the small circular clusters represents targets with progressively more

paternal (maternal) regulation, indicated by the small blue (red) numbers to the side of the

clusters. Moreover, within each of the clusters the fraction of predominantly paternally

(maternally) expressed targets increases as one goes around the larger circle. As an

illustration, this fraction is explicitly indicated by the ratios within three of the larger clusters

at bottom right.

(b) Relationship between TF allelicity and selection. The bar height is the ratio of the degree

of selection (as measured by SNP density or average DAF) in those TF-binding peaks

showing allelic behavior to the degree of selection in all other TF-binding peaks. Asterisks

represent significant differences (P<0.05, Wilcoxon-rank-sum test).

(More details in SOM/I.2 and Fig S10b,c.)
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Table 1

Correlating Properties with Centrality and Hierarchy Height

Category Property Correlation with

Degree centrality^ Betweenness centrality O − I
O + I

Full TF-TF Full TF-TF TF-TF

Topology # of TF partners in PPI 0.28** 0.27** 0.25* 0.33** 0.08

# of miRNA regulators 0.24* 0.33** −0.02 0.00 0.29**

# of ncRNA targets 0.65** 0.49** 0.34** 0.35** 0.22*

# of miRNA targets 0.62** 0.50** 0.33** 0.34** 0.19*

# of distal targets 0.32** 0.24* 0.19* 0.23* 0.07

Dynamics Amount of rewiring −0.14 −0.12 0.44* 0.35 −0.42*

Expression Expression level 0.14 0.12 0.23* 0.27* −0.04

Binding-exp. corr. 0.41** 0.31** 0.30** 0.36** 0.19*

Selection properties for factors ns SNP density −0.19* −0.27* −0.01 −0.03 −0.22

Allelicity 0.20 0.28* −0.10 −0.16 0.18

Selection properties for targets ns SNP density −0.05**

dN/dS −0.05**

Spearman correlation values of various properties (topological, dynamic, expression-related, and selection-related) with centrality measures and
hierarchy height (h). Only properties which are significantly correlated with centrality or h are listed (* for P<0.05 and ** for P<0.01). For a full set

of properties, p-values, and explanations, see Tables S4 and S6. Degree centrality (note ^) refers to out-degree, except for selection properties on
targets, in which case it refers to in-degree. In particular, out-degree in the full TF-target network refers to the “Targets” column in Table S4a, and
the same quantity is used throughout Fig. 2.
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