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Introduction
Heat waves have been linked to increased 
risk of mortality, hospital admissions, heat 
stroke, heat exhaustion, and cardiovascular 
and respiratory diseases (Anderson and Bell 
2009; Gasparrini and Armstrong 2011; Kovats 
and Ebi 2006; Kovats and Hajat 2007). Heat 
wave and health warning systems (HHWSs) 
are preparedness plans designed to reduce heat-
related adverse health effects, and can help 
raise awareness among populations vulnerable 
to extreme heat. HHWSs have been estab-
lished to issue heat advisories to the public 
based on weather forecast data in many cities 
in the United States and elsewhere (Kovats and 
Ebi 2006). Several triggers for HHWS algo-
rithms have been proposed and implemented, 
as reviewed by Zhang et al. (2012), including 
absolute or relative temperature thresholds, the 
heat index, physiologically based discomfort 
classifications, temperature–mortality relation-
ships derived from epidemiologic analysis, 
and spatial synoptic classification. The latter 
two methods use local heat–mortality asso-
ciations derived from observed death counts 
and historical weather observations and then 
predict mortality risks for the next few days 

by linking these developed heat–mortality 
associations with weather forecasts. These 
analyses treat weather forecasts exactly the 
same as weather measurements when they 
use forecasts to issue heat alerts. Recently, 
Henderson and Kosatsky (2012) defined 
4 days during 2005–2009 as heat health emer-
gencies, first by examining the coincidence 
of extreme temperature days and extreme 
mortality days using archived data from a 
coastal airport and an inland airport in the 
Vancouver metropolitan area, Canada, and 
then by evaluating the predictive ability of heat 
alerts based on forecast data with different lead 
times. Henderson and Kosatsky (2012) found 
that the accuracy of heat alerts predicted by 
forecasted temperatures varied with lead time 
and geographical areas compared with those 
predicted by observed temperatures.

We know that forecast data vary in quality 
for different weather parameters. For example, 
temperature usually has a more accurate 
forecast than dew point temperature (DPT) 
(Werth and Garrett 2011). Werth and Garrett 
(2011) compared 1 year of predictions from 
the Global Forecast System (GFS) (a global 
numerical forecast model system) to nearly 

12,000 ground stations, and reported that 
typical root mean square errors (RMSEs) were 
3°C for air temperature and 3.5°C for DPT.

This is an important question for the 
design of HHWS because the use of the 
forecast parameters with performance most 
comparable to the observed weather in asso-
ciation with mortality to trigger public health 
interventions would be preferred.

The objective of this study was to investi-
gate how well forecast models reproduce heat 
waves seen in the observations from Detroit, 
Michigan, using one definition of heat wave 
and the impacts of weather forecast quality on 
heat–mortality associations. Previous studies 
on heat–mortality associations in Detroit have 
reported that hot weather is significantly associ-
ated with excess mortality in this city, and heat 
has a disproportionate burden on people who 
have diabetes, are less educated, or are black—a 
disparity that could be explained in part by 
unequal access to home air conditioning 
(O’Neill et al. 2003, 2005; Schwartz 2005).

To inform our analysis, we followed the 
suggestion of Gasparrini and Armstrong 
(2011) to classify the estimated effects of 
temperature on mortality into two parts: a) the 
“main effect,” defined as the estimated inde-
pendent effect attributed to daily temperature, 
and b) the estimated heat wave effect associ-
ated with heat waves lasting for ≥ 2 days. Here 
we refer to the “main effect” and “heat wave 
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Background: Heat wave and health warning systems are activated based on forecasts of health-
threatening hot weather.

Objective: We estimated heat–mortality associations based on forecast and observed weather data 
in Detroit, Michigan, and compared the accuracy of forecast products for predicting heat waves.

Methods: We derived and compared apparent temperature (AT) and heat wave days (with heat 
waves defined as ≥ 2 days of daily mean AT ≥ 95th percentile of warm-season average) from weather 
observations and six different forecast products. We used Poisson regression with and without 
adjustment for ozone and/or PM10 (particulate matter with aerodynamic diameter ≤ 10 μm) to 
estimate and compare associations of daily all-cause mortality with observed and predicted AT and 
heat wave days.

Results: The 1-day-ahead forecast of a local operational product, Revised Digital Forecast, had 
about half the number of false positives compared with all other forecasts. On average, control-
ling for heat waves, days with observed AT = 25.3°C were associated with 3.5% higher mortality 
(95% CI: –1.6, 8.8%) than days with AT = 8.5°C. Observed heat wave days were associated with 
6.2% higher mortality (95% CI: –0.4, 13.2%) than non–heat wave days. The accuracy of predic-
tions varied, but associations between mortality and forecast heat generally tended to overestimate 
heat effects, whereas associations with forecast heat waves tended to underestimate heat wave 
effects, relative to associations based on observed weather metrics.

Conclusions: Our findings suggest that incorporating knowledge of local conditions may improve 
the accuracy of predictions used to activate heat wave and health warning systems.
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effect” as “heat” and “heat wave” effects (or 
associations). We applied generalized additive 
models to multiple time series of daily all-cause 
mortality counts and weather observations or 
archived weather forecasts from six weather 
forecast products in Detroit. We then assessed 
how consistent associations between mortality 
and predicted heat and heat waves were with 
estimated effects of observed heat and heat 
waves based on the same models.

Methods
Data sources. Mortality data. We obtained 
daily all-cause mortality data from the Detroit 
metropolitan area (Wayne, Oakland, and 
Macomb counties in Michigan) in the warm 
season (1 May to 30 September) from 2002 
to 2006. Original death records were obtained 
from National Center for Health Statistics 
(NCHS) and aggregated into daily counts. The 
International Classification of Diseases, Tenth 
Revision (ICD-10), was used to classify causes 
of death for the study period (World Health 
Organization 1992). Daily total mortality 
excluded deaths from external causes (i.e., 
ICD-10 codes S through Z, which include 
injuries, poisonings, and traffic accidents, 
among others).

Observed weather data. Hourly weather 
observations at the Detroit Metropolitan 
Airport monitoring station (station name: 
Detroit/Metropolitan) were obtained from 
the National Climate Data Center (NCDC 
2010) in the study period. We then calculated 
maximum and minimum temperatures, dew 
point temperature, and apparent tempera-
tures (AT) for each day in the time period 
and averaged the maximum and minimum 
ATs on each day to derive a daily average AT 
measure. ATs were derived using the standard 
formula previously reported (Zanobetti and 
Schwartz 2008).

We chose to use AT in this study because 
AT includes temperature and humidity infor-
mation in a way similar to the heat index, 
and it is more easily applied than the heat 
index [which is limited to certain tempera-
ture thresholds (i.e., > 26.7°C) and relative 
humidity thresholds (i.e., > 40%)].

Forecast weather data. Weather forecast 
products are generated by postprocessing 
forecast output from several numerical 
weather prediction models using statistical 
approaches or local meteorologists’ judgments.

Model Output Statistics (MOS) products 
are generated by the National Weather 
Service’s (NWS) Meteorological Development 
Laboratory (NWS 2011). MOS products 
are “operational products,” that is, data sets 
used by forecasters in local NWS offices in 
the decision-making process to provide real-
time weather forecasts. The MOS products 
are calibrated forecast outputs to bridge the 
gap between the original outputs of numerical 

forecast models and the observations in the 
NWS monitoring network (NWS 2011). This 
calibration is usually implemented by building 
multiple linear regression models that are based 
on historical weather observations and forecast 
outputs. Thus, the MOS products provide 
forecasts of weather variables by combining 
physically based numerical models and statis-
tical models. MOS is also used to downscale 
weather predictions at a grid to local stations. 
Three major types of MOS products exist: the 
GFS, the Nested Grid Model (NGM), and 
North American Mesoscale model (NAM, 
formerly called the Eta model). GFS is a global 
numerical forecast model system operated 
by the National Centers for Environmental 
Prediction (NCEP) of the National Oceanic 
and Atmospheric Administration (NOAA) 
(NCEP 2007). It produces forecasts every 6 hr 
at horizontal grid lengths ranging from 35 km 
to 70 km. NGM is a numerical model run by 
NCEP, which produces forecasts twice per day. 
It uses an 80-km resolution grid over North 
America and a 160-km resolution grid over 
the oceans; however, NGM forecasts are no 
longer produced. NAM is a regional numer-
ical weather prediction model and generates 
forecasts every 6 hr/day at a 12-km resolution.

The Revised Digital Forecast (RDF) data 
are an operational forecast product produced 
by local meteorologists according to the 
outputs of numerical weather models and 
MOS models, their judgments, in addition 
to other information such as weather sound-
ings (R. Pollman, personal communication). 
Local meteorologists usually make a decision 
regarding issuing a heat alert by considering 
many factors, including predictions from 
numerical forecast models, MOS products, 
and other forecast products as well as their 
local knowledge and others (Pollman  R, 
personal communication).

Six different weather forecast products 
were obtained for the 2002–2006 study 
period. We first obtained five MOS products 
to represent these three model types and 
short-range/long-range forecasts, namely: the 
GFS-based short-range MOS forecast product 
(MAV: 6–72 hr in advance for most weather 
parameters), GFS-based extended-range MOS 
forecast product (MEX: extended range, 24 
and 192 hr), and GFS-based ensemble MOS 
forecast product (ENS), NGM-based MOS 
forecast product (FWC), and NAM-based 
MOS forecast product (MET). In addition, we 
had access to the RDF product and extracted 
one archived local forecast data set (station 
name: KDTX, Detroit/White Lake, MI) 
from RDF retained by the NCDC (2011). 
Forecast products include forecasts of three 
durations: 1-, 2-, and 3-day forecasts. Thus, we 
had 18 predictions on a given day (predictions 
of three different durations multiplied by six 
forecast products).

Air pollution data. Increases in daily air 
pollution concentrations have been associated 
with increases in mortality, and air pollution 
levels often covary with weather conditions. 
Therefore, we wanted to include air pollution 
concentrations in the models. Daily concen-
trations of ozone (O3) and particulate matter 
with aerodynamic diameter ≤ 10 μm (PM10) 
were obtained from the U.S. Environmental 
Protection Agency’s Aerometric Information 
Retrieval System (AIRS) monitoring network 
(http://www.epa.gov/ttn/airs/airsaqs/). Because 
the number and location of operating monitors 
can vary from day to day, daily mean concen-
trations in the Detroit metropolitan area were 
derived employing an algorithm previously 
used in air pollution epidemiological studies 
(Schwartz and Zanobetti 2000).

Preparation of the combined data set for 
analysis. We merged mortality data, weather 
observations, forecasts, and air pollution 
data by date. For both observed and forecast 
data, we defined a heat wave indicator as 
periods of ≥ 2 consecutive days with daily 
mean AT ≥ 95th percentile of the observed 
or predicted summertime distribution 
(1 May–30 September) determined separately 
for each year.

We used SAS (version 9.2; SAS Institute 
Inc., Cary, NC) to extract daily data from 
forecasts and observations and to calculate 
biases (predictions minus observed values) 
on a daily basis and summarized biases using 
average root mean squared errors.

Statistical approach. We quantified 
forecast product performance in identifying 
heat waves by calculating “false-positive” and 
“false-negative” days. False-positive days were 
days when a forecast product predicted a heat 
wave day that did not occur (based on the 
observed data). False-negative days were days 
when a forecast product failed to predict a heat 
wave day that did occur.

We employed generalized additive 
models (GAMs) to model mortality counts 
as a function of the continuous AT metrics 
and indicator variables representing heat 
waves. This was done across weather obser-
vations and forecasts in the warm-season 
(1 May–30 September) study period. GAMs 
are commonly used in air quality and air 
pollution/heat epidemiology studies where 
seasonal patterns in outcome variables 
(e.g., mortality) and nonlinear associations 
between health outcomes and, say, tempera-
ture, require additional modeling flexibility 
(Anderson and Bell 2009; Gasparrini and 
Armstrong 2011; Schwartz and Zanobetti 
2000; Zhang and Batterman 2010). GAMs 
have the ability to characterize nonlinear 
relationhips between an independent variable 
and a dependent variable using parametric and 
nonparametric smoothing functions (Hastie 
and Tibshirani 1990).
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Separate GAMs were fit to estimate 
associations between daily mortality counts 
(the outcome variable) and daily average AT 
metrics derived from weather observations and 
from the different forecast products with three 
lag periods. We simultaneously included daily 
AT (as a continuous variable), to estimate the 
effect of heat, and an indicator variable for 
heat wave days (HWt = 1 if day t was classi-
fied as part of a heat wave, 0 otherwise), to 
estimate the effect of heat waves. We assumed 
daily death counts followed an overdispersed 
Poisson distribution and modeled them as

Log [E(Yt)] = 	α + β DOWt + γYEARt  
	 + S(ATt,t–1) + S(Tt) 
	 + ηHWt, � [1]

where E(Yt) is the expected daily mortality 
counts on day t; α is the intercept; DOWt is 
a set of indicator variables for day of the week, 
and β is a vector of coefficients; YEARt repre-
sents a set of indicator variables indicating 
calendar year to account for interannual vari-
ability, respectively, and γ is a vector of coef-
ficients; ATt,t–1 is the average of the daily mean 
AT on day t and on the previous day [contin-
uous, modeled as a spline function (S) with 
6 degrees of freedom (df)]. We created several 
time series of AT for any combination of a 
forecast product and a lag period, for example, 
the time series of AT based on 1-day-ahead 
RDF consist of all ATs based on the RDF fore-
casts produced 1 day in advance; Tt represents 
day of year (T = 1, 2… 365, spline function 
with df = 5) to account for seasonality; and η 
is the coefficient for the heat wave indicator 
variables. GAMs were fit using the “mgcv” 

R package (version 1.7–6) (Wood 2008) 
in the R statistical software (R Project for 
Statistical Computing; http://R-project.org). 
The parameters specifying the distribution of 
death counts were assigned by quasi-Poisson 
distributions to account for overdispersion.

We modeled AT–mortality associations 
and summarized heat effects by estimating the 
percentage difference in mortality associated 
with a given AT change. To facilitate compar-
isons across observations and forecasts, we 
used the GAMs described above to estimate 
the percentage difference in mortality on days 
with observed or predicted daily mean AT 
averaged over the same day and the previous 
day (ATlag01) of 25.3°C compared with 8.5°C 
for all data sets (observed and forecast). These 
temperature references represent the 90th and 
50th percentiles of the observed daily mean 
AT distributions during 2002–2006, and 
they are consistent with the percentiles used 
by Anderson and Bell (2009). We considered 
a p-value < 0.05 to be statistically significant.

We conducted sensitivity analyses to 
examine whether estimated heat and heat 
wave effects differed when adjusted for O3 (on 
the same day), PM10 (on the previous day), or 
O3 and PM10 concentrations. We modeled 
both air pollutants using splines with 4 df, and 
selected the lag periods previously reported to 
have the strongest associations with mortality 
(Anderson and Bell 2010).

Results
Descriptive statistics. Table 1 shows the RMSEs 
of daily average temperature, DPT, and AT 
metrics for each forecast product relative to 
the observed values. In general, for all products 

except MEX and ENS, RMSEs for all three 
weather parameters were lowest for predic-
tions based on 1-day forecasts, and highest for 
predictions based on 3-day forecasts. The MAV 
forecast product produced the most accurate 
temperature and DPT predictions for all three 
forecast lengths, with 3-day predictions that 
were > 0.5°C closer to the observed values 
than predictions based on the other forecast 
products. The most accurate AT predictions 
were based on 1- and 2-day forecasts for MET, 
and 3-day forecasts for MAV. Not surprisingly, 
AT had the largest biases, followed by DPT, 
and temperature in general. We excluded the 
MEX and ENS products from further analysis 
because they had larger errors in 1-day fore-
casts compared with 2- and 3-day forecasts. 
The larger errors suggest some error charac
teristics in the 2- and 3-day forecast systems 
because forecasts typically have smaller errors 
with shorter lead time to issue forecasts. These 
systems were thus not appropriate for our 
application, focused on typical forecasts.

Table 2 compares numbers of heat wave 
days predicted by each forecast with the 
numbers of observed heat wave days, with 
heat waves defined as ≥ 2 consecutive days 
with daily mean AT ≥ 95th percentile. (The 
number of heat wave alerts or warnings that 
were issued by the local NWS office during 
the study period differed from the number 
of heat wave days defined according to the 
criteria above.) The number of predicted heat 
wave days varied from 11 days (based on the 
3-day RDF forecast) to 22 days (based on 1- 
and 2-day FWC forecasts, and on the 2-day 
RDF forecast). For 1-day forecasts, which are 
more likely to be used to trigger a warning, all 

Table 1. Daily mean biases (average RMSEs) for TMP, DPT, and AT relative to observed values.

Forecast product

1-Day 2-Day 3-Day

TMP DPT AT TMP DPT AT TMP DPT AT
FWC 1.35 1.49 2.22 1.61 1.76 2.37 2.53 2.26 2.89
MAV 1.18 1.44 2.18 1.33 1.68 2.21 1.83 1.92 2.45
MET 1.20 1.65 2.07 1.41 1.81 2.15 2.79 2.12 3.14
MEX 2.33 2.26 2.80 1.66 1.78 2.45 1.91 2.04 2.66
ENS 2.21 2.18 2.69 1.66 1.76 2.44 2.02 2.08 2.72
RDF 1.49 1.58 2.11 1.58 1.75 2.30 2.61 2.33 3.31

Abbreviations: AT, apparent temperature; 1-day, forecast 1 day in advance; 2-day, forecast 2 days in advance; 3-day, forecast 3 days in advance; DPT, dew point temperature; TMP, 
forecast temperature.

Table 2. Heat wave days predicted by forecast products 1-, 2-, or 3-days in advance compared with heat wave days defined based on observed data, Detroit 
summers (1 May–30 September) 2002–2006.a

Observation and 
forecast products

1-Day 2-Day 3-Day

Totalb
False 

positivec
False 

negatived Correct Total
False 

positive
False 

negative Correct Total
False 

positive
False 

negative Correct
Observede 14 14 14
FWC 22 12 4 10 22 12 4 10 19 10 5 9
MAV 17 9 6 8 19 7 2 12 16 5 3 11
MET 21 11 4 10 20 10 4 10 20 13 7 7
RDF 13 5 6 8 22 11 3 11 11 8 11 3

Abbreviations: 1-day, forecast 1 day in advance; 2-day, forecast 2 days in advance; 3-day, forecast 3 days in advance.
aHeat wave days were defined as ≥ 2 days where apparent temperatures were ≥ 95th percentile values of apparent temperatures determined separately for each year. bTotal number 
of identified heat wave days. cDays when the forecast product identifies heat waves that are defined as non–heat wave days in observed data. dObserved heat wave days are 
incorrectly identified as non–heat wave days by forecasts. eWeather observations in the Detroit Metropolitan Airport.
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forecast products except RDF predicted more 
heat wave days than were observed. Patterns 
for 2- and 3-day forecasts were inconsistent. 
Most notably, 2-day RDF forecasts substan-
tially overpredicted heat wave days (22 days 
compared with 14 observed during the study 
period), whereas 3-day RDF forecasts under
predicted heat wave days (11 days). Among 
all forecasts, 1-day RDF and 3-day MAV 
forecasts predicted the fewest false-positive 
heat wave days (5 days), compared with up 
to 13 false-positive days for other forecasts. 
Numbers of false-negative forecasts ranged 
from 2 (for the 2-day MAV forecast) to 
11 days (for the 3-day RDF), with similar 
numbers (4 to 6 days) for all products based 
on 1-day forecasts. One-day forecasts correctly 
identified 8 to 10 of the 14 observed heat 
wave days during the study period.

Heat effects. The observations and 
most of the forecasts generated statistically 
nonsignificant excess relative risk estimates. 
The estimated percent increase in mortality 
associated with observed ATlag01 = 25.3°C 
versus 8.5°C was 3.5% (95% CI: –1.6, 8.8%) 
(Figure 1A). Associations between mortality 
and observed ATlag01, and most of the asso-
ciations with predicted ATlag01, were positive 
but not statistically significant. Estimated asso-
ciations with predicted ATlag01 varied among 
forecast products and time frames, with most 

overestimating the excess relative risk due to 
heat effects compared with associations based 
on observed ATlag01. For example, the esti-
mated percent change in mortality based on 
ATlag01 predicted based on 2- and 3-day RDF 
forecasts was 4.0% (95% CI: –1.8, 10.2%) and 
4.3% (95% CI: –2.1, 11.1%), respectively, 
whereas the estimate based on ATlag01 predicted 
from the 1-day MAV forecast was 6.2% 
(95% CI: 0.4, 12.5%). Interestingly, estimated 
increases in mortality associated with predicted 
ATlag01 based on 2- and 3-day RDF forecasts 
(produced by the local NWS office) were closer 
to associations with observed ATlag01 than 
associations with predicted ATlag01 based on 
other forecasts. Based on the width of the confi-
dence intervals, relative risk estimates based on 
forecast ATlag01 were less precise than estimates 
based on observed ATlag01.

In general, patterns of estimated changes 
in mortality associated with observed or 
predicted ATlag01  =  25.3°C versus 8.5°C 
were similar after adjustment for ambient 
air pollution (Figure  1B–D). However, 
associations decreased in magnitude when 
adjusted for O3 only, PM10 only, or both 
pollutants, and all point estimates became 
statistically nonsignificant.

Heat wave effects. Associations between 
mortality and heat wave days versus non–heat 
wave days were statistically significant only 

for heat wave days predicted based on 1-day 
FWC forecasts (6.0%, 95% CI: 0.1, 12.2%) 
(Figure  2A). Associations with heat wave 
days classified based on observed AT were 
stronger (6.2% increase in mortality; 95% CI: 
–0.4, 13.2%) than associations with heat wave 
days predicted from forecasts, except for heat 
wave days predicted by the 3-day RDF forecast 
(6.6%, 95% CI: –1.0, 14.8%). Among all 
forecasts, associations with heat wave days 
predicted by the 1-day FWC forecast and the 
3-day RDF forecast were the closest to the 
association with observed weather. In contrast 
to the heat effects discussed earlier, the uncer-
tainty ranges (shown by width of confidence 
intervals) of the excess relative risk derived 
from all forecasts except for 1-day-ahead and 
3-day-ahead RDF forecasts were smaller than 
those from the observations. Adjusting for O3, 
PM10, or both had little influence on asso-
ciations between heat wave days and mortality 
(Figure 2B–D).

Discussion
The present study addresses an epidemiologic 
question with potentially significant impli-
cations for the design of HHWS and the 
projection of future mortality risks attribut-
able to heat and heat waves by conducting 
a case study in Detroit. The question 
was how does the performance of weather 

Figure 1. Estimated percentage difference in mortality associated with observed and forecast ATlag01 of 25.3°C compared with 8.5°C during the summertime 
(May–September) in Detroit, 2002–2006, with and without adjustment for air pollution. All models were adjusted for heat wave days, day of the week, day of the 
year, and calendar year. (A) No air pollution adjustment, (B) adjusted for same-day mean O3 concentration, (C) adjusted for mean PM10 concentration on the 
previous day, (D) adjusted for O3 and PM10 concentrations. Abbreviations: D1, forecast 1 day in advance; D2, forecast 2 days in advance; D3, forecast 3 days in 
advance; DTW, observed data.
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forecasts affect heat/heat wave–mortality asso-
ciations and the likelihood of triggering an 
alert. Previous work has not examined this 
question systematically, which is an impor-
tant omission given the increased trend of 
temperature and the growing frequency and 
severity of heat waves in a warm climate.

We explored six weather forecast products 
for Detroit derived from different algorithms 
that postprocess outputs from several numer-
ical forecast models. Two of these, MEX and 
ENS, had error characteristics that suggested 
that they should not be used. We compared 
estimated associations of mortality with heat 
and heat wave days predicted using the four 
remaining forecast products to associations 
between mortality and observed heat and heat 
wave days. Our results suggest that, although 
the local operational forecast (i.e., RDF) was 
not always the most accurate in terms of 
biases compared with weather observations, it 
generally produced the estimates of heat and 
heat wave effects closer to associations with 
observed data than other forecast products. In 
addition, it produced far fewer false-positive 
calls, and similar numbers of false-negative 
calls, for heat waves. The estimated heat and 
heat waves effects varied with the forecast 
product and issuing time frames. The choice 
of forecast product could play a critical role in 
operating an HHWS more effectively.

Among the calculated weather metrics, AT 
was predicted with the largest bias, regardless 

of the forecast product used, followed by 
DPT and temperature. Not surprisingly, the 
accuracy in forecasting DPT was lower than 
that for temperature. Temperature is the more 
robustly forecast and spatially representative 
observation, and DPT is commonly thought 
to be more difficult to predict compared with 
temperature because it is largely affected by 
local land features such as lakes and rivers. 
AT is calculated from two directly forecasted 
variables (temperature and DPT), and thus 
it results in larger errors than either tempera-
ture or DPT. MEX and ENS had larger bias 
in temperature for a 1-day-ahead forecast 
than 2- and 3-day-ahead forecasts, possibly 
because large initialization errors in the fore-
casting systems were not much reduced at the 
1-day time span.

The 1-day RDF forecast predicted the 
fewest false-positive heat wave days and an 
intermediate number of false-negative heat 
wave days compared with the other products. 
Although 1-day FWC and MET forecasts 
correctly predicted 2 more heat wave days 
than RDF, these products also predicted 6 
or 7 more false-positive heat wave days. This 
finding suggests that the 1-day RDF forecast 
is an overall better product than others to 
use in order to issue heat alerts because the 
number of “wrong” alerts would be largely 
reduced when observed weather does not 
meet the heat alert criteria. This has impor-
tant implications in risk communication 

because people do not trust heat warning 
systems if a system issues too many alerts. 
In addition, the 1-day RDF forecast had 
8  correctly identified heat wave days 
compared with the observations that were 
similar to 8 to 10 days correctly predicted by 
using other forecast products. This suggests 
that using the RDF forecast product reduced 
the number of false-positive days with 
the cost of only a relatively lower number 
of correctly identified days. Although 
2- and 3-day MAV forecasts predicted 
fewer false-negative heat wave days and 
correctly predicted more true-positive heat 
wave days than all other forecast products, 
local meteorologists pay more attention to 
the 1-day-ahead forecast and use all MOS 
products, as well as other forecast products, 
in their decision-making process for issuing 
a heat alert. Finally, this comparison across 
forecasts and weather observations high-
lighted the challenge in predicting weather 
extremes because all forecast models and post
processing adjustments are designed for esti-
mating the averages of temperature and other 
weather conditions (Lalaurette 2003).

Minor-to-significant differences of the 
estimated heat effects between forecasts and 
observations were observed across forecast 
products and time frames. Most of the forecast 
products overestimated associations between 
heat and mortality when compared with asso-
ciations based on observed heat. The forecasts 

Figure 2. Estimated percentage difference in mortality associated with observed and forecast heat wave days compared with non–heat wave days during the 
summertime (May to September) in Detroit, 2002–2006, with and without adjustment for air pollution. All models were adjusted for ATlag01, day of the week, day of 
the year, and calendar year. (A) No air pollution adjustment, (B) adjusted for same-day mean O3 concentration, (C) adjusted for mean PM10 concentration on the 
previous day, (D) adjusted for O3 and PM10 concentrations. Abbreviations: D1, forecast 1 day in advance; D2, forecast 2 days in advance; D3, forecast 3 days in 
advance; DTW, observed data.
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with the smallest biases may not necessarily 
result in the closest estimates of heat effects 
to those derived from the observations, and 
1-day-ahead forecasts did not always result 
in estimated heat effects closer to those from 
observations than 2- or 3-day-ahead forecasts, 
suggesting that more information (e.g., bias 
propagation in forecast systems) is needed to 
better understand these relationships.

Compared with heat effects, associa-
tions between predicted heat wave days and 
mortality were smaller than associations 
with observed heat wave days and mortality. 
Forecast–mortality models captured heat 
wave effects less well than heat effects because 
forecast models perform worse in predicting 
extreme weather conditions. This suggests 
that we might expect more uncertainties in 
heat wave alerts issued by HHWSs compared 
with heat advisories. Heat wave alerts are 
more severe than heat advisories. In addition, 
although the forecasts made 1 day in advance 
are expected to be closer to the observations 
than other forecasts, their estimated associa-
tions with heat waves were not closer to the 
associations with the DTW observations 
than those estimates from other forecast 
periods, possibly because of the error propa-
gation reason mentioned earlier. Overall, the 
comparison of heat/heat wave effects between 
observations and forecast demonstrated the 
importance of choice of weather forecast 
product in designing a HHWS.

Heat effects derived from both observa-
tions and forecasts were attenuated when 
models included O3, or PM10, or both, 
whereas estimated heat waves effects from 
forecasts and observations were similar. 
A recent national heat effects analysis for 107 
U.S. communities reported that associations 
between heat and mortality slightly decreased 
with pollution adjustment in temperature-
mortality models (daily mean temperature) 
(Anderson and Bell 2009). Unlike Anderson 
and Bell (2009), we estimated heat effects 
while controlling for heat waves in the same 
models. We acknowledge that, because of the 
lack of consensus on how to represent the joint 
and synergistic effects of heat/heat wave and air 
pollution on health, and practical challenges 
related to issuing alerts or warnings that take 
both heat wave and pollution into account, the 
practical application of the results adjusting for 
pollutants is currently limited.

The comparative analysis of weather 
forecasts presented here points out the chal-
lenge in issuing heat alerts based purely on 
numerical or statistical forecast models given 
that forecast quality varies with forecast 
products and issuing time frames. Heat alerts 
can activate public health interventions, and 
decisions on issuing them can depend not 
only on forecasts but also on NWS officials’ 
awareness of place-specific conditions (e.g., 

holidays, parades, fairs, major conferences in 
the area, health status of resident populations, 
and perhaps air quality forecasts in the future). 
Thus, local knowledge in both weather and 
population health, and cooperation among 
the meteorological, health, and social service 
sectors, not just forecasted conditions, 
are critical input in issuing heat warnings 
and alerts.

This study has a few limitations. First, our 
findings may be not generalizable to other 
cities, and further evaluation with data from 
more cities is needed. Second, some parameter 
specifications in our data analysis are subjec-
tive primarily because no consensus exists on 
the definition of heat waves and quantification 
of heat effects, for example, percentile-based 
heat wave definitions in summer months are 
different from the heat index used by NWS 
and may not capture all heat wave days. 
Duration was not considered in the analysis 
because of the small number of heat waves 
in the study period. Third, further work is 
needed to translate our findings into fore-
casters’ practice to support their decision 
making—and potentially improved triggers 
of heat alerts—because this is beyond the 
scope of this paper. Local forecasters make 
forecasts and heat alerts based on multiple 
forecast products as well as their judgment 
based on their local knowledge of historical 
weather and other factors mentioned above. 
Fourth, our findings on the impact of forecasts 
on heat–mortality associations are based on 
long time series of forecasted weather condi-
tions, on average. In practice, forecasters look 
at forecasts a few days in advance and weather 
observations in just the previous days, so addi-
tional analyses, beyond the scope of this paper, 
would be required to evaluate the application 
of forecast data as heat alert triggers. One 
obstacle to this type of analysis is the diffi-
culty in acquiring clean and reliable historical 
data sets showing which days were declared 
heat alerts or heat advisories by the NWS. 
We attempted to extract such information 
from archived NWS warnings, watches, and 
advisories, but we were stymied by the lack 
of uniformity in these documents. We believe 
that the development of improved heat alert 
triggers should account for forecast quality 
as well as many factors as discussed above. 
Choosing potentially improved triggers is a 
challenge because of the lack of consensus on 
the evaluation criteria as well as on the defi-
nitions of heat wave days. Potential criteria 
include which health outcomes to use as the 
“sentinel events” (e.g., mortality, hospital 
admissions, emergency department visits), 
robustness, false-negative and false-positive 
rates, effective communication about heat 
alerts to the public, and, perhaps, economic 
benefit–cost analysis. A final limitation of our 
analysis was that we used a mortality data set 

from which external causes had been previ-
ously excluded, thus impairing our ability to 
examine causes of death such as overdoses 
and intentional self-harm that may plausibly 
be linked to extremely hot weather. Future 
analyses could address questions regarding 
cause of death.

Conclusions
Examining the impacts of weather forecasts 
on heat/heat wave–mortality associations and 
the performance of various forecast products 
in predicting heat waves is important for 
designing HHWSs and improving projec-
tion of heat-related health risks. Our analysis 
demonstrates the challenge in predicting 
health effects of weather extremes based on 
numerical and statistical forecast models. 
Forecasts showed higher associations between 
heat and mortality, and lower associations 
between heat waves and mortality, than 
observed weather. The impacts of weather 
forecast quality on mortality risk depended 
on forecast product and forecast time frames. 
Heat and heat wave effects derived from a 
local operational forecast product were gener-
ally closer to those calculated based on obser-
vations than those based on other forecast 
products. Our findings provide insights into 
issuing heat alerts and suggest that local 
knowledge on weather and population health 
are critical factors in HHWSs.
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