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Abstract

Growing evidence suggest that the methylated trivalent metabolites of inorganic arsenic (iAs),

methylarsonite (MAsIII) and dimethylarsinite (DMAsIII), contribute to adverse effects of iAs

exposure. However, the lack of suitable methods has hindered the quantitative analysis of MAsIII

and DMAsIII in complex biological matrices. Here, we show that hydride generation-cryotrapping-

atomic absorption spectrometry can quantify both MAsIII and DMAsIII in livers of mice exposed

to iAs. No sample extraction is required, thus limiting MAsIII or DMAsIII oxidation prior to

analysis. The limits of detection are below 6 ng As/g of tissue, making this method suitable even

for studies examining low exposures to iAs.
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Inorganic arsenic (iAs), a carcinogenic metalloid found in the earth’s crust, can accumulate

in aquifers naturally or due to industrial activities.1 Chronic iAs exposure through

contaminated drinking water has been linked to risks of various diseases, including cancer,

hypertension, and diabetes.2–4 The individual susceptibility to these diseases varies

considerably, even at similar exposure levels, complicating the risk assessment. Current

evidence suggest that the trivalent methylated metabolites of iAs, methylarsonite (MAsIII)

and dimethylarsinite (DMAsIII), are more toxic than pentavalent methylarsonate (MAsV)

and dimethylarsinate (DMAsV), or iAs species, arsenite (iAsIII) and arsenate (iAsV).5 Both

MAsIII and DMAsIII are products of iAs methylation by arsenic (+3 oxidation state)

methyltransferase6 and by cultured human hepatocytes.7 Both MAsIII and DMAsIII are

present in the urine of individuals exposed to iAs in drinking water.8 However, results of

recent studies indicate that the concentrations and proportion of iAs metabolites in urine do

not necessarily reflect the concentrations and speciation of As in tissues targeted by iAs

exposure.9–11 Other studies demonstrate an organ specific accumulation of iAs and

methylated arsenicals after exposure to iAs.12 Thus, the quantitative analysis of iAs

metabolites in target tissues is crucial for elucidating the mechanisms of the adverse effects

of iAs exposure and for understanding the interindividual variations in manifestation and

severity of the diseases associated with this exposure.

Several methods have been developed for the speciation analysis of As in aqueous samples,

including human urine.13–15 However, only hydride generation-cryotrapping-atomic

absorption spectroscopy (HG-CT-AAS) is uniquely suited for the oxidation state specific

analysis of As in complex biological matrices.6,16,17 Unlike HPLC techniques, HG-CT-AAS

does not require digestion or extraction of biological samples and, therefore, limits the

artifacts associated with the oxidation or with on-column binding of the reactive, but

unstable methylated trivalent metabolites.18 We have previously used HG-CT-AAS for

quantitative analysis of iAs metabolites, including MAsIII and DMAsIII in cultured

mammalian cells capable of methylating iAs.6 Here, speciation analysis of As is carried out

in two sample aliquots. In the first aliquot, hydrides (arsine and methyl-sub-stituted arsines)

from the trivalent As species (iAsIII, MAsIII, and DMAsIII) are selectively generated at pH 6

and measured directly without sample pretreatment. The second aliquot is treated with 2% L-

cysteine to reduce the pentavalent As species (iAsV, MAsV, and DMAsV) to trivalency;

thus, arsines generated from this sample aliquot represent both tri- and pentavalent As

species (iAsIII+V, MAsIII+V, and DMAsIII+V) present in the sample. The concentrations of

the pentavalent As species are then determined by subtracting the results of analysis in the

first sample aliquot from results of the analysis in the second aliquot. (See Supporting

Information for technical details.) The goal of the present study was to examine whether this

HG-CT-AAS technique is also suitable for quantitative, oxidation state specific analysis of

As species in tissues.

In the first step, we compared the efficiency of generation of As species in aqueous solutions

and in mouse livers. Here, we used the liver from an untreated mouse fed a regular diet and

drinking deionized water (DIW). Ten percent liver homogenates (w/v) were prepared in

DIW on ice and spiked with iAsV, MAsV, and DMAsV standards to generate calibration

curves. In parallel, calibration curves were generated for solutions of these standards in

DIW. Both, the aqueous standard solutions and the spiked homogenates were treated with
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2% L-cysteine and analyzed by HG-CT-AAS6,16,17 using an AAnalyst800 atomic absorption

spectrometer equipped with a FIAS400 flow injection accessory (PerkinElmer Norwalk, CT,

USA). We found that the slopes of the calibration curves generated for the aqueous

standards and spiked homogenates are very similar (Table S1, Supporting Information),

suggesting that the complex matrix of the liver homogenate does not interfere with the

analysis.

In the second step, we compared the recovery of As standards from a liver homogenate and

aqueous solutions. Here, a mixture of pentavalent iAsV, MAsV, and DMAsV standards (10

ng As each) and individual trivalent iAsIII, MAsIII, and DMAsIII standards (10 ng As each)

were prepared in DIW or in a 10% liver homogenate from an untreated mouse and analyzed

with or without L-cysteine pretreatment. Figure 1 shows that, regardless of the matrix, the

trivalent arsenicals can be quantitatively analyzed in the absence or presence of L-cysteine

with As recoveries of ~92–105%. Lower As recoveries were found only for homogenates

spiked with iAsIII (~80%) or DMAsIII (~72%) that were not treated with L-cysteine. In

contrast, the pentavalent arsenicals were detected only after the prereduction with L-cysteine.

Consistent with our previous findings,17 only DMAsV generated a small amount of

dimethylarsine (~6–7% of total As) in the absence of L-cysteine. The recoveries of As for

DIW and homogenates spiked with pentavalent standards ranged from ~90 to 102%.

Detection limits calculated for a blank liver homogenate with and without L-cysteine

pretreatment ranged from 9 to 14 pg As, which translate to ≤6 ng As/g of the tissue (Table

S2, Supporting Information).

Finally, we used HG-CT-AAS to determine the concentrations of As species in the liver of a

mouse exposed to iAsIII in drinking water (50 mg As/L) for 9 days. Here, the freshly

dissected liver was divided into 4 sections. Each section was homogenized in ice-cold DIW.

Aliquots of the 10% homogenates were immediately analyzed for AsIII species (without L-

cysteine pretreatment) and for AsIII+V species (after pretreatment with L-cysteine).

Additional aliquots from each liver section were digested in phosphoric acid for 10 h at 90

°C using the MARS5 microwave system.19 This digestion eliminates the biological matrix

and oxidizes all trivalent As species to pentavalency.20 Thus, only the total iAs (iAsIII+V),

MAs (MAsIII+V), and DMAs (DMAsIII+V) can be measured in the digested samples. Table 1

compares results of the direct speciation analysis and analysis of the digested homogenate

from one of the liver sections. On the basis of the direct analysis, MAsIII and DMAsIII

represented, respectively, 12% and 45% of the total speciated As, while their pentavalent

counterparts, MAsV and DMAsV, accounted for 8% and 18%, respectively. Notably, the

sums of tri- and pentavalent MAs and DMAs determined by the direct analysis were in a

good agreement with the concentrations of MAsIII+V and DMAsIII+V determined in the

digested homogenates. However, the amount of iAs recovered during the direct analysis

represented only ~79% of iAs recovered after the digestion. Figure 2 shows the recoveries of

iAs, MAs, and DMAs in directly analyzed homogenates from all 4 sections of the liver as

compared to the analyses in digested homogenates. Here, the direct analysis recovered

approximately 99% of total As, with individual recoveries of 83 ± 5% for iAsIII+V, 100 ±

6% for MAsIII+V, and 107 ± 1% for DMAsIII+V. Together with the data in Table 1, these

results suggest high As recoveries and a good reproducibility of the speciation analysis in

liver homogenates.
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In conclusion, this work shows that HG-CT-AAS is suitable for the quantitative, oxidation

state specific analysis of As species, including the unstable MAsIII and DMAsIII, in

mammalian tissues. Our data show that approximately 66% of As in the liver of a mouse

exposed to iAs is represented by trivalent species; ~12% by MAsIII and ~45% by DMAsIII.

These results further strengthen the hypothesis that methylated trivalent arsenicals contribute

to the adverse effects in tissues targeted by iAs exposure. Additional optimization may be

needed to improve recoveries of iAs, which are likely bound to high-affinity binding sites in

tissue homogenates, and to prevent the oxidation of DMAsIII, which contributes to lower

recoveries of this unstable As species.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HG-CT-AAS hydride generation-cryotrapping-atomic absorption spectrometry

DIW deionized water
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Figure 1.
HG-CT-AAS analysis of DIW and 10% liver homogenate spiked with AsIII (A) and AsV (B)

standards. DIW and aliquots of the homogenate were spiked with a mixture of AsV

standards (10 ng each) or with individual AsIII standards (10 ng each) and analyzed before

and after pretreatment with 2% L-cysteine (Cys) (mean ± SD, n = 3). *Statistically

significant differences (p < 0.05) between the amounts of an As species detected in DIW and

in the homogenate as determined by ANOVA with a Bonferroni multiple comparison post-

test.
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Figure 2.
Recovery of total speciated As during the direct analyses of fresh (undigested) homogenates

prepared from 4 sections of the liver of a mouse exposed to iAsIII (50 ppm As) for 9 days

(mean ± SD, n = 4). The homogenates were analyzed by HG-CT-AAS as described for

Figure 1. The % recovery was calculated as (AsIII+V analyzed directly/AsIII+V after

digestion) × 100.
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Table 1

Concentration of As Species in One Section of the Liver (ng As/g of Tissue) from a Mouse Exposed to iAsIII

in Drinking Water (50 ppm As) for 9 Daysa

analysis of digested
liver homogenateb

direct analysis of fresh liver
homogenatec

As species ng As/g of tissue ng As/g of tissue % recoveryd

iAsIII 151 ± 15

iAsV 158 ± 16

iAsIII+V 392 ± 12 309 ± 7 79 ± 3

MAsIII 220 ± 5

MAsV 143 ± 6

MAsIII+V 390 ± 1 363 ± 4 93 ± 1

DMAsIII 828 ± 11

DMAsV 324 ± 16

DMAsIII+V 1069 ± 10 1152 ± 11 108 ± 2

total AsIII+V 1851 ± 16 1824 ± 14 99 ± 1

a
Results of the direct analysis of fresh liver homogenate and the homogenate digested in phosphoric acid. A total of 9 aliquots of the homogenate

prepared from 1 section of the liver was analyzed by HG-CT-AAS.

b
Three aliquots were microwave digested in phosphoric acid at 90 °C for 10 h and analyzed for AsIII+V species. (Mean ± SD are shown for n =

3.)

c
Six aliquots were analyzed directly: 3 aliquots were analyzed for AsIII species (without pretreatment), and 3 aliquots were analyzed for AsIII+V

species after pretreatment with 2% L-cysteine. The concentrations of AsV species were calculated as the difference between the two measurements.
(Mean ± SD are shown for n = 3 replicate measurements of the homogenate from 1 liver section.)

d
% recovery = (ng AsIII+V determined by the direct analysis/ng AsIII+V determined in the digested homogenate) × 100.
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