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Abstract

Spliceosomal snRNAs are extensively 2'-O-methylated and pseudouridylated. The modified

nucleotides are relatively highly conserved across species, and are often clustered in regions of

functional importance in pre-mRNA splicing. Over the past decade, the study of the mechanisms

and functions of spliceosomal snRNA modifications has intensified. Two independent

mechanisms behind these modifications, RNA-independent (protein-only) and RNA-dependent

(RNA-guided), have been discovered. The role of spliceosomal snRNA modifications in snRNP

biogenesis and spliceosome assembly has also been verified.

Introduction

The removal of intervening sequences, introns, from pre-messenger RNA (pre-mRNA) is of

fundamental importance to gene expression. In eukaryotic organisms, the majority of introns

are removed by the spliceosome, a massively large and equally dynamic complex consisting

of five small nuclear (sn) RNAs (U1, U2, U4, U5 and U6) and numerous protein

components.1-4 snRNAs participate in the pre-mRNA splicing reaction as a small nuclear

ribonucleoprotein (snRNP) complex, which includes a single spliceosomal snRNA in

complex with a number of proteins.

Spliceosomal snRNPs are key components of the spliceosome and are absolutely required

for pre-mRNA splicing. In the classical view of pre-mRNA splicing there is a step-wise

assembly of the spliceosome initiated by recognition of the 5' splice-site (5' SS) by

complementary base-pairing interactions with the 5'-end of U1 snRNA (Fig. 1).5-14

Subsequently, the branch-site sequence (BSS) is engaged by the U2 snRNP, resulting in the

formation of a pre-splicing complex, namely complex A.11,14-24 The U2 snRNA-BSS

interaction, which is mediated through base-pairing interactions, bulges out the branch point

nucleotide (typically an adenosine). Addition of the U4/U6.U5 tri-snRNP, in which U4 and

U6 are extensively base-paired, to complex A results in the formation of complex B1, and

initiates a series of RNA-RNA rearrangements, resulting in the destabilization and release of

the U1 and U4 snRNPs.19,25-28 The result of these rearrangements is the formation of

complex B2 and concomitant activation of the spliceosome, leading to the first step of

splicing, in which the 2'-OH group of the bulged out branch point adenosine nucleophilically
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attacks the 5' SS. Upon the completion of the first step of splicing, Complex B2 is converted

into complex C. After additional conformational changes, the second step of splicing occurs,

resulting in the production of mature mRNA and the release of the excised intron and the

U2, U5 and U6 snRNPs, which are recycled for further rounds of pre-mRNA splicing.

Interestingly, all five spliceosomal snRNAs are extensively posttranscriptionally modified

(Fig. 2).29,30 Aside from the 5' cap modification, there are essentially two types of internal

modifications, namely, 2'-O-methylation and pseudouridylation. Pseudouridylation is a

uridine-specific modification that results in the formation of the 5-ribosyl isomer of uridine,

pseudouridine (Ψ), while 2'-O-methylation (2'-Ome) is an RNA backbone modification that

introduces a methyl group at the 2'-O position of the sugar ring (Fig. 3). Analysis of the

distribution of modified nucleotides in spliceosomal snRNAs from various organisms has

demonstrated conservation in the location of modifications throughout evolution. Strikingly,

the majority of modified nucleotides are present in regions known to be functionally

important for pre-mRNA splicing, including the regions of RNA-RNA interactions

described above.29,31

Over the years, great efforts have been made toward understanding the mechanisms and

functions of spliceosomal snRNA modifications. It is now clear that two distinct molecular

mechanisms exist that are capable of site-specifically introducing modified residues within

spliceosomal snRNAs. It has also become increasingly clear that modified residues are not

just bystanders in the process of pre-mRNA splicing, but actually participate in and

influence snRNP and spliceosome assembly. In this review we discuss the mechanisms and

functions of spliceosomal snRNA modifications.

Mechanisms of Spliceosomal snRNA Modifications

RNA-dependent mechanism

Posttranscriptional modification of spliceosomal snRNAs can occur via two distinct

pathways, known as RNA-dependent and RNA-independent mechanisms (see below). In the

RNA-dependent mechanism, small noncoding RNAs, namely Box H/ACA or Box C/D

RNAs, are responsible for the site-specific posttranscriptional pseudouridylation and 2'-O-

methylation of substrate RNAs, respectively (Fig. 4A and B). Both RNAs assemble with an

evolutionarily conserved, yet distinct set of four core proteins [C/D RNAs: Nop1p, Nop56p,

Nop58p and Snu13p; H/ACA RNAs: Cbf5p (Dyskerin in humans), Nhp2p, Nop10p and

Gar1p].31-47 While the RNA component is responsible for dictating site-specificity through

complementary base pairing interactions with the substrate RNA, the catalytic activity, i.e.,

modification activity, is provided by one of the core protein components (Nop1p for 2'-O-

methylation, and Cbf5p for pseudouridylation).48-51

Analyses of the subnuclear localization of guide-RNAs directing snRNA modification have

revealed that they primarily reside within Cajal bodies, a subnuclear compartment present in

eukaryotic cells.52-54 Thus, these RNAs have been referred to as small Cajal body-specific

RNAs (scaRNA).54 Recently, the mechanism behind Cajal body localization has received

significant attention, and it has been demonstrated that Cajal body retention of H/ACA

RNAs in mammalian cells is mediated by a 4-nucleotide (nt) sequence (5'-ugAG-3', refereed

Karijolich and Yu Page 2

RNA Biol. Author manuscript; available in PMC 2014 September 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



to as the CAB box: lower case letters are less conserved) located within the apical loop of

either hairpin (see Fig. 4B).55 Interestingly, the Sm proteins, SmB and SmD3, have been

shown to specifically interact with the CAB box of both H/ACA and telomerase RNAs by

immunoprecipitation and northern blot analysis.56 However, whether these interactions are

necessary for Cajal body localization has not been addressed. More recently, the Steitz

group has shed light on the mechanism of Cajal body retention and identified a CAB box for

Drosophila C/D RNAs (5'-cgaGUUAnUg-3': lower case letters are less conserved).57 Using

a UV crosslinking approach, a Drosophila WD40 repeat protein, p70, was identified which

recognizes the Drosophila C/D RNA CAB box. In addition, both p70 and its human

homologue, WDR79, were shown to interact with both human and Drosophila C/D, and

H/ACA RNA CAB boxes. Importantly, this interaction was shown to be required for Cajal

body retention.57

While Cajal bodies are considered to be the site of spliceosomal snRNA modification, there

is growing evidence suggesting that RNA-guided modification is not restricted to Cajal

bodies. For example, nuclear fractionation and northern blot analysis indicate that

pugU2-34/44, a Xenopus H/ACA RNA that directs U2 snRNA pseudouridylation at two

different positions, resides within the nucleoplasm.58 Furthermore, it has recently been

shown that while flies null for coilin lack detectable Cajal bodies, their spliceosomal

snRNAs are efficiently posttranscriptionally modified.59,60 Analysis of scaRNA localization

by fluorescent in situ hybridization failed to detect any sites of scaRNA accumulation.59

Taken together, these results strongly suggest that the modification machinery is dispersed

throughout the nucleoplasm (rather than being present exclusively in the Cajal bodies). In

addition, our lab has recently shown that in Saccharomyces. cerevisiae artificial C/D RNAs

are capable of site-specifically modifying pre-mRNA.61 These data strongly suggest that the

guide-RNA mechanism of modification is functional in the nucleoplasm and raises the

possibility that other nuclear RNAs, i.e., mRNA, may be natural targets of the RNA-

dependent modification scheme. The apparent lack of detectable H/ACA and C/D RNAs in

the nucleoplasm maybe a result of being too dilute within this compartment.

RNA-independent mechanism

To date, the majority of spliceosomal snRNA modifications have either been predicted or

proven to be catalyzed by the RNA-dependent mechanism (Tables 1 and 2). However,

while investigating whether S. cerevisiae spliceosomal snRNAs are posttranscriptionally

modified, Massenet et al. demonstrated that Ψ44 of U2 snRNA is catalyzed by a single

polypeptide enzyme known as Pus1p, demonstrating the existence of a second mechanism

for spliceosomal snRNA modification, the RNA-independent or protein-only mechanism.62

In this mechanism, an enzyme is responsible for both substrate recognition and catalysis.

While this was an interesting finding, the protein-only mechanism had been known for

decades to catalyze the modifications of tRNA (both in prokaryotes and eukaryotes) and

rRNA (in prokaryotes and in 5S rRNA of S. cerevisiae).63,64 In fact, Pus1p had already been

shown to be responsible for eight different uridine-to-pseudouridine conversions in tRNA.62

Additionally, using a yeast GST-ORF genomic library, Ma et al. identified the previously

uncharacterized ORF YOR243c as being responsible for Ψ35 formation in U2 snRNA.65

ORF YOR243c was subsequently renamed as PseudoUridine Synthase 7, PUS7.
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Surprisingly, when the amino acid sequence of Pus7p was compared with those of other

known pseudouridine synthases, namely those of the TruA, TruB, RluA and RsuA families,

no significant homology was identified. Thus, Pus7p represented a novel family of

pseudouridine synthases. Furthermore, a BLAST search of available databases indicated the

presence of Pus7p homologues in many organisms, including Schizosaccharomyces pombe,

Caenorhabditis elegans, Drosophila melanogaster, Xenopus laevis and humans. The

Xenopus and human Pus7p homologues have been cloned, and both of them are capable of

catalyzing U2 pseudouridylation at position 34, which is equivalent to position 35 of yeast

U2 (Ma and Yu YT, unpublished data). Shortly following the identification of Pus7p, an E.

coli pseudouridine synthase, TruD, was identified which contained homology to Pus7p.66

Pus7p has since been classified as a member of the TruD family of pseudouridine synthases.

Analysis of Pus7p substrates has revealed the importance of a 7 nucleotide-sequence

flanking the target uridine in substrate recognition and catalysis.67

RNA-dependent mechanism versus RNA-independent mechanism: which came first?

It appears that both RNA-dependent and RNA-independent mechanisms co-exist in various

organisms. In higher eukaryotes, while spliceosomal snRNA modifications appear to be

predominantly catalyzed by the RNA-dependent mechanism, at least one such modification

(the pseudouridylation of human and Xenopus U2 at position 34) appears to be catalyzed by

the RNA-independent mechanism as well. Thus, two mechanisms, RNA-dependent and

RNA-independent, act at the same site. However, in S. cerevisiae, spliceosomal snRNA

pseudouridylation at a given site can only be catalyzed by one of the two mechanisms, either

RNA-dependent or RNA-independent mechanism, but not by both. For instance, snR81, a

H/ACA RNA, directs pseudouridylation of position 42, and Pus1p and Pus7p, protein-only

enzymes, pseudouridylate position 44 and 35, respectively.62,65,68

The coexistence of the two mechanisms and their distinct usage in S. cerevisiae and other

organisms is rather interesting from an evolutionary point of view. It is possible that the

RNA-dependent mechanism evolved from the protein-only mechanism in both higher

eukaryotes and S. cerevisiae. However, in yeast, while some modifying enzymes evolved

(e.g., snR81), others (e.g., Pus1p and Pus7p) may have remained unchanged (or evolved but

were subsequently lost from the genome; e.g., via chromosomal deletion). Conversely, it is

equally possible that the RNA-dependent mechanism is the most ancient mechanism, given

that archaeal H/ACA RNPs, C/D RNPs, and ribosomes share a common core protein, L7

(homologous with Nhp2p (H/ACA RNP) and Snu13p (C/D RNP) in Eukarya).69 Thus, it is

possible that the RNA-dependent mechanism evolved from the ancient translation apparatus,

rather than from the RNA-independent mechanism. While the issue of which came first

remains controversial, the preservation of the putatively ancient RNA-dependent (or RNA-

independent) modifying mechanism throughout evolution implies that such modifications

are functionally important.

Localization of snRNA-specific modifying enzymes in S. cerevisiae

With regard to subnuclear localization, it is worth noting that a coilin homologue has thus

far escaped detection in S. cerevisiae. While it is possible that S. cerevisiae lacks a coilin

homologue, it does however possess a structure analogous to Cajal bodies, the nucleolar
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body.70 The notion that the nucleolar body is the functional homologue of the Cajal body

comes from several lines of evidence. For instance, when the human-Cajal body specific

protein, survival of motor neuron (SMN), is ectopically expressed in S. cerevisiae, it

concentrates to the nucleolar body.70 Furthermore, the 5'-cap hypermethylase, Tgs1p,

responsible for spliceosomal snRNA 5'-cap hypermethylation, specifically localizes to the

nucleolar body.71,72 However, analysis of spliceosomal snRNA localization through indirect

immunofluorescence using an anti-m3G antibody has proposed that the nucleolus is the site

of snRNA accumulation.73 While this would stand in direct opposition to the localization of

spliceosomal snRNAs in mammalian cells, this interpretation of the data relies on the

assumption that there are no other m3G-capped small nuclear RNAs. In fact, numerous yeast

snoRNAs, including members of the H/ACA and C/D RNA families, are m3G-capped.74

Thus, a detailed and systematic analysis of spliceosomal snRNA localization in S. cerevisiae

has yet to be carried out. Likewise, the specific subnuclear sites, to which the spliceosomal

snRNA-specific modification enzymes (RNA-dependent and RNA-independent) localize,

are yet to be determined. Thus, whether nucleolar bodies are the premier sites of

spliceosomal snRNA modification remains uncertain.

Functions of Spliceosomal snRNA Modifications

Posttranscriptional modification provides a means to expand the vocabulary of nucleotides

in the genetic code. Importantly, it is clear that modified nucleotides have distinct chemical

properties from their unmodified counterparts. Thus, they have the potential to impact

numerous aspects of the modified RNA, including structure, thermal stability and

biochemical interactions.75 In each case, the structural, thermodynamic and biochemical

contributions imparted by the modified nucleotide depend on the structural context and can

extend beyond the site of modification. Indeed, 1H NMR, UV, and CD (circular dichroism)

spectroscopy have demonstrated that short RNA fragments containing pseudouridine are

more stable than if the same RNA contained uridine.76 Conformational stabilization appears

to be an intrinsic property of pseudouridine at the nucleotide level, and is mediated by both

an increase in base stacking and the ability to coordinate a water molecule through the extra

hydrogen bond present.76-78 Similarly, 2'-O-methylation promotes increased stability in

RNA conformations. For instance, 2'-O-methylation alters the hydration sphere around the

oxygen resulting in the blockage of sugar edge interactions.79-81 In addition, methylation of

the 2'-OH alters the ability of the ribose to participate in hydrogen bonding interactions.

In the context of the spliceosome, posttranscriptional modifications have the potential to

influence numerous aspects of pre-mRNA splicing, including (1) RNA-RNA interactions,

(2) interactions of spliceosomal snRNAs with spliceosomal proteins, and (3) directly

participating in the catalytic reactions. To date, not much data has been generated regarding

the latter two. Thus, we will primarily focus on the role of the modified nucleotides engaged

in RNA-RNA interactions.

U1 snRNA

Within the initial step of pre-mRNA splicing, recognition of the 5'SS by the 5'-end of U1

snRNA, there are four modified nucleotides that can influence the U1 snRNA-pre-mRNA

base pairing interaction (Fig. 2). Interestingly, however, U1 snRNA-depleted mammalian
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splicing extracts can be successfully reconstituted using in vitro transcribed U1 snRNA

(presumably lacking modifications).82 Taken at face value these results suggest that

modified nucleotides within the 5'-end of U1 snRNA are not necessary for pre-mRNA

splicing; however, this relies on the assumption that the spliceosomal snRNAs are not

capable of being modified in the splicing extracts. In fact, based on our own experience and

that of others, in vitro transcribed U2 snRNA is readily modified when added to yeast

splicing extracts (perhaps mammalian extracts as well). Furthermore, as only a strong

splicing substrate was analyzed, whether modified nucleotides are required for the splicing

of a suboptimal 5'SS was not addressed. Indeed, in vitro splicing assays in which two 5'SS

are in competition with each other suggest that the presence of pseudouridine within the 5'

end of U1 snRNA provides an advantage in 5'SS discrimination.83 Furthermore, a Ψ-G base

pair was shown to contribute to the stability of the U1 snRNA interaction with the 5'SS of

HIV-1 SD4 RNA.84 However, a complete functional dissection of the role of U1 snRNA

posttranscriptional modification will have to wait for the identification of the enzymes

responsible for their formation.

U2 snRNA

Of the spliceosomal snRNAs, U2 snRNA has the most posttranscriptional modifications.

Human U2 snRNA contains ten 2'-O-methylated residues and 13 pseudouridines within the

5' half of the molecule (Fig. 2). It is perhaps for this reason that the functions of U2 snRNA

posttranscriptional modifications have been the most extensively studied.

U2 snRNA modifications, snRNP biogenesis and spliceosome assembly—The

initial experiments of Patton in the early 1990s provided the first functional analysis of U2

snRNA modification.85,86 Using HeLa cell S100 and nuclear extracts he demonstrated that

the incorporation of 5-fluororidine (5-FU) in to U2 snRNA blocked U2 snRNA

pseudouridylation. In addition, while it was observed that 5-FU-substituted U2 snRNA was

able to form an U2 snRNP, the snRNP was overwhelmingly susceptible to salt

dissociation.85 A more detailed and systematic analysis of the effects of U2 snRNA

pseudouridylation on pre-mRNA splicing eventually established a nice correlation between

modification status, pre-mRNA splicing competency, and U2 snRNP biogenesis.87 Using

Xenopus oocytes, Yu et al. demonstrated that while in vitro transcribed U2 snRNA was

unable to rescue splicing in U2 snRNA-depleted oocytes, upon longer reconstitution periods

in vitro transcribed U2 snRNA gained the ability to reconstitute splicing activity. Strikingly,

the pseudouridylation status of U2 snRNA mirrored the ability of U2 snRNA to reconstitute

pre-mRNA splicing, that is, in vitro transcribed U2 snRNA became pseudouridylated

following the longer reconstitution periods. Further analyses using anti-snRNP

immunoprecipitation in conjunction with glycerol gradient sedimentation demonstrated that

while U2 snRNA lacking pseudouridine is able to form nonfunctional 12S U2 snRNP

particles, it is unable to detectably form functional 17S particles.87 Consequently, U2

snRNA lacking pseudouridine is unable to participate in spliceosome assembly.

Furthermore, Zhao and Yu (2004) were able to show that pseudouridine residues within the

branch site recognition region of Xenopus U2 snRNA are essential for U2 snRNP assembly

and spliceosome assembly. Interestingly, the rate at which in vitro transcribed U2 snRNA is
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modified within the branch site recognition region is significantly faster than within the 5'

region of U2 snRNA, when injected into Xenopus oocytes.88

In 2004 the Lührmann group carried out an extensive analysis on the role of modified

nucleotides in the first 24-nt of human U2 snRNA.89 Interestingly, 2'-O-methylations at

positions 1, 2, 12 and 19, were individually shown to be required for pre-mRNA splicing,

while pseudouridines located within this region were shown to have a cumulative effect on

splicing, as none were absolutely required for pre-mRNA splicing.89 Interestingly, their

study demonstrated that the internal modifications are required for E complex formation.

Taken together, the data accumulated thus far have clearly demonstrated that most modified

nucleotides in U2 snRNA, including those residing within the 5'-end region and the branch

site recognition region, are functionally important.

U2 modification and splicing efficiency—In addition to playing a role in the assembly

of catalytically competent snRNPs and splicing complexes, posttranscriptional

modifications, in particular pseudouridylation within the branch site recognition region of

U2 snRNA, has been demonstrated to influence, directly or indirectly, the catalytic phase of

pre-mRNA splicing. For instance, deletion of the gene encoding Pus7p, responsible for Ψ35

formation in S. cerevisiae U2 snRNA (see above), although viable, displayed reduced fitness

under conditions of high salt or when in competition with wildtype yeast.65 Further analysis

demonstrated that loss of Ψ35 in conjunction with U40G or U40Δ mutations in U2 snRNA

severely reduced the organism’s fitness.90 Analysis of pre-mRNA splicing by semi-

quantitative RT-PCR indicated an accumulation of pre-mRNA in the pus7Δ U2-U40G and

pus7Δ U2-U40Δ strains, while any single mutation resulted in minimal if any accumulation

of pre-mRNA. In line with the notion of pseudouridylation within the branch site

recognition region of U2 snRNA affecting the catalytic phase of pre-mRNA splicing, the

change of a single uridine (U35) to pseudouridine (Ψ35) significantly enhances the

production of X-RNA, a product generated by a splicing related reaction in a cell- and

protein-free system.91,92 It should be noted that Ψ35 is the nucleotide nearly opposite the

branch-point adenosine.

Nucleophile positioning via U2 snRNA pseudouridylation—In recent years, the

role of U2 snRNA pseudouridylation has been extensively investigated using various

biophysical techniques. In this regard, the crystal structure of a self-complementary RNA

designed to mimic the S. cerevisiae U2 snRNA-branch point interaction was determined in

the absence of pseudouridine.93 Surprisingly, the adenosine 5' of the expected branch point

adenosine was bulged out. Subsequently, the Greebaum group determined solution

structures of the S. cerevisiae U2 snRNA-branch point interaction either in the presence or

absence of pseudouridine (Ψ34, corresponding to Ψ35 in mammals).94,95 Interestingly,

NMR data coupled with 2-aminopurine fluorescence titration data indicated that the

presence of the pseudouridine was required for the bulging out of the expected branch point

adenosine.95 However, in the NMR structure, the bulged adenine base was inserted in the

minor groove, burying the 2'-OH, the nucleophile in the reaction, making it unlikely to

participate in the splicing reaction. More recently, Lin and Kielkopf determined the crystal

structure of the U2 snRNA-branch point interaction in the presence of pseudouridine and
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observed an extra-helical branch point adenosine in which its 2'-OH was prominently

exposed and available for attack on the 5'SS.96 Thus, the structure proposed by Lin and

Kielkopf is more likely to be functionally relevant for catalysis.

Taken together, U2 snRNA modification is required for pre-mRNA splicing. Biochemical

and molecular data have clearly established links between spliceosomal snRNP biogenesis,

spliceosome assembly, and splicing efficiency with the status of U2 snRNA modification. In

addition, biophysical data have provided detailed structural information indicating that U2

snRNA pseudouridylation is required for proper positioning of the 2'-OH of the branch-point

adenosine so that it is accessible and exposed for recognition and nucleophilic activity.

U5 snRNA

The U5 snRNA plays a critical role in juxtaposing the 5' SS, 3' SS and the BSS during pre-

mRNA splicing. To date all U5 snRNAs examined possess an 11-nt loop, called loop 1,

which contains the conserved 9-nt sequence 5'-G1C2C3U4U5U6U7A8C9-3'.97 Loop 1

engages the 5' exon before the first step of splicing and this interaction is maintained

throughout the second step of splicing. In contrast, the loop 1-3' exon interaction can not be

detected until the second step.98-100 Strikingly, there are 4 post-transcriptional modifications

within the conserved 9-nt sequence of loop 1 (2'-Ome at positions 1, 5 and 9; Ψ at position

7; Fig. 2). Furthermore, nucleotides at positions 5 and 7 have been shown to interact with

the splicing substrate by photochemical crosslinking and genetic suppression

analyses.14,99,101-106 Unfortunately, the mechanism of U5 snRNA modification has not been

elucidated, thus precluding a functional analysis of these modifications in pre-mRNA

splicing. However, based on the known function of loop 1 in pre-mRNA splicing, it is

reasonable to speculate a role for these modifications in influencing the stability of the pre-

mRNA-U5 snRNA interaction. Alternatively, posttranscriptional modification of U5 snRNA

loop 1 may be required for the Prp8p-mediated stabilization of exon-U5 snRNA loop 1

interactions during pre-mRNA splicing.107-109

U4 and U6 snRNAs

U4 and U6 snRNAs enter the pre-mRNA splicing reaction as the U4/U6.U5 tri-snRNP.

Following tri-snRNP addition, a series of RNA-RNA rearrangements proceed, resulting in

the exclusion of the U1 and U4 snRNAs from the spliceosome (see above). U6 snRNA is

one of three snRNAs present in active spliceosomes (U2 and U5 are also present). However,

evidence suggests that it is U2 and U6 that are directly involved in the catalytic steps (see

above).98,110-112

Within the tri-snRNP, there are extensive base-pairing interactions between U4 and U6.

Strikingly, this interaction is particularly strong with an experimentally determined Tm for

affinity purified yeast U4/U6 di-snRNP of 55°C; on the other hand, human U4/U6 di-snRNP

has two Tms, a lower Tm of 37°C and a higher Tm of 55°C.113 It should be noted that the

human di-snRNP also presented with two alternate mobilities by native gel analysis.113

Interestingly, between human U4 and U6 snRNAs there are six Ψs and 12 2'-Ome residues

(Fig. 2 and Tables 1 and 2), and half of them map to the regions involved in U4/U6 snRNA

base-pairing interactions (Fig. 2). It has previously been proposed that the ATP-dependent
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unwinding of this duplex provides a proofreading step to ensure proper positioning of the

tri-snRNP on the spliceosome,114 and timely formation of the catalytic center (U2-U6

duplexes). Within this context one could imagine that the extra thermodynamic stability

afforded to the base-pairing interactions by the posttranscriptional modifications influences

the rate of unwinding. Alternatively, as the binding positions of the helicases responsible for

di-snRNP unwinding have not been mapped on to the snRNAs, modifications may induce a

structure conducive to recognition by helicases.

Minor Spliceosomal snRNAs are Pseudouridylated

While the majority of introns are removed by the aforementioned spliceosome (or the major

spliceosome), there exists a rare class of introns (~1–300) that are removed by a functionally

similar, yet structurally distinct spliceosome, which is of much lower abundance (~104

copies per cell) relative to components of the major spliceosome.115,116 Thus, this

spliceosome is referred to as the minor spliceosome. The activity of the minor spliceosome

requires four distinct spliceosomal snRNAs, namely U11, U12, U4atac and U6atac, while

sharing the U5 snRNA with the major spliceosome (Fig. 5).115 Analysis of minor

spliceosomal snRNAs from HeLa cells has demonstrated that they too are

posttranscriptionally modified (Fig. 5). To date, four pseudouridines have been identified in

the minor spliceosomal snRNAs, two within U12, and one each within U4atac and

U6atac.117 A single 2'-O-methylation has been detected in U12.118 While all of the

modifications present in the minor class spliceosomal snRNAs have been predicted to be

guided via the RNA-dependent mechanism, none have had their mechanism of formation

experimentally determined (Table 2).

Although fewer pseudouridine residues are present in the minor spliceosomal snRNAs when

compared to the major spliceosomal snRNAs, the positions of pseudouridylation for U12

and U4atac are homologous to those within U2 and U4, respectively, thus suggesting that

these pseudouridines are important for the splicing of minor introns. In fact, Ψ19 of U12

snRNA, which is adjacent to the branch point adenosine, is present in equivalent positions in

U2 snRNA in human (Ψ34), plant (Ψ34) and S. cerevisiae (Ψ35). Interestingly, introns

removed by the minor spliceosome contain more constrained consensus sequences at the 5'

end of the intron and BSS.119-121 Thus, it is reasonable to hypothesize that the increased

amount of modified nucleotides present in the major spliceosomal snRNAs, relative to the

amount present in the minor spliceosomal snRNAs, is necessitated by the fact that major

class (U2-type) introns contain less conserved consensus splice site sequences than the

minor class (U12-type) introns. In support of this hypothesis, the introns of S. cerevisiae

contain highly conserved consensus splice site sequences, while the spliceosomal snRNAs

contain relatively few modified residues.

Spliceosomal snRNA Pseudouridylation as a Therapeutic Target

5-FU is commonly used in the treatment of a variety of solid tumors such as colorectal,

breast, and liver carcinomas.122,123 Although nearly six decades have passed since the initial

uses of 5-FU as a chemotherapeutic agent, its mechanism of action is one of debate. Initially

it was hypothesized that 5FU affects DNA metabolism through inhibition of the enzyme
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thymidylate synthase, which is required for the conversion of deoxyuridine monophosphate

(dUMP) to deoxythymidine monophosphate (dTMP).124,125 A reduction in the amount of

dTMP, in turn, results in an inhibitory effect on the production of its downstream product

deoxythymidine triphosphate (dTTP). Consequently, dUMP accumulates, resulting in

elevated synthesis of its downstream product, deoxyuridine triphosphate (dUTP), and the

incorporation of dUTP into DNA, thus resulting in DNA damage.126,127 Paradoxically,

however, when 5FU-exposed cells are treated with thymidine, which can be converted to

dTMP through the action of thymidine kinase (a pathway independent of the thymidylate

synthase pathway), 5FU-mediated cytotoxic and apoptotic effects remain, suggesting that

DNA metabolism is not the primary target of 5FU.128,129

Given that 5FU can be readily converted into 5-fluorouridine triphosphate (5FUTP), a

ribonucleotide analog that can be incorporated into RNA, it has been proposed that 5FU may

directly affect RNA metabolism.122,123 Indeed, 5FU-treated HeLa cells show a dramatic

accumulation of pre-mRNA.130 In addition, thin-layer chromatography analysis of U2

snRNA isolated from 5FU-treated HeLa cells demonstrated the presence of 5FU and a

reduction in the amount of pseudouridine present. Furthermore, while U2 snRNA isolated

from uracil-treated HeLa cells can efficiently reconstitute pre-mRNA splicing in U2

snRNA-depleted Xenopus oocytes, U2 snRNA purified from 5FU-treated HeLa cells failed

to reconstitute pre-mRNA splicing.130 Thus, some of the therapeutic effect of 5FU can be

attributed to the inhibition of pre-mRNA splicing as a result of precluding pseudouridine

formation.

Conclusions

The past decade has seen remarkable progress towards elucidating the mechanism and

function of spliceosomal snRNA modification. However, relative to the progress made on

DNA and protein modifications, research on RNA modifications has lagged behind. The key

to addressing the in vivo role of spliceosomal snRNA modifications is to identify all the

gene products responsible for their formation. While in vitro studies and studies using small

molecule inhibitors of modification, i.e., 5FU, can offer insight in to the function of

modifications, they are no substitute to a clean loss of that particular modification. To date,

only 16 of the 24 known sites of pseudouridylation within the major spliceosomal snRNAs

(U1, U2, U4, U5 and U6), and two of four for the minor spliceosomal snRNAs (U11, U12,

U4atac and U6atac) of mammals have had the enzymes responsible for their formation

proven or predicted. In addition, only three of six pseudouridines have had their modifying

enzyme identified in S. cerevisiae (Table 1). Thus, a daunting task of identifying the

enzymes responsible for the remaining modifications lies ahead.

It should be reiterated that the only spliceosomal snRNA which has had its modifications

subjected to a detailed and systematic experimental analysis is U2 snRNA. Thus, whether

modified nucleotides in U1, U4, U5 and U6 play any roles in splicing is an open question. In

addition, it is our hope that as structural techniques continue to advance and become more

powerful we will see detailed images of the spliceosome at defined functional stages. In fact,

we are already beginning to see high-resolution electron microscopy images.131 With the

growing attention given to RNA modification and pre-mRNA splicing, we expect a clear
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picture, regarding whether and how spliceosomal snRNA modifications contribute to

function, to emerge soon.
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Figure 1.
Major spliceosome assembly and catalysis of pre-mRNA splicing. The thick lines represent

the intron and the boxes are exons. The 5' splice site (5'-SS), the 3' splice site (3'-SS) and the

branch point adenosine (BP) are indicated in the pre-mRNA. The conserved residues at the

5' and 3' splice sites and the branch site are shown. The headed thin lines are snRNAs with

their names in the ellipses. The short thick lines between RNA strands represent Watson-

Crick base-pairing interactions. The lightning symbols depict non-Watson-Crick base-

pairing interactions. The 2'-OH groups of branch point adenosine and the cut-off 5' exon are

pictured in the activated spliceosome. The small arrows near those 2'-OH group indicate the

nucleophilic chemical reactions also known as trans-esterification reactions.
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Figure 2.
Pseudouridines and 2'-O-methylated residues in human spliceosomal snRNAs. Primary and

secondary structures of human major spliceosomal snRNAs (U1, U2, U4, U5 and U6) are

shown. Pseudouridines (Ψ) are surrounded by rectangles; 2'-O-methylations are circled. The

thick lines indicate the nucleotides participating in RNA-RNA interactions or involved in

catalysis during pre-mRNA splicing. The gray boxes highlight the Sm-binding sites. The 5'

caps (2,2,7 trimethylated guanosine cap for U1, U2, U4, U5 and γ-methylated guanosine cap

for U6) are also depicted.
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Figure 3.
Schematic depiction of the two most abundant modified nucleotides in spliceosomal

snRNA. (Top) Pseudouridine is a rotational isomer of uridine, in which the N-C glycosidic

bond is broken to form an C-C bond. This results in the presence of an extra hydrogen bond

donor (d), while the number of hydrogen bond acceptors (a) is unchanged. (Bottom)

Schematic representation of a 2'-O-methylated ribose.
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Figure 4.
Schematic depiction of box H/ACA and C/D RNAs. (A) Secondary structure of a eukaryotic

pseudouridylation guide box H/ACA RNA. The RNA adapts a Hairpin-Hinge-Hairpin-Tail

structure. Present within the hinge region is the box H (5'-ANANNA-3'), the box ACA (5'-

ACA-3') motif typically lies three nucleotides from the 3'-end of the RNA. A CAB box (5'-

ugAG-3'), responsible for Cajal body localization, may be present in the apical loop of either

hairpin. Pseudouridylation is targeted to substrate RNAs by complementary base-pairing

interactions between the internal loop (pseudouridylation pocket) and nucleotides adjacent

to the target uridine. The thick lines denote substrate RNAs. (B) Secondary structure of a

box C/D RNA. Boxes C, D, C’ and D’ are shown. The 2'OMe represents the target 2'-O-

methylation site that is always the fifth nucleotide from box D or D’. The thick line

represents substrate RNA.
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Figure 5.
Shown are primary and secondary structures of human minor spliceosomal snRNAs, U11,

U12, U4atac and U6atac. U5 snRNA is shared by both the major and minor spliceosomes.

Pseudouridines (Ψ) are surrounded by rectangles; 2'-O-methylations are circled.

Pseudouridines within U12 and U4atac are believed to function analogously to their

homologous modifications within U2 and U4 snRNAs, respectively. The thick lines indicate

the nucleotides participating in RNA-RNA interactions or involved in catalysis during pre-

mRNA splicing. The gray boxes highlight the Sm-binding sites.
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Table 1

Sites of pseudouridylation within yeast and human spliceosomal snRNAs

Organism snRNA Position Mechanism Enzyme Verified/Predicted Reference

U1
Ψ5 Cbf5 dependent Cbf5 NR 62, Unpublished data Yu Lab

Ψ6 Cbf5 dependent Cbf5 NR 62, Unpublished data Yu lab

Yeast
Ψ35 Protein only Pus 7 Verified 62, 65

U2 Ψ42 H/ACA RNP snR81 Verified 62, 68

Ψ44 Protein only Pus 1 Verified 62

U5 Ψ99 NR NR NR 62

U1
Ψ5 H/ACA RNP ACA47 Verified 132, 133

Ψ6 H/ACA RNP U109 Predicted 132, 134

Ψ6 NR NR NR

Ψ7 H/ACA RNP U100 Predicted 135, 136

Ψ15 NR NR NR

Ψ34 H/ACA RNP U92 Predicted 54, 137

Ψ37 H/ACA RNP ACA45 Predicted 133, 137

Ψ39 H/ACA RNP ACA26 Predicted 133, 137

U2 Ψ41 H/ACA RNP ACA26 Predicted 133, 137

Ψ43 NR NR NR

Ψ44 H/ACA RNP U92 Predicted 54, 137

Ψ54 H/ACA RNP U93 Predicted 29, 136-138

Ψ88 NR NR NR

Ψ89 H/ACA RNP ACA35 Predicted 133, 137

Human Ψ91 NR NR NR

Ψ4 NR NR NR

U4 Ψ72 NR NR NR

Ψ79 NR NR NR

Ψ43 H/ACA RNP ACA57 Predicted 133, 139

U5 Ψ46 H/ACA RNP U85 Verified 139, 140

Ψ53 H/ACA RNP U93 Predicted 29, 137, 138

Ψ31 H/ACA RNP ACA65 Predicted 136

U6 Ψ40 H/ACA RNP
ACA12 Predicted 133, 141

HBI-100 Predicted 135

Ψ86 H/ACA RNP ACA65 Predicted 135

U4atac Ψ12 NR NR NR 117

U6atac Ψ83 NR NR NR 117

U12
Ψ19 H/ACA RNP ACA68 Predicted 117, 136

Ψ28 H/ACA RNP ACA66 Predicted 117, 136

Note: NR is for Not Reported.
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Table 2

Sites of 2'-0-methylation within human spliceosomal snRNAs

Organism snRNA Position Mechanism Enzyme Verified/Predicted Reference

U1 A70 Box C/D RNP U90 Predicted 54, 135

G11 Box C/D RNP HBII-382 Predicted 54, 135

G19 Box C/D RNP mgU2-19/30 Predicted 54, 118

U2
G25 Box C/D RNP mgU2-25/61 Predicted 118, 135

A30 Box C/D RNP mgU2-19/30 Predicted 54, 118

C61 Box C/D RNP
mgU2-25/61 Predicted 118, 135

HBII-382 Predicted 54, 135

C8 Box C/D RNP
mgU12-22/U4-8 Predicted 54, 118

U4 U91 Predicted 54, 118, 135

Human
A65 Box C/D RNP U87 Predicted 54, 142, 143

U41 Box C/D RNP
U87 Predicted 54, 139, 143

U5 U88 Predicted 54, 139

C45 Box C/D RNP U85 Predicted 54, 55, 140

A47 Box C/D RNP mgU6-47 Predicted 144

A53 Box C/D RNP
mgU6-53 Predicted 145

U6
mgU6-53B Predicted 145

C60 Box C/D RNP HBII-166 Predicted 135

C62 Box C/D RNP U94 Predicted 146

C77 Box C/D RNP mgU6-77 Predicted 144

U12 G22 Box C/D RNP mgU12-22/U4-8 Predicted 54, 118
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