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Abstract

Modern genomics is very efficient at mapping genes and gene networks, but how to transform

these maps into predictive models of the cell remains unclear. Recent progress in computer

science, embodied by intelligent agents such as Siri, inspires an approach for moving from

networks to multiscale models able to predict a range of cellular phenotypes and answer biological

questions.

In case you haven’t heard, Siri is the virtual personal assistant on Apple’s iPhone operating

system. Your wish is Siri’s command. It understands what you say and can take action on

your behalf, such as sending messages, scheduling meetings, placing phone calls, or

researching nearby hotels and restaurants. If you speak directly to your mobile device and

ask, for instance, “find me a good sushi restaurant for two tonight,” the screen will display a

list of restaurants from which you can choose to make your dinner reservation.

Although Siri has little to say about cell biology, it is easy to think of biological questions

one might ask, if only Siri could answer. For example:

“Patient P has a tumor recurrence with new mutations X and Y—which drugs should I

prescribe”?

—Siri as clinical decision support system (Berner, 2007) for diagnosing and treating

patients.

“In estradiol-treated SKBR3 cells, which nuclear protein complexes have the greatest

change in phosphorylation”?

—Siri as virtual laboratory assistant, suggesting which western blot to do next.

“What is the largest number of genes I can knock out of Mycoplasma for it to remain

viable”?

—Siri as synthetic biologist, helping to design the minimal genome.

Here, we discuss why and how, one day, biological questions like these might be answered

by a Siri of the cell. We argue that, more than a whimsical analogy, intelligent agents like
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Siri inspire new directions for modeling cellular phenotypes and answering biological

questions.

A Progression of Cellular Models

Like any model of the world, our view of the cell is inescapably bound by the time and place

in which we live. Cells were discovered during the Renaissance directly following the

invention of the microscope and were initially depicted as tiny walled rooms analogous to

monk’s quarters, hence the name “cells” (Hooke, 1665). Later, scientists of the Industrial

Age imagined cells as mechanical devices akin to engines, boats, and bridges (Thompson,

1917), leading to the development of the field of biomechanics (Fung, 1993). Other schools

have fashioned the cell in a variety of forms, from bags of enzymes (Mathews, 1993), to

metabolic channels (Reddy et al., 1977), to feedback circuits (Monod et al., 1963), to

complex systems (Kauffman, 1993), to gels (Pollack, 2001), to self-modifying programs in

software (Bray, 2009).

A model that has pervaded cell biology for the past 15 years is the so-called “network” view

(Figure 1A), which has bloomed in parallel with the emergence of manmade networks such

as the Internet and Facebook. This view treats cells as containers for vast networks of

“nodes” (genes, gene products, metabolites, or other biomolecules) connected by “links”

(physical interactions or functional associations) (Barabási and Oltvai, 2004). Network

representations of the cell flow directly from the ability to characterize not only genes and

proteins in isolation but also their functional similarities and physical binding partners—a

major outcome of transcriptomics and proteomics approaches. Analysis of network

information, whether biological or manmade, is an active field leading to algorithms that

detect nodes with strategic positions within a network (Barabási and Oltvai, 2004) or that

partition tightly interconnected groups of nodes to identify modular structures (Fortunato,

2010).

Why It Is Time to Move beyond Networks to Hierarchies

Although incredibly influential, the network is probably not the ultimate representation of a

cell for two reasons. First, network diagrams do not visually resemble the contents of cells.

Nowhere in the cell do we observe actual wires running between genes and proteins, unlike

for the Internet, which is truly a network of wires among processing units. Rather, the cell

involves a multiscale hierarchy of components that is not readily captured by basic network

representations. For example, the proteasome has been mapped extensively to identify its

key genes and interactions, but the network visualization of these data (Figure 1A) is very

different from the proteasome’s spatial appearance (Figure 1B). The interactions making up

the proteasome factor into a regulatory particle and a core, which, in turn, factor into a base

and a lid, and an α and β subunit, respectively (Figure 1C). This hierarchical structure is

obscured by the network visualization of pairwise relationships between gene products.

Second, many of the molecular networks published to date are descriptive maps of physical

or functional connectivity rather than predictive models. For example, technologies such as

yeast two hybrid, protein affinity purification, and chromatin immunoprecipitation are often

used to define and draw large networks of protein-protein and protein-DNA interactions
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(Chuang et al., 2010), but these static maps do not, by themselves, predict cell behavior.

Although the field of systems biology has inferred networks capable of predicting gene

function or phenotypic responses (reviewed in Koller and Friedman [2009] and Walhout et

al. [2013]), these efforts have tended to focus on a specific class of predictions, i.e., gene

expression level or cell growth rate. Assembling a model of the cell that would predict a

range of phenotypes, rather than only one type of outcome, requires understanding how

cellular phenotypes are interrelated with each other. Here, again, a hierarchy comes into play

because cellular organization involves a multiscale hierarchy not only in structure but also in

function. For example, the proteasome is a central component of ubiquitin-mediated protein

degradation, which, depending on an intricate set of inputs and rules, can result in cellular

homeostasis, differentiation, death, and other fates. This multiscale hierarchy of processes is,

again, simply not exposed by a standard pairwise network representation.

The most direct representations of data are not always the most desirable for meaningful

interpretation of those data. In X-ray crystallography, the most direct representations of X-

ray diffraction patterns are 2D images (McPherson, 2009). However, when many such

images are integrated and analyzed, exquisite 3D structural models of proteins emerge,

which, in turn, enable accurate predictions of protein dynamics and function. Similarly, from

many molecular measurements and interaction data sets, the higher-order structure and

function of the cell might emerge if only we could figure out how to assemble these images

properly.

Capturing Hierarchy with Ontologies

To capture hierarchical organization, a particularly promising direction in computer science

has been the development of the ontology, a model that divides its object into a set of

fundamental entities and relationships among those entities (Gruber, 1995). Ontologies arise

from a branch of philosophy known as metaphysics, which is concerned with the nature of

what exists and the categories into which the world’s objects naturally fall. Ontologies build

upon and extend network models in two key ways: “entities” refer not only to elemental

objects but also to any meaningful grouping of objects, and “relationships” refer not only to

direct connections but also to nested structures, such as one entity being a part or type of

another. Thus, ontologies explicitly allow for a higher-order organization of knowledge,

missing from raw networks. They have been key for building powerful knowledge

representation and reasoning systems in many domains (Brachman and Levesque, 2004),

including biomedicine (Robinson and Bauer, 2011).

Ontologies have become influential in cell biology through the development of the Gene

Ontology (GO) (Ashburner et al., 2000). GO is a major resource of knowledge about genes,

gene products, and the hierarchy of cellular components, molecular functions, and biological

processes in which they participate. Entities in GO (called GO terms) are hierarchical

groupings of other entities. For example, the biological process of “DNA replication

elongation” is a type of “DNA strand elongation” and is a part of the more general process

of “DNA replication” (Figure 2A). The GO resource is presently very large, with nearly

35,000 GO terms connected by 65,000 hierarchical term-term relations, describing more

than 80 different species. The impact of GO is hard to overstate—just try to think of a single
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modern “omics” analysis that does not use GO to validate a novel data set or approach or to

generate new mechanistic hypotheses. In a sense, GO is the most universal, and universally

accepted, model of a cell that we currently have.

One limitation of GO lies in the fact that the ontology structure is constructed by a diverse

team of scientists according to their best abilities to curate the published scientific literature.

Thus, GO inevitably favors biological entities that have been well studied and misses the

large proportion of cell biology that is not yet known or has not yet been curated. As the

amount of cell biological literature increases, curating the ontology structure has become a

painstaking effort that is proving difficult to scale up (Alterovitz et al., 2010). To address

these challenges, we recently investigated whether gene ontologies could be inferred

computationally, directly from systematic molecular interaction networks (Dutkowski et al.,

2013). In this study, a large fraction of the GO hierarchy was recapitulated de novo directly

from network data gathered in budding yeast. For example, the pairwise interaction network

for genes and gene products encoding the proteasome (Figure 1A) was transformed to infer

the hierarchical structure of proteasomal components to a high degree of accuracy (Figure

1C). In addition, several hundred cellular entities were identified from the data that had not

yet been cataloged in GO, pointing to molecular machinery that is novel or has not yet been

curated. Data-driven ontologies circumvent some of the problems inherent to human

construction in that they provide a systematic view of the cell that is directly reducible to a

controlled set of experimental measurements.

An Ontology that Is Dynamic and Predictive

Whether based on expert knowledge or inferred from data, gene ontologies enable

representing and reasoning on the structural relationships among biological entities (Myhre

et al., 2006; Robinson and Bauer, 2011). However, current gene ontologies are static; they

lack any native capacity to capture dynamic biological states or make phenotypic

predictions. However, because gene ontologies inherently represent multiscale hierarchy in

cellular organization, they provide in theory an ideal substrate for building models that

predict a range of cellular responses and phenotypes.

In this respect, Siri provides an excellent example of what a predictive, or “executable,”

ontology looks like, supported by recent progress in Artificial Intelligence (AI). At Siri’s

core is a series of ontologies containing knowledge that concerns Siri—answers to questions

one would usually ask an iPhone (Guzzoni et al., 2006) (Figure 2B). These ontologies cover

knowledge on geography and travel, food and recreation, time and scheduling, and so on.

For instance, Siri uses an ontology for event planning that treats both meals and movies as

types of events, where meals involve a restaurant and a restaurant consists of components

such as a name, address, and style of food (Figure 2B). Many artificially intelligent agents

other than Siri are also based on ontologies or related structures for knowledge

representation and reasoning (Brachman and Levesque, 2004). For instance, IBM’s Watson

computer that famously won at Jeopardy! in 2011 or Adam the Robot Scientist that

successfully characterized new enzymes in yeast (King et al., 2009), both relied profoundly

on ontologies for knowledge representation. In many ways, such ontologies are similar in
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structure to bio-ontologies such as GO (Figure 2A). Might they also teach us how to develop

question-and-answer systems for cell biology (Wren, 2011)?

Unlike gene ontologies, which are essentially descriptive, Siri’s ontologies are coupled with

dynamic reasoning systems that render them active: “Whereas a conventional ontology is a

formal representation of domain knowledge with distinct concepts and relations among

concepts, an Active Ontology is a processing formalism where distinct processing elements

are arranged according to ontology notions; it is an execution environment” (Guzzoni et al.,

2006). These active ontologies not only encode entities and relations, but entities are

associated with states and relations are associated with rule sets that perform actions within

and among entities. Through a bottom-up execution, input states are incrementally

propagated up the hierarchy to impact higher-level entities, whose states are output as the

answer to the initial question—the best prediction based on the inputs.

For example, if you ask Siri to “find a good sushi restaurant for two tonight,” this query is

translated by setting the states of several entities: style is set to “sushi,” address to the user’s

current location, party size to the value “2,” and event date to today’s date (Figure 2B).

These values are propagated through the ontology to generate a list of restaurants, which

becomes the state of the event entity. This event result can then be provided to the user or

included in further computations. It is precisely because the system can propagate such

information, guided by structural and functional relationships between entities, that we

consider Siri a muse for cellular modeling.

Toward a Siri of the Cell

How the ontologies within Siri are used to answer questions is very different from how GO

is used today in bioinformatics. Typically, GO terms are associated with a set of genes

(annotations), but not with dynamic states; the relationships between GO terms are not

associated with rule sets that perform actions, at least beyond propagation of gene set

annotations. Nonetheless, given the similarity of GO to Siri and other AI agents (Figures 2A

and 2B), we propose that it might be possible to assemble an intelligent system for cell

biology according to the following general guidelines. Clearly, these guidelines are merely

suggestive and will require much research to determine their feasibility and best

implementations.

First, the structure of such an ontology could be directly assembled from GO or

algorithmically inferred directly from systematic data sets (Figure 2C). Based on our

experience in building data-driven ontologies, we suspect that a good first draft of this

ontology structure might be achieved by clustering genome-wide data incorporating protein

interactions, conditional gene expression, coevolution, and known phenotypic impact of

genetic manipulations such as deletions or knockdowns. Given an ontology structure that

reflects a hierarchical organization of the cell, a next step would be to associate each entity

with a state. A state would naturally correspond to the phenotype or collection of phenotypes

that most directly describe the entity, with all phenotypes being directly measurable in the

laboratory. Entities near the top of the hierarchy would be associated with whole-cell

phenotypes such as growth or differentiation. Lower-level entities would correspond to
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phenotypes that are increasingly molecular and concern the action of fewer and fewer genes.

High-level phenotypes, low-level phenotypes, and perhaps even genotypes would become

interrelated in the continuum of a multiscale hierarchical model of the cell. An important

consideration is how to achieve an appropriate mapping between entities and phenotypes.

This might involve pruning the ontology of entities for which one cannot conceive of an

experimental measurement of state.

Another challenge will be to determine how to dynamically compute the state of each entity

based on the states of its neighbors. For example, the state of “DNA replication elongation”

would be computed from information about the elongation of both the leading and the

lagging strand (Figure 2A), but the underlying mathematical function could take many

forms, including logic gates, probabilistic functions, or polynomial or logistic equations.

How to determine the specific parameters of these functions, regardless of what form they

take, is also unclear. This step could happen by statistical association from many input-

output examples using machine learning methods, by including externally generated

biological knowledge specific to each entity, or by manual curation from literature.

Siri of the Cell: Hopes and Limitations

Recent applications of AI to the life sciences have already laid some of the groundwork for

this vision. In particular, question-answering systems for biology and medicine are already

starting to emerge. These include Inquire Biology, a project to create an iPad app to enable

students to query biology textbooks (Spaulding et al., 2011), or the LODQA Project (Linked

Open Data Question Answering), which attempts to convert natural language questions

about disease genes to complex queries directed at databases (Cohen and Kim, 2013). It is

quite conceivable that expanding such tools with an active ontology representation of the

cell may take us beyond knowledge retrieval and open the door to novel biological

predictions.

One way Siri of the cell might be executed is shown in Figure 2C. A first step translates a

cell biological question, asked in natural language, to the corresponding input/output

relationship implied by the speaker. For example, a question such as “What is the impact on

cell growth of knockdown of DNA polymerase epsilon?” might be interpreted to recognize

that the input is decreased expression of the gene encoding DNA polymerase epsilon (Polε),

and the desired output concerns cell growth. The second step is to map the inputs and

outputs to entities in the ontology and to set the state of the input entities accordingly. In our

example, Polε is a component of the entity “DNA leading strand elongation”; therefore, the

state of this entity would be set to reflect the decreased expression of Polε. In a third step,

the ontology is executed to update all of its states, and the phenotypic prediction of interest

is read from the state of the output entity(ies). Here, the perturbation of Polε expression

would propagate upward in the ontology to impact higher-order entities such as “DNA

replication” and “DNA metabolism.” Ultimately, the state of the entity corresponding to cell

growth would be updated, and a prediction would be made. The validity of this prediction

could then be experimentally tested. Beyond this example, one can envision how the

suggested implementation of Siri of the cell might accommodate a wide range of queries

(Wren, 2011).
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The ontology is a very general framework, but whether it can capture the full extent of

biological complexity remains to be seen. Certain environmental conditions that do not

readily correspond to ontology inputs or outputs may prove difficult to represent. How to

combine or extrapolate cell models to the scale of an organism (such as a human patient) is a

challenge that must be eventually met. Moreover, because the entities and entity relations of

an ontology are typically fixed, such a model is incompatible with evolution, which depends

on plasticity in biological structure.

Nonetheless, even if a predictive ontology eventually fails as the ultimate model of a cell,

we anticipate that such a system could still perform well at answering general biological

questions and predicting cellular phenotypes. This duality between predictive capacity and

accurate representation of reality is a major issue for all AI agents. AI has not fully

elucidated the human mind, but it certainly has led to many intelligent predictions and

agents like Siri. Can such agents ever capture the inner workings of the mind or, for that

matter, of a cell? Perhaps. Can they help us find a good sushi restaurant for two tonight?

Absolutely.
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Figure 1. From Networks to Ontologies
(A) Network representation of three types of molecular interactions among genes/gene

products that form the proteasome structure, displayed using a force directed layout in

Cytoscape (http://www.cytoscape.org).

(B) Cartoon representation of the structure of the proteasome (Protein Data Bank entry

4b4t), created by integrating partial crystallographic structures obtained by analysis of 2.4

million images from electron microscopy.

(C) Hierarchical factorization of the proteasome subcomponents as described by NeXO.

Across all panels, colors indicate membership to the core complex β subunit (red), core

complex α subunit (orange), regulatory particle lid complex (blue), and regulatory particle

base complex (purple) according to the GO (A), the Protein Data Bank (B), and NeXO (C).

(A) and (C) adapted with permission from Dutkowski et al. (2013). (B) courtesy of David S.

Goodsell and the Research Collaboratory for Structural Bioinformatics Protein Data Bank.
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Figure 2. From Ontologies to Active Ontologies
(A) A subset of the Gene Ontology (Ashburner et al., 2000).

(B) A subset of an active ontology for event planning (Guzzoni et al., 2006). Red

relationships and entities indicate dynamic computation.

(C) One possible roadmap toward the assembly and execution of Siri of the cell.
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