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Abstract

Body composition analysis has become a useful tool in both clinical and research settings. Its use

in the pediatric population is complicated by the rapid periods of growth and physical

development that are characteristic of infancy, childhood, and adolescence. A thorough

understanding of the changing nature of body composition during this time is essential for

choosing the most appropriate measurement technique for a given individual, population, or

clinical question. Growing evidence suggests that tissues such as fat, muscle, and bone are

intimately involved in the regulation of whole body energy metabolism. This knowledge, when

coupled with advancements in imaging techniques such as MRI and PET-CT, offers the possibility

of developing new models of “functional” body composition. These models may prove to be

especially important when assessing malnutrition and metabolic risk in patients with chronic

disease.
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Body composition analysis is an important tool for the pediatric endocrinologist with

applications in both clinical and research settings. The goal of this review is to outline basic

concepts underlying the assessment of body composition in the pediatric population.

Particular attention will be paid to the challenges of using these techniques during periods of

rapid growth and development. The use of body composition to accurately assess obesity

and metabolic risk will be highlighted, as will its use in specific chronic disease groups.

Finally, new techniques for the qualitative assessment of adipose tissue will be discussed

with a focus on future directions.
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Basic Concepts

Body composition assessment aims to quantify the amount and relative proportions of body

tissue compartments, and in some cases, their cellular, molecular, and atomic components.

The five-level model of human body composition developed by Wang et al. (1) defines a

series of interrelated, increasingly complex levels (Table 1) that provide an organizational

framework for approaching questions related to body composition and identifying

appropriate methods of analysis. For example, an investigator interested in changes in bone

mass during growth and development may start with an anthropometric measure such as

height as a general measure of bone at the whole body level. Alternatively, total body bone

mineral content obtained using dual energy x-ray absorptiometry (DXA) provides an

accurate measurement at the tissue level. Total body calcium can be estimated from total

body bone mineral content (calcium(gm)=0.34 x bone mineral content(gm)) based on the

known composition of hydroxyapatite, yielding a measure (total body calcium) at the atomic

level (2).

Beyond the five-level model, approaches to body composition analysis can be organized

according to the number of compartments described. Two-compartment models divide the

body into fat mass (FM) and fat free mass (FFM) such that total body mass = FM + FFM.

Two compartment methods include anthropometry, densitometry, bioelectric impedance, or

isotope dilution for total body water. The density of FM and FFM usually are assumed to be

constant. This may be a reasonable assumption for FM, which is defined by the ether-

extractable lipid fraction of the body(4). FFM, however, is a complex tissue compartment

composed of skeletal muscle, organs, bone, and supporting tissue. FFM hydration and the

contribution of osseous mineral to FFM in particular are known to introduce uncertainty in

the estimation of FFM. This is an especially important consideration in children, as these

components of FFM change with growth and development (5–7), and in disease states.

Three-compartment models divide body mass further into FM, non-osseous lean body mass

(LBM) and bone mass such that total body mass = FM + LBM + bone mass. DXA offers a

quick, convenient means of three compartment analysis. FM, LBM, and bone mass have

unique tissue densities and therefore attenuate energy beams differently, allowing for

accurate quantification of each tissue. Because DXA measures bone mineral content

directly, this method eliminates one of the major sources of variability inherent in the

estimation of the FFM in the two-compartment model. Though often used interchangeably

in the literature, it is important to note that FFM and LBM differ in that LBM contains a

small amount (2–3% of body mass) of essential lipid (8).

Multi-component models using methods or combinations of methods to measure FM + three

or more components of FFM have also been developed (Table 2). The accuracy of body

composition assessment improves with the number of components measured as there is less

dependency on the assumption that FFM density is constant (9). For example, the formula

for a four-component model might include density values for fat, water, mineral and protein

(0.9007 g/mL, 0.9937g/ml, 3.038 g/mL, 1.34 g/mL, respectively) compared to a two-

compartment model which would include density values for only FM and FFM (0.9007

g/mL, 1.100 g/mL, respectively) (10).

Weber et al. Page 2

Pediatr Endocrinol Rev. Author manuscript; available in PMC 2014 September 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



A further consideration beyond the compartment models discussed above is the distribution

of adipose tissue on the body (fat patterning). Traditionally fat patterns have been described

as “android” with greater trunk fat and less extremity fat and “gynoid” with greater hip and

extremity fat and less trunk fat (11). Observations that the risk of cardiometabolic disease

may vary based upon these patterns of fat distribution have raised important questions

regarding qualitative differences among fat deposits.

Visceral fat, located in the trunk, is thought to be more metabolically active than

subcutaneous fat and is a strong risk factor for insulin resistance, type 2 diabetes and

cardiovascular disease (12–14). Conversely, lower extremity subcutaneous fat has been

found to be associated with increased insulin sensitivity and may be protective against the

development of cardiometabolic disease by suppressing the release of free-fatty acids (15,

16). Anthropometric measures such as waist circumference provide simple means of

estimating fat distribution that supplement measures of excess adiposity such as BMI, but

ultimately cannot definitively differentiate between visceral and subcutaneous adipose tissue

(17). Single slice CT and MRI are currently the most frequently used methods for

quantifying visceral fat. Recent advances in software technology permit estimation of

visceral fat mass, area and volume using DXA(18).

Ectopic fat deposition within and around lean tissue, organs and bone may impair local

tissue function and whole body glucose and lipid metabolism via lipotoxicity, impaired

blood flow, and cytokine release (19). Studies in adults and children using CT and MRI to

assess fat deposition in the thigh have found that adipose tissue below the fascia lata,

infiltrating muscle groups (intramuscular adipose tissue, IMAT), and within myocytes

(intramyocellular lipid) are all associated with insulin resistance and type 2 diabetes, while

subcutaneous adipose tissue is not (20–25). Intrahepatic lipid deposition may hinder glucose

metabolism and has been shown to be inversely associated with insulin sensitivity in obese

children (26). Accumulation of adipose tissue within the bone marrow may also be

detrimental, and has been found to be positively correlated with visceral adipose tissue and

inversely associated with bone mineral density in adults (27, 28).

Finally, distinctions between brown and white adipose tissue may be important when

considering fat mass. Brown adipose tissue (BAT) is highly vascularized, rich in

mitochondria and highly metabolically active. Its primary function is to maintain body

temperature upon cold exposure through non-shivering thermogenesis, a mechanism

whereby uncoupling of the mitochondrial respiratory chain leads to the generation of heat

instead of ATP (29). BAT is most abundant during infancy, a period of increased

susceptibility to hypothermia owing to low skeletal muscle content and high body surface

area relative to volume (30). It is now known that functional BAT persists beyond infancy,

distributed primarily in the supraclavicular, neck, paravertebral, and suprarenal areas of the

body (30, 31). The presence and volume of functional BAT increases with puberty and has

been found to be positively correlated with muscle volume, amount of cortical bone, and

bone size (32–34). BAT activity has also been found to be negatively correlated with BMI

and percentage body fat in children and adults, suggesting a possible link between BAT

activity and disordered weight gain (35, 36). The quantification and activity of BAT is
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typically determined using 18F-fluorodeoxyglucose positron-emission tomography (PET)

integrated with CT.

Measurement and Interpretation of Body Composition

There is no in vivo gold-standard for the measurement of body composition in children. One

or more methods may be appropriate for use based upon the individual (or population) of

interest and the type of information that is desired. A description of the measurement

techniques appropriate for a given level or compartment of body composition is available in

Tables 1 and 2. Measurement techniques typically increase in difficulty, expense and

potential risk to the individual as greater levels of detail are achieved. With the exception of

cadaveric studies, most other methods of body composition analysis are indirect and rely on

assumptions that have the potential to introduce bias into the results. A detailed technical

discussion of the different methodologies is beyond the scope of this review but is available

elsewhere (2, 3, 37, 38).

In situations where the goal is simply to quantify a given tissue or body compartment, the

measurements attained using the methods outlined above may suffice. Often, however, the

goal is to use body composition analysis as a means to describe populations or assess risk of

disease in an individual patient. There are a number of indices currently in use that allow for

the use of body composition analysis in this manner. Each comes with unique benefits and

drawbacks that must be carefully considered in relation to the population and question of

interest. Table 3 provides a list of indices for which there are reference data in the pediatric

population – an important consideration for interpretation of body composition results.

Weight for length is a simple index commonly used for infants and reference data is

applicable for use in diverse populations across the world (39). Waist circumference is

another simple anthropometric measure that may be useful as estimates of overall and

visceral adiposity and has been associated with cardiometabolic risk factors in childhood

(40, 41). Lack of a standard measurement technique and a difficulty in measurement among

obese individuals is a limitation of this technique (42–44). Upper arm fat and muscle areas,

calculated from measurements of upper arm circumference and triceps skin fold thickness,

have been used to predict body composition and nutritional status but these vary as a

function of age and body size, and are based on several approximations that may limit

accuracy (45).

The body mass index (BMI,) calculated as weight (kg)/stature (m)2 is the most widely used

index in children and adults. BMI is easily obtained from simple anthropometric measures

and has established reference standards (46, 47) making it an attractive screening tool for the

assessment of both malnutrition and excess adiposity (48). Of note, the CDC BMI reference

standards excluded children from contemporary NHANES surveys because of the obesity

epidemic. Therefore, the charts do not represent the present distributions of BMI among

current U.S. children. An important underlying assumption of BMI is that weight scales to

height2, and therefore BMI is independent of height. This assumption has generally been

found to be true in adult populations (48, 49) but not in children, where greater height is

associated with greater BMI (50–54). Another assumption of BMI is that individuals of
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different stature but the same BMI (or BMI percentile) have identical fractional body

composition (55). This assumption also has been challenged in the pediatric population,

where the proportions of body mass attributable to FM and FFM are highly variable and

dependent upon age and pubertal maturation (56).

Compartment specific indices such as the fat mass index (FMI, fat mass(kg)/stature(m)2),

fat-free mass index (FFMI, fat-free mass(kg)/stature (m)2), and lean body mass index

(LBMI, lean body mass(kg)/stature(m)2) have been proposed as more accurate indicators of

adiposity and malnutrition. FM and FFM can be estimated using techniques for assessing

two-compartment models, while (non-osseous) LBM requires a three-compartment approach

(table 2). There is still an assumption that FM, FFM, and LBM scale to height2 in these

indices, however the compartments of total body mass can be assessed independently. FMI

and FFMI were found to be more sensitive indicators of nutrition status compared to BMI or

percent body fat when applied to data from the Minnesota Semi-Starvation Study (57).

Analyses of FMI and FFMI in children have revealed that increases in BMI during

childhood are largely driven by increases in FFMI and not FMI, suggesting that BMI may

not accurately represent adiposity in all situations (53, 58, 59). The use of FMI, FFMI, and

LBMI in children is limited due to a lack of robust reference data.

Percent body fat (fat mass(kg)/body mass(kg)* 100) can be obtained from body composition

methods that estimates fat mass and provides more valuable information than BMI by

differentiating between fat and fat free mass. A study comparing BMI to percent body fat

estimated by DXA found that less than half of children and adolescents defined as

overweight by BMI (BMI ≥ 85th percentile) had high adiposity defined by percent body fat

(60). The use of percent body fat estimated from skinfold thicknesses has also been shown

to discriminate the presence of absence of metabolic syndrome in children and adolescents

with moderate accuracy (61). The use of percent body fat is limited by the fact that it does

not take into account the effects of height, body proportion, and the independent

contributions of absolute amounts of fat and fat free mass to health and disease.

Growth and Development

Body composition changes dramatically over the lifespan in humans. Careful consideration

of these underlying changes must be taken into account when applying and interpreting body

composition analyses in the pediatric population.

Infancy is a time of rapid growth and is associated with marked changes in compartment,

tissue, and chemical composition. In infants, extracellular water and organ mass comprise a

larger proportion of body mass compared to children and adults (66). This results in results

in a higher hydration of fat-free mass and can bias estimates of body composition (67). Fat

mass as a proportion of body weight is also higher in infants. Percent body fat in humans

peaks between 3–6 months of age, near 29% in males and 32% in females (68). Sex

differences in infant body composition extend beyond percent body fat as males have been

shown to have greater fat-free mass, total body water, total body potassium and bone

mineral content (68).
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Growth during childhood progresses at a slower pace with less pronounced changes in body

composition. The sex differences in percent body fat observed during infancy continue

through this period. A small increase in the rate of weight-, height-, and body breadth-gain is

observed in the mid-childhood growth spurt occurring around ages 6–8. A rebound in body

mass occurs at approximately the same time. BMI peaks near the end of infancy, declines in

early childhood before reaching a nadir around age 5–6, then increases throughout the

remainder of childhood, adolescence, and adulthood. The timing of this BMI rebound may

be genetically regulated (69).

The profound changes in body compartments, chemical, and tissue composition occurring

during adolescence are primarily due to the effects of gonadal sex steroids. The adolescent

growth spurt results in rapid increases in body mass and height. Existing sex-differences in

percent body fat become more pronounced. Females gain more fat mass relative to lean

mass, in part due to the growth of breast tissue and the gradual development of the female

body shape with fat deposition at the hips and thighs. Many males experience a pre-pubertal

fat spurt followed by rapid gains in lean body mass and reductions in fat at the extremities

(this includes the triceps, a site of skin fold thickness measurement). These sex-specific

changes in body composition are illustrated in Figure 1. Bone mineralization, cortical

density and trabecular density all increase during adolescence, with 40% of peak bone mass

accruing during this time (70–72).

Body composition continues to change through adulthood, although these changes are less

pronounced than those seen during infancy, childhood and adolescence. Adults continue to

gain weight throughout adulthood in most westernized societies, a phenomenon not always

observed in traditional non-westernized societies. Increases in weight and BMI throughout

adulthood are largely attributable to increases in fat mass as both FMI and percent body fat

were found to increase with age in a cross sectional analysis of the US population (63).

Applications for Obesity and Metabolic Disease

The prevalence of obesity in the pediatric population has increased dramatically over the

past few decades. Currently, 17% of American children and adolescents are identified as

obese (73). The societal implications of this obesity epidemic have led to a renewed interest

in the study and use of body composition to develop screening tools which can accurately

identify patients at risk for the development of obesity-related disease. Excessive weight

gain affects children of all ages and a careful consideration of the changes in body

composition during growth and development is essential when considering which method of

body composition analysis to use.

There is growing evidence that body composition during infancy and early childhood

predicts obesity and risk of cardiometabolic disease in later life. Infancy is a period of

transition, and both the pre- and post-natal environments contribute to body composition

during this time. Birth weight is the most readily obtainable measure of fetal growth and has

been studied extensively. A recent meta-analysis found that infants with high birth weight (>

4000 grams) had increased risk for the development of obesity later in life (74). Intrauterine

growth restriction is also associated with subsequent obesity, and is a strong risk factor for
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the development of metabolic syndrome, insulin resistance, and cardiovascular disease (75,

76). Interpretation of these studies is complicated by the fact that birth weight has been

consistently shown to be associated with subsequent lean mass; however, its association

with fat mass is less clear (77). Studies offering more detailed assessments of body

composition at birth are lacking; the recent development of air displacement

plethysmography devices designed especially for infants may offer a safe and easy approach

for this vulnerable population (78).

Consideration of the rate of weight gain during early infancy may be particularly important

in predicting future BMI, fat mass and central fat distribution (79–82). Efforts to maximize

catch-up growth in small for gestational age infants may lead to altered body composition

and metabolic risk. Small for gestational age infants experiencing rapid catch up weight gain

during the first two years of life showed increased whole body and central adiposity,

decreased lean mass, and increased insulin resistance at 4 years of age compared to average

for gestational age infants (83).

Early nutrition source, in particular, has been shown to impact measures of infant and

childhood body composition. Compared to breast fed infants, formula fed infants have

increased weight velocity and FFM during the first year of life, though these differences do

not persist into the second year (84). Breast feeding has been shown to reduce the risk of

future obesity in a dose-dependent manner, with infants who breast fed for at least 26 weeks

having a 51% reduction obesity risk at age 9 compared to a 38% reduction for those

breastfed 13–25 weeks (85). Feeding mode may also be important, as bottle feeding led to

increased weight gain over the course of the first year of life, irrespective of whether it was

with breast milk or formula (86).

During childhood, the timing of the body mass rebound may influence the risk of future

obesity and cardiometabolic disease. Children who experience this rebound earlier have

been shown to be at higher risk for obesity and the development of complications such as

type 2 diabetes (87, 88). Rate of weight gain continues to be an important risk factor, and

rapid gain in BMI during childhood has been found to be more strongly associated with

coronary events in adulthood than a given level of BMI at any age (89).

Adolescence is heralded by the onset of puberty, a process that has a profound impact on

glucose homeostasis, lipid metabolism and cardiovascular function. Insulin resistance, blood

pressure, and cholesterol all increase during puberty, which may make this a period of

increased risk for the development of metabolic syndrome (90–92). The prevalence of

metabolic syndrome has been reported to vary from 10 to 12% in the adolescent population.

Earlier pubertal development has been associated with increased risk for metabolic

syndrome in young adulthood (93–95). The components of the metabolic syndrome

(abdominal obesity, insulin resistance, dyslipidemia, hypertension) are all thought to result

from the presence of excess adiposity, however clarifying the nature of this relationship has

been difficult. This may be in part due to limitations of the commonly used measures of

adiposity during this time of rapidly changing body composition.
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BMI is currently the most widely used method of identifying children and adolescents with

excess adiposity and related risk for the development of metabolic disease. Children and

adolescents are classified as overweight if their BMI is between the 85th and 95th percentile

for age and sex and obese if BMI is greater than the 95th percentile (96). BMI was

developed as means of assessing obesity in populations and may not be an accurate

screening tool for identifying individual patients at risk for the development of

cardiometabolic disease. A cross-sectional analysis of children in the Bogalusa heart study

revealed that the optimal cutoff for BMI to identify the presence of metabolic risk factors

varied from the 50th to the 57th percentile across sex and racial groups (97). The fact that

such a low percentile for BMI is required to maximize sensitivity and specificity suggests

that BMI may fail as a screening tool for metabolic disease. The risk of metabolic syndrome

for a given BMI was also found to differ significantly between white and black obese

adolescents, which may have been attributable in part to lower levels of visceral adipose

tissue in blacks (98). This study not only illustrated the potential for BMI to misclassify

individuals in terms of metabolic risk, but also its lack of generalizability across racial

groups in part due to the fact that it does not account for fat distribution.

These limitations of BMI have led investigators to evaluate other indices of body

composition for use as screening tools for metabolic syndrome in youth. Cutoffs for waist

circumference were found to be similar to those for BMI and have similar sensitivity and

specificity (97). A cross-sectional study using contemporary data from NHANES (which

includes more obese children than those represented in the BMI charts) determined that the

optimal cutoffs for percent body fat to identify metabolic syndrome were the 85th percentile

for males and the 68th percentile for girls (61). At this time, it remains to be seen which

index will perform best as a screening tool for identifying cardiometabolic disease.

Comparison studies using longitudinal data are needed to answer this question.

Applications for Specific Populations

With continued advances in medical care, the number of children surviving and suffering

from chronic disease is increasing across all age groups. This represents another population

that may benefit from a more comprehensive approach to body composition analysis. These

are children who may be defined as normal by weight or BMI, but who in fact may have

excess adiposity and are at increased risk for the development of cardiometabolic disease or

have lean mass deficits leading to impaired body function.

Survivors of childhood cancer and stem cell transplantation are at risk for altered body

composition due to corticosteroid exposure, radiation and chemotherapy leading to

endocrine dysfunction, immobility, and nutritional deficiency. Studies have shown that

while there is no difference in BMI Z scores of these patients compared to healthy controls,

they have significant deficits of lean mass and excesses of fat mass (99, 100). Another study

of childhood cancer survivors suggested that these differences in body composition may be

associated with metabolic disease, finding a prevalence of metabolic syndrome of twice that

of the general population, even though only 17% were identified as overweight or obese by

BMI (101).
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Chronic inflammation affects growth and may lead to deficits in lean body mass. Children

and young adults with incident Crohn’s disease had deficits in lean mass (males and

females) and fat mass (females only) at diagnosis (102). These deficits improved with

treatment and lean mass was shown to be correlated with reduction of inflammatory markers

(103). Chronic kidney disease is also associated with lean mass deficits, especially of the

leg, which may be indicative of skeletal muscle wasting (104).

Nutritional status is an important predictor of morbidity and mortality in cystic fibrosis, and

is associated with pulmonary function, exercise tolerance, and linear growth in longitudinal

studies of children (105, 106). BMI is currently the most often used measure of nutritional

status in this population, however it may not identify individuals with deficits in FFM which

may be a better predictor of pulmonary function(107). One cross-sectional study of 50

children with mild lung disease found that BMI was more strongly correlated with

pulmonary function than either FM or FFM (108). Further studies are needed to fully

understand the relationships between body composition, nutritional status, and clinical

outcomes in cystic fibrosis.

Future Directions

The term “functional body composition” has been coined to describe approaches to body

composition analysis that go beyond the simple quantification of body tissue and aim to

integrate body components within the broader regulatory systems of the human body(109).

Fat, muscle, and bone are now understood to be important regulators of whole body energy

metabolism. The refinement and application of cutting-edge techniques such as MRI and

PET-CT will allow for deeper investigations into the nature of adipose tissue. Factors such

as fat distribution and metabolic activity can then be incorporated into current models of

body composition and may explain some of the individual and population specific variation

in risk of disease. Ultimately the goal should be to develop new definitions of obesity and

underweight that are based upon metabolic and physiologic function, rather than statistical

prevalence.
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Figure 1.
Body composition differences between males and females are present at all ages, but

pronounced differences emerge in adolescence with greater lean body mass in males and

greater fat mass in females
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Table 1

The five-level model of body composition1

Level Information Obtained Methods of Determination

I. Atomic Elemental: O,C,H, N, Ca, P, S, K, Na, Cl Neutron Activation, total body potassium counting with 40K

II. Molecular Water, protein, lipid, osseous and extraosseous
mineral, glycogen

Total body water, neutron activation, magnetic resonance
spectroscopy

III. Cellular Fat, body cell mass, extracellular fluid, extracellular
solids

Total body water, isotope dilution for sodium bromide, total body
potassium counting with 40K

IV. Tissue Adipose, skeletal, muscle, organs Hydrodensitometry, dual energy X-ray absorptiometry,
bioelectric methods, computed tomography, magnetic resonance
imaging

V. Whole Body Height, weight, circumferences, segment lengths,
skinfold thickness

Anthropometry

1
Adapted from Zemel and Barden 2004 (3)

Pediatr Endocrinol Rev. Author manuscript; available in PMC 2014 September 04.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Weber et al. Page 18

Table 2

Examples of multi-compartment models of body composition1

Model Components Measured Techniques Assumptions

Two-Compartment Fat mass + fat free mass Anthropometry, underwater
weighing, isotope dilution for total
body water, bioelectric methods

Constant densities of fat
mass and fat free mass

Three-Compartment Fat mass + lean body mass + bone DXA Constant densities of fat
mass and lean body mass

Fat mass + total body water + non-aqueous
solids

Underwater weighing, Bod Pod,
isotope dilution for total body water

Fixed ratio of protein to
minerals

Four-Compartment Fat mass + lean body mass + intracellular water
+ extracellular water

DXA, isotope dilution for total
body water and sodium bromide (or
bioelectric methods for intra- and
extracellular water

Fat mass + lean body mass + total body water +
protein

DXA, underwater weighing, isotope
dilution for total body water

Fixed ratio of K, 2H20 or
2H180 and NaBr in
cellular components

Fat mass + body cell mass + extracellular water
+ extracellular solids

DXA, isotope dilution for total
body water, total body potassium
counting with 40K

Five Compartment Fat mass + lean body mass + total body protein
+ total body nitrogen + glycogen

Neutron Activation Glycogen estimated from
total body protein or by
magnetic resonance
spectroscopy

Fat mass + total body protein + total bone
mineral + extracellular water + intracellular
water

Neutron Activation

1
Adapted from Zemel and Barden 2004 (3)
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Table 3

Sources of Body Composition Reference Data in Children and Adolescents

Measure Source Comment

Percentage Body Fat Ogden 2011 (62) Percentage body fat estimated by DXA, available for ages 8–19 (NHANES)

FFMI Kelly et al. 2009 (63) Described as LBMI, actually FFMI estimated by DXA, available for ages 8-adult
(NHANES)

Waist Circumference Fernandez (64) Available for ages 2–19, includes group-specific percentiles for Whites, Blacks, and
Mexican Americans

Bone Mineral Content,
Bone Mineral Density

Zemel et al. 2011 (65) Total body, lumbar spine, total hip, femoral neck, forearm for African Americans
and non-African Americans ages 5–20 (Bone Mineral Density in Childhood Study)
includes equation for adjusting for height

Baxter-Jones et al Longitudinal reference ranges for bone mineral content, for ages 8 to 25 years for
African Americans, Whites, Asians and Hispanics from Canada and the U.S.
{Baxter-Jones, 2010 #4032}

Total Body Water and
other components

Ellis et al Reference ranges for total body water, total body potassium and total bone mineral
content for European-Americans, African Americans and Mexican Americans based
on 856 healthy children, ages 5 to 18y {Ellis, 2000 #210}

Fomon et al. 1982 Reference ranges for composition and density of fat free body mass (protein, total
body water, intra- and extracellular water, osseous and non-osseous mineral,
carbohydrate, total body potassium and density of fat-free mass for birth to 10 years
of age {Fomon, 1982 #55}

Butte et al. Reference ranges for fat mass, fat-free mass, percent body fat, and composition and
density of fat free mass for infants, birth to 24 months of age based on a longitudinal
sample of 76 infants.{Butte, 2000 #211}

Density and hydration of
lean tissue

Wells et al. Based on 533 individuals (91% white), ages 4–23 y in the U.K. {Wells, 2010 #499}
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