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Abstract

Background—Subphenotypes have been identified within heterogeneous syndromes such as

asthma and breast cancer, with important therapeutic implications. Whether subphenotypes exist

within the acute respiratory distress syndrome (ARDS), another heterogeneous syndrome, is

unknown.
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Methods—We applied latent class modeling to identify subphenotypes using clinical and

biological data from two NHLBI ARDS randomized controlled trials; modeling was conducted

independently in each cohort. We then tested the association of subphenotypes with clinical

outcomes in both cohorts and with the response to positive end-expiratory pressure (PEEP) in the

second cohort.

Findings—Independent latent class models indicated that a two-class (i.e. two subphenotype)

model was optimal for both cohorts. In both cohorts, we identified a hyperinflammatory

subphenotype (Phenotype 2) that was characterized by higher plasma levels of inflammatory

biomarkers, a higher prevalence of vasopressor use, lower serum bicarbonate, and a higher

prevalence of sepsis, compared to Phenotype 1. Subjects in Phenotype 2 had higher mortality and

fewer ventilator-free and organ failure-free days in both cohorts. In the second cohort, the effects

of ventilation strategy on mortality, ventilator and organ failure-free days differed significantly by

phenotype (p=0.003–0.049 for interactions).

Interpretation—Latent class models identify two subphenotypes within ARDS, one of which is

characterized by more severe inflammation, shock, and metabolic acidosis and by significantly

worse clinical outcomes. Response to treatment in a randomized trial of PEEP strategies differed

based on subphenotype. Identification of ARDS subphenotypes may be useful in selecting patients

for clinical trials.

Funding—National Institutes of Health

INTRODUCTION

The acute respiratory distress syndrome (ARDS) is a heterogeneous syndrome first

identified in 1967 and defined by the clinical criteria of bilateral pulmonary opacities on

chest radiograph, arterial hypoxemia (PaO2/FiO2 ratio < 300), and exclusion of cardiac

failure as the primary etiology of the syndrome.(1–3) This definition was derived

empirically based on clinical experience, with the hypothesis that it would identify patients

with non-cardiogenic pulmonary edema, characterized by increased protein permeability of

the alveolar-capillary membrane. Since the time of the original identification of ARDS and

increasingly over the past two decades, there has been recognition of the clinical and

biological heterogeneity within the syndrome(4, 5); this heterogeneity may reflect our

incomplete understanding of the biology of ARDS and likely contributes to the poor track

record of Phase II/III trials of novel therapies in patients with ARDS.(6) As a result, some

investigators have proposed subdividing ARDS based on clinical risk factor, or by direct vs.

indirect etiology of lung injury; however, at present there is no consensus in the field on the

appropriate approach to reducing ARDS heterogeneity.

In contrast to ARDS, research in airways disease and cancer has made substantial progress

towards identifying subphenotypes of disease, with important therapeutic implications. For

example, subphenotypes based on the presence or absence of Th2-dependent inflammation

have recently been identified within asthma, with important mechanistic and therapeutic

implications.(7) This insight has led to new targeted treatments, such as a monoclonal

antibody to IL-13 that is particularly effective in individuals with Th2-predominant

inflammation.(8) Despite widespread recognition of the heterogeneity within common
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critical illness syndromes such as sepsis and ARDS, and some evidence suggesting that

subphenotypes may exist within severe sepsis,(6, 9, 10) there is little data on whether such

subphenotypes exist within ARDS.

Latent class analysis (LCA) is a well-validated statistical technique that uses mixture

modeling to find the best fitting model for a set of data, based on the hypothesis that the data

contains a number of unobserved groups or classes. The statistical approaches underlying

this method were originally developed over a century ago by investigators analyzing

whether a population of crabs in fact consisted of two subspecies.(11) In contrast to

traditional regression analyses, in which the goal is to understand the relationship of pre-

specified independent variables to a known outcome, LCA models ask whether there are

subgroups of patients defined by a combination of the baseline variables, without mandating

consideration of the outcome. Latent class-based methods have been extensively used in the

social sciences and in other medical disciplines (12, 13) for instance in identification of

asthma subphenotypes(14) but have not been highly utilized in critical care. We sought to

capitalize on the wealth of clinical and biological data available from two NHLBI-sponsored

ARDS Network randomized controlled trials by using LCA methods to attempt to identify

and validate novel subphenotypes of ARDS and test their association with clinical outcomes

and response to treatment.

MATERIALS AND METHODS

Study Design

Clinical and biological data were obtained from patients enrolled in the NHLBI ARDS

Network’s randomized controlled trials of lower tidal volume ventilation (referred to here as

ARMA)(15–17) and higher vs. lower positive end-expiratory pressure (PEEP) (trial referred

to here as ALVEOLI).(18) Details of the original trials have been previously published in

full. Patients randomized to higher tidal volume ventilation in the ARMA trial (n=429) were

excluded a priori from the analysis due to the effect of higher tidal volumes on mortality,

which would have precluded analysis of the association between latent class and clinical

outcomes (Figure 1). Analyses were conducted first in the ARMA trial lower tidal volume

patients (n=473, Figure 1). Analyses were then repeated independently in the ALVEOLI

trial (n=549, no patients excluded), to test whether the findings would generalize to an

independent sample. All clinical data (other than outcomes) and biological data used for this

analysis were collected at study baseline (pre-randomization). Patients were enrolled in the

ARMA study between 1996 and 1999; patients were enrolled in the ALVEOLI study

between 1999 and 2002. Additional details on the original trials are available in the online

supplement.

Assay Procedures

Plasma samples used for this analysis were drawn at the time of randomization, which was <

36 hours from the time of meeting ARDS criteria in both studies. Plasma biomarkers were

measured in duplicate using enzyme-linked immunoassay techniques (ELISA). Details of

the methods used to perform the assays have been previously published.(4, 19–25)
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Statistical Analysis

Baseline clinical data and biomarker levels were considered as class-defining variables in

the LCA model; classification was conducted without consideration of clinical outcomes.

Details on clinical variable selection, data cleaning and a complete list of the clinical

variables included in the LCA models (Table S1) are in the online supplement. In addition to

the clinical data, we included as inputs in the LCA model the eight plasma biomarkers

previously associated with poor clinical outcomes in ARDS and previously measured in

both samples: surfactant protein D (SP-D),(23) von Willebrand Factor antigen (vWF),(19)

soluble intercellular adhesion molecule-1 (sICAM-1),(24) interleukins 6 and 8 (IL-6, IL-8),

(21) soluble tumor necrosis factor receptor-1 (sTNFr-1),(22) plasminogen activator

inhibitor-1 (PAI-1),(20) and protein C.(20) The datasets used, by virtue of being derived

from randomized controlled trials with intensive on-site auditing and data quality checks,

were largely complete; however, there were some variables with some missing data (Table

S1).

Statistical analyses were conducted using Mplus v7.11. Basic two group comparisons

between the two cohorts were conducted using the t-test, Wilcoxon rank sum, or chi squared

test as appropriate. Next, we fitted a series of latent class models, first using the ARMA

cohort and then repeated independently using the ALVEOLI cohort. Criteria for model

selection were based on the Bayesian Information Criteria, the Vuong-Lo-Mendell-Rubin

(VLMR) likelihood ratio test, and the size of the smallest class. Latent class model

estimation was based on full-information maximum likelihood methods as implemented in

Mplus. This approach allows for the use of all data from all patients, including those missing

some data, in estimating the latent class models. Additional details on the latent class

modeling procedures are available in the online supplement.

Once the number of classes was determined, the associations between class and clinical

outcomes (90 day mortality, ventilator-free and organ failure-free days) were tested using

the approach developed by Lanza (26). This method incorporates the degree of uncertainty

of class membership. Finally, for the second cohort, in which patients were randomized to

lower or higher PEEP, we tested models of each outcome using class, treatment assignment

and their interaction as covariates to determine whether there was a differential treatment

effect based on latent class. This analysis was conducted using Poisson regression for

ventilator-free and organ failure-free days and using logistic regression for mortality.

RESULTS

Clinical Features of Cohorts

Baseline clinical data on patients in both cohorts are presented in Table 1. Several

significant differences between the two cohorts were noted, including primary ARDS risk

factor, severity of illness as measured by APACHE III scores, and prevalence of vasopressor

use at enrollment. In addition, several ventilator parameters at randomization differed

considerably between the two cohorts, likely reflecting changes in practice resulting from

the publication of the results of the first trial (of lower tidal volume ventilation) that had

been adopted at the time of the start of the second trial. Baseline biomarker data are
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presented in Table 2. As with the clinical data, there were substantial differences in the

baseline biomarker levels between cohorts, likely reflecting differences in severity of illness

and/or in pre-randomization ventilation parameters.

Latent-Class Modeling: Identification of Number of Phenotypes

In each cohort, latent-class models suggested that a two-class model provided the optimal

fit. Specifically, Table 3 displays a summary of the model fits for 2 through 5 classes for

both cohorts. In both cohorts, the p-value testing the number of classes indicated that a 2-

class model was a significant improvement over a 1-class model, but that the 3-class model

did not significantly increase the explanatory power. At the same time, the value of the

Bayesian Information Criteria continued to decrease as the number of classes increased; this

decrease suggests that the addition of more classes is worth the added model complexity.

This decrease was also seen in both the Akakie Information Criteria and sample-sized

adjusted-Bayesian Information Criteria (data not shown). To ensure that a two-class model

provided the optimal fit, we also explored a three class model, which produced one class

with an N of only 46 in the ARMA cohort. In the ALVEOLI cohort, the third class consisted

of only four cases. While the decrease in the BIC would suggest adding additional classes to

the model, upon consideration of the p-value (favoring a two-class model) and the small

number of subjects in the third class, the two class model was retained. For simplicity, we

will henceforth refer to the two classes as Phenotypes 1 and 2, respectively. In the 2-class

model, the average latent class probabilities for the most likely class in the first cohort were .

95 for Phenotype 1 and .92 for Phenotype 2; in the second cohort, the analogous

probabilities were .97 and .94, indicating good model fit and very strong probabilities of

class assignment (Figure S1).

Clinical and Biological Characteristics of Each Phenotype

We next sought to understand the clinical and biological features that distinguished each

phenotype. To accomplish this, given the high probabilities of class membership, we

assigned study participants to their most likely phenotype and examined the mean values of

the variables used in the model for each phenotype. Figure 2A shows the continuous

variables for the two phenotypes in the ARMA cohort, sorted by the degree of separation

between the phenotypes. Compared with Phenotype 1, Phenotype 2 was defined by

considerably higher plasma levels of IL-6, IL-8, sTNFr-1, and PAI-1; higher heart rate and

total minute ventilation; and lower systolic blood pressure, bicarbonate, and Protein C.

Figures 3A and 3B show differences in the categorical variables between the phenotypes in

the ARMA cohort. While gender and race differed significantly but not markedly between

the phenotypes, vasopressor use at baseline was more than three times as common in

Phenotype 2 compared to Phenotype 1. Furthermore, as shown in Figure 3B, subjects in

Phenotype 1 were more likely to have trauma-associated ARDS and less likely to have

sepsis-associated ARDS.

As described in the methods, the latent class models were derived again independently in the

ALVEOLI cohort, and the contribution of the key variables is presented in Figures 2B, 3C

and 3D. The characteristics of the two subphenotypes in this cohort were remarkably similar

to those in the ARMA cohort, with one phenotype (Phenotype 2) characterized by more
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profound inflammation, acidosis, and shock compared to the other phenotype (Phenotype 1).

Specifically, as in the ARMA cohort, Phenotype 2 was characterized by higher plasma

levels of inflammatory biomarkers, higher heart rate and minute ventilation, and by lower

systolic blood pressure, bicarbonate, and Protein C, compared with Phenotype 2 (Figure

2B). As in the ARMA cohort, there were marked and significant differences in vasopressor

use and in ARDS risk factor between the two phenotypes (Figures 3C and 3D).

Phenotype Prediction with Reduced Number of Variables

In order to determine whether phenotype prediction would be potentially feasible using a

reduced number of variables, we used the measures with the greatest difference in mean

absolute values between phenotypes in the ARMA cohort as predictive markers in receiver-

operator characteristic curve analysis. Using three variables (IL-6, sTNFr-1, and vasopressor

use [Yes/No]), the area under the curve for phenotype prediction was 0.937 in the ARMA

cohort and 0.929 in the ALVEOLI cohort, suggesting that phenotype can be accurately

predicted with a modest number of variables (Table S2). The addition of 1–2 additional

variables further increased the area under the curve slightly in both cohorts (Table S2).

Association between Phenotype and Clinical Outcomes

In order to determine whether the two phenotypes had different natural histories, we tested

the association between probable phenotype assignment and clinical outcomes,

incorporating the degree of uncertainty regarding phenotype assignment as described in the

methods. In the ARMA cohort, subjects in Phenotype 2 had significantly fewer organ

failure-free and ventilator-free days, compared with subjects in Phenotype 1 (Table 4).

Furthermore, subjects in Phenotype 2 had significantly higher mortality compared to

Phenotype 1 (44% vs 23%, p=0.006; Table 4). Likewise, in the ALVEOLI cohort, subjects

in Phenotype 2 had dramatically worse clinical outcomes than those in Phenotype 1,

including a markedly higher mortality rate (51% vs 19%, p<0.001; Table 4). Clinical

outcomes analyzed without adjustment for uncertainty regarding phenotype assignment

showed a similar pattern (Table S3).

Effect of Treatment Strategy on Outcomes, Stratified By Phenotype

Finally, we used data from the ALVEOLI trial to determine whether there were differences

in response to randomly assigned treatment (mechanical ventilation with higher vs. lower

positive-end expiratory pressure, PEEP) based on phenotype. We found that PEEP strategy

had significantly different effects on mortality in the two different phenotypes (p=0.049 for

interaction). Specifically, within Phenotype 1, patients randomized to the higher PEEP

strategy had a mortality of 48/202 (24%), vs. 33/202 (16%) in patients randomized to the

low PEEP strategy. In Phenotype 2, patients randomized to the low PEEP strategy had a

mortality of 36/71 (51%), vs. 31/74 (42%) in patients randomized to high PEEP. Likewise,

there were even stronger interactions between phenotype and PEEP strategy for the

outcomes of ventilator-free and organ failure-free days, reflecting significantly differential

effects of high vs. low PEEP on these clinical outcomes in the two different phenotypes

(Table 5).
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As a sensitivity analysis to determine whether general severity of illness scores could

supplant phenotype identification, we tested for interactions between APACHE III score and

PEEP. In contrast to the analyses using phenotype, there were no significant interactions

between APACHE score and PEEP strategy for the outcomes of mortality, organ failure free

days or ventilator-free days (p=0.58–0.99 for interactions).

DISCUSSION

Clinicians caring for patients with ARDS and researchers studying ARDS have long

appreciated the heterogeneity within this complex syndrome, yet the critical care community

has lacked empirical data on whether or how to refine our definitions and further subdivide

ARDS. This study provides evidence that there are two subphenotypes within the broader

phenotype of ARDS, with different natural histories, clinical characteristics, biomarker

profiles, and clinical outcomes. These subphenotypes were evident in independent analyses

of two clinical trial samples, despite considerable differences in the baseline clinical and

biological profiles of these two cohorts. Further, subphenotype was strongly and consistently

associated with clinical outcomes in both cohorts, with marked differences in ventilator-free

and organ failure free days and in mortality. Perhaps most significantly, the two

subphenotypes had different responses to treatment (lower vs. higher PEEP) in the

ALVEOLI trial, suggesting that identification of subphenotypes may be critically important

for future clinical trials in ARDS.

Taken together, the variables that characterize Phenotype 2 (high plasma levels of

inflammatory biomarkers, severe shock and metabolic acidosis) paint a portrait of a hyper-

inflammatory ARDS subphenotype that may afflict patients across the demographic

spectrum of age, gender, race-ethnicity, and etiology of ARDS (though there are some

differences in the latter factors by subphenotype). In contrast, the portrait of Phenotype 1

painted by this data is of a clinical syndrome characterized by less severe inflammation and

shock. Interestingly, neither the severity of ARDS (PaO2/FiO2 ratio), nor the severity of

renal or hepatic failure, nor the extent of leukocytosis distinguished the two phenotypes

from each other, since the specified variables had relatively similar values in the two

phenotypes (Figure 2). In concert with the results of our sensitivity analysis that

incorporated APACHE scores, these data suggest that phenotype membership is not merely

a reflection of severity of illness as measured by traditional prognostic indices.

Importantly, no single clinical or biological variable was sufficient to identify subphenotype;

put differently, none of the clinical features typically used to subdivide ARDS - such as

ARDS risk factor, presence or absence of sepsis, direct vs. indirect lung injury, or the use of

vasopressors - were associated purely with one or the other subphenotype (Figure 3). When

considered as a group, however, the clinical variables that characterize phenotype

assignment form a coherent and plausible cluster that has face validity from a clinical and

research perspective. For instance, Phenotype 2 is characterized by a high prevalence of

vasopressor use, more severe acidosis, and a high minute ventilation – a constellation of

clinical data points that forms a recognizable pattern of more severe ARDS and systemic

injury to the practicing intensivist. Hypothetically, if Phenotype 2 had been characterized by

a low prevalence of vasopressor use, severe acidosis, and a low minute ventilation, then it
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would not seem recognizable from a clinical perspective, in contrast to the combination of

variables that resulted from the Phenotype 2 model.

Among the continuous variables, it is notable that in general the plasma protein biomarkers

contributed more prominently to the phenotype definitions than did most of the clinical

variables (including clinically utilized biomarkers such as serum creatinine and white blood

cell count; Figure 2). This finding suggests that the plasma protein biomarkers may be

capturing aspects of pathophysiology that are not otherwise well-captured in our clinical

data, and also that development of the capability to measure these biomarkers in an

expedient point-of-care method may be necessary in order to incorporate subphenotype

determination into clinical trials.

Two important branch points in the analytic strategy deserve further mention. First, we

deliberated carefully at the inception of the analyses over whether to include the high tidal

volume patients in the analyses of the ARMA cohort, which would have enabled us to test

for an interaction between tidal volume and subphenotype in that cohort. We ultimately

decided not to include these patients, because to do so would have precluded analyses of the

association between subphenotype and mortality in that cohort. We thought this aspect of

the analysis was too important to discard, and therefore decided to exclude the high tidal

volume patients. Second, the ultimate decision as to the optimal number of classes identified

by the LCA models requires consideration of a number of different factors. Latent class

models seek to find the best model fit, assuming that there are “X” latent classes in the data.

If there are only 2 classes but we fit a 3 class model, the third class will be forced in by

selecting a small number of cases with a more extreme or unique set of values. The p-value

for the VLMR test strongly suggests that a two-class model is preferable to a three class

model, in both cohorts. That data, combined with the small size of the 3rd class, led us to

focus on a two-class model. A class that is very small, relatively, offers little information

and may represent more of an anomaly than a useful finding.

While latent class modeling has not to our knowledge been previously applied in classical

ARDS cohorts, Shah and colleagues recently used latent class-based models to identify

subphenotypes within primary graft dysfunction (PGD), a type of acute lung injury that

occurs after lung transplantation.(27) These models focused exclusively on the timing of

onset and resolution of lung dysfunction, using only grades of PGD at various timepoints to

generate latent classes, and found that patients with severe persistent dysfunction (one of

three identified classes) had the worst clinical outcomes. This approach differs from ours in

its focus on repeated measures of one clinical input (grade of PGD) to generate latent class

and lack of inclusion of biological markers; whether consideration of additional clinical data

points and/or biomarkers as class-defining variables would lead to identification of different

PGD subphenotypes remains unknown.

The finding of differential response to PEEP by ARDS subphenotype has face validity in

light of other studies that have noted interactions between PEEP response and ARDS

severity. A recent meta-analysis of 2299 ARDS patients (including the 549 patients used in

our derivation cohort) reported that those with a PaO2/FiO2 less than 200 had a 5% lower

hospital mortality with higher PEEP strategies compared with lower PEEP strategies
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(p=0.049).(28, 29) Two important contrasts with our approach deserve mention. First, while

PaO2/FiO2 ratio was considered in subphenotype identification, it was not one of the

variables that contributed most prominently to the classification (Figure 2). Second, the

interaction between PEEP and subphenotype that we identified is quantitatively larger and

was statistically significant in a much smaller sample size than the meta-analysis, suggesting

that the interaction between subphenotype and PEEP response is substantially stronger than

that between PaO2/FiO2 ratio and PEEP response. It is important to emphasize that while

the interactions identified between PEEP and clinical outcomes are potentially provocative,

we are reticent to make any recommendations for clinical care on the basis of a subgroup

analysis. Rather, we view these results as hypothesis-generating, and think that they support

the need for more rapid and/or bedside assays of the molecular phenotype of critically ill

patients to validate these findings in future trials.

Our study has several strengths. First, it should be emphasized that the latent class models

were generated independently in each of the two cohorts. Specifically, findings from the first

cohort were not considered in the modeling strategy in the second cohort. Given this

approach, the similarity of the findings in the two cohorts is noteworthy. Likewise, since

clinical outcomes were not considered as class-defining variables, the strengths and

consistency of the associations between subphenotype and clinical outcomes are striking.

Second, because we studied patients within the framework of a randomized controlled trial,

we are able to draw stronger conclusions about causal associations between treatment (with

PEEP) and clinical outcomes, with the usual caveats regarding subgroup analyses. Third, by

virtue of leveraging patients enrolled in multicenter trials, the samples studied reflect

demographically diverse cohorts of ARDS patients. Fourth, the two cohorts differed

substantially on many clinical and biological measures (Tables 1 and 2), strengthening the

generalizability of our findings and making the similarity of the subphenotypes identified in

the two cohorts more significant.

This study has some limitations. First, the patients included in these analyses were drawn

from randomized controlled trials of ARDS; different subphenotypes may be present in less

carefully selected ARDS patient populations. Second, the biomarkers included in these

analyses were limited to those that had been measured already in both cohorts. While these

biomarkers have value for prognosis and pathogenesis, other informative biomarkers have

emerged in ARDS research over the past several years, including angiopoietin-2,(30–32) the

receptor for advanced glycation endproducts,(33) club (formerly known as Clara) cell 16,

(34) brain natriuretic peptide,(35) interleukin-1 receptor antagonist(36) and others.

Consideration of these biomarkers, and/or of alternative genomic or metabolomic markers,

may result in more comprehensive subphenotypes being identified or may lead to the

recognition of these biomarkers as important classifiers. Third, analyses of possible

classifying variables was limited to the data collected in the original studies; clinical

variables such as alcohol use,(37) cigarette smoking,(38) or other comorbidities may

potentially contribute to subphenotype identification but were not available for this analysis.

Likewise, considerable histopathologic variability has been demonstrated within ARDS in

autopsy series; whether or how consideration of pathology findings would influence

subphenotype identification remains unknown.(39, 40)
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In summary, our analysis has identified two different subphenotypes within two independent

cohorts of patients with ARDS. These two subphenotypes have markedly different natural

histories, clinical and biological characteristics, clinical outcomes, and response to

treatment, fulfilling the criteria necessary to define an subphenotype.(7) We suggest that

these findings provide proof-of-concept that the clinical syndrome of ARDS contains

distinct subphenotypes and should prompt future studies aimed at further elucidating these

subphenotypes with comprehensive clinical and biological data. Given the differential

response to treatment by subphenotype identified herein, this area of research has the

potential to directly inform future randomized controlled trials of novel treatments for

ARDS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Support: This work was supported by contracts (NO1-HR 46054-46064) with the National Heart, Lung, and Blood
Institute (NHLBI). Dr. Calfee was supported by HL090833 and 110969. Dr. Matthay was supported by HL 51856.
Dr. Ware was supported by HL103836 and HL112656.

Role of the funding source: The funding sources had no role in the study design, analysis or interpretation of the
data, or writing of the report for these analyses. The corresponding author (CC) had full access to all of the data and
the final responsibility to submit for publication.

References

1. Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet. 1967
Aug 12; 2(7511):319–23. [PubMed: 4143721]

2. Bernard GR, Artigas A, Brigham KL, et al. The American-European Consensus Conference on
ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir
Crit Care Med. 1994 Mar; 149(3 Pt 1):818–24. [PubMed: 7509706]

3. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the Berlin
Definition. JAMA. 2012 Jun 20; 307(23):2526–33. [PubMed: 22797452]

4. Calfee CS, Eisner MD, Ware LB, et al. Trauma-associated lung injury differs clinically and
biologically from acute lung injury due to other clinical disorders. Crit Care Med. 2007 Oct; 35(10):
2243–50. [PubMed: 17944012]

5. Tejera P, Meyer NJ, Chen F, et al. Distinct and replicable genetic risk factors for acute respiratory
distress syndrome of pulmonary or extrapulmonary origin. Journal of medical genetics. 2012 Nov;
49(11):671–80. Epub 2012/10/11. [PubMed: 23048207]

6. Frank AJ, Thompson BT. Pharmacological treatments for acute respiratory distress syndrome.
Current opinion in critical care. 2010 Feb; 16(1):62–8. Epub 2009/12/03. eng. [PubMed: 19952736]

7. Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med.
2012 May; 18(5):716–25. Epub 2012/05/09. [PubMed: 22561835]

8. Corren J, Lemanske RF, Hanania NA, et al. Lebrikizumab treatment in adults with asthma. N Engl J
Med. 2011 Sep 22; 365(12):1088–98. Epub 2011/08/05. [PubMed: 21812663]

9. Wong HR, Cvijanovich NZ, Allen GL, et al. Validation of a gene expression-based subclassification
strategy for pediatric septic shock. Crit Care Med. 2011 Nov; 39(11):2511–7. Epub 2011/06/28.
[PubMed: 21705885]

10. Iskander KN, Osuchowski MF, Stearns-Kurosawa DJ, et al. Sepsis: multiple abnormalities,
heterogeneous responses, and evolving understanding. Physiol Rev. 2013 Jul; 93(3):1247–88.
Epub 2013/08/01. [PubMed: 23899564]

Calfee et al. Page 10

Lancet Respir Med. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



11. McLachlan, G.; Peel, D. Finite Mixture Models. New York: John Wiley & Sons; 2000.

12. Ezzedine K, Le Thuaut A, Jouary T, Ballanger F, Taieb A, Bastuji-Garin S. Latent Class Analysis
of a series of 717 patients with vitiligo allows the identification of two clinical subtypes. Pigment
cell & melanoma research. 2013 Oct 16. Epub 2013/10/17.

13. Rindskopf R, Rindskopf W. The value of latent class analysis in medical diagnosis. Stat Med.
1986; 5:21–7. [PubMed: 3961312]

14. Depner M, Fuchs O, Genuneit J, et al. Clinical and epidemiologic phenotypes of childhood asthma.
Am J Respir Crit Care Med. 2014 Jan 15; 189(2):129–38. Epub 2013/11/29. [PubMed: 24283801]

15. The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as
compared with traditional tidal volumes for acute lung injury and the acute respiratory distress
syndrome. N Engl J Med. 2000 May 4; 342(18):1301–8. [PubMed: 10793162]

16. The Acute Respiratory Distress Syndrome Network. Ketoconazole for early treatment of acute
lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2000
Apr 19; 283(15):1995–2002. [PubMed: 10789668]

17. The Acute Respiratory Distress Syndrome Network. Randomized, placebo-controlled trial of
lisofylline for early treatment of acute lung injury and acute respiratory distress syndrome. Crit
Care Med. 2002 Jan; 30(1):1–6. [PubMed: 11902249]

18. The Acute Respiratory Distress Syndrome Network. Higher versus lower positive end-expiratory
pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004 Jul 22;
351(4):327–36. [PubMed: 15269312]

19. Ware LB, Eisner MD, Thompson BT, Parsons PE, Matthay MA. Significance of von Willebrand
factor in septic and nonseptic patients with acute lung injury. Am J Respir Crit Care Med. 2004
Oct 1; 170(7):766–72. [PubMed: 15201135]

20. Ware LB, Matthay MA, Parsons PE, Thompson BT, Januzzi JL, Eisner MD. Pathogenetic and
prognostic significance of altered coagulation and fibrinolysis in acute lung injury/acute
respiratory distress syndrome. Crit Care Med. 2007 Aug; 35(8):1821–8. [PubMed: 17667242]

21. Parsons PE, Eisner MD, Thompson BT, et al. Lower tidal volume ventilation and plasma cytokine
markers of inflammation in patients with acute lung injury. Crit Care Med. 2005 Jan; 33(1):1–6.
discussion 230–2. [PubMed: 15644641]

22. Parsons PE, Matthay MA, Ware LB, Eisner MD. Elevated plasma levels of soluble TNF receptors
are associated with morbidity and mortality in patients with acute lung injury. Am J Physiol Lung
Cell Mol Physiol. 2005 Mar; 288(3):L426–31. [PubMed: 15516488]

23. Eisner MD, Parsons P, Matthay MA, Ware L, Greene K. Plasma surfactant protein levels and
clinical outcomes in patients with acute lung injury. Thorax. 2003 Nov; 58(11):983–8. [PubMed:
14586055]

24. Calfee CS, Eisner MD, Parsons PE, et al. Soluble intercellular adhesion molecule-1 (sICAM-1)
and clinical outcomes in patients with acute lung injury. Intensive Care Med. 2008; 35(2):248–57.
Epub 2008 Aug 1. [PubMed: 18670758]

25. Ware LB, Koyama T, Billheimer DD, et al. Prognostic and Pathogenetic Value of Combining
Clinical and Biochemical Indices in Patients with Acute Lung Injury. Chest. 2010 Oct 26; 137(2):
288–96. Epub 2009 Oct 26. [PubMed: 19858233]

26. Lanza ST, Tan X, Bray BC. Latent Class Analysis With Distal Outcomes: A Flexible Model-Based
Approach. Struct Equ Modeling. 2013 Jan 1; 20(1):1–26.

27. Shah RJ, Diamond JM, Cantu E, et al. Latent class analysis identifies distinct phenotypes of
primary graft dysfunction after lung transplantation. Chest. 2013 Aug; 144(2):616–22. Epub
2013/02/23. [PubMed: 23429890]

28. Briel M, Meade M, Mercat A, et al. Higher vs lower positive end-expiratory pressure in patients
with acute lung injury and acute respiratory distress syndrome: Systematic review and meta-
analysis. JAMA. 2010; 303(9):865–73. [PubMed: 20197533]

29. Rubenfeld GD. How much peep in acute lung injury. JAMA. 2010; 303(9):883–4. [PubMed:
20197538]

30. Calfee CS, Gallagher D, Abbott J, Thompson BT, Matthay MA. Plasma angiopoietin-2 in clinical
acute lung injury: prognostic and pathogenetic significance. Crit Care Med. 2012 Jun; 40(6):1731–
7. [PubMed: 22610178]

Calfee et al. Page 11

Lancet Respir Med. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



31. Agrawal A, Matthay MA, Kangelaris KN, et al. Plasma angiopoietin-2 predicts the onset of acute
lung injury in critically ill patients. Am J Respir Crit Care Med. 2013; 187(7):736–42. [PubMed:
23328529]

32. Meyer NJ, Li M, Feng R, et al. ANGPT2 Genetic Variant Is Associated with Trauma-associated
Acute Lung Injury and Altered Plasma Angiopoietin-2 Isoform Ratio. Am J Respir Crit Care Med
2011. May 15; 2011 183(10):1344–53.

33. Calfee CS, Ware LB, Eisner MD, et al. Plasma Receptor for Advanced End-Products and Clinical
Outcomes in Acute Lung Injury. Thorax. 2008; 63(12):1083–9. Epub 2008 Jun 19. [PubMed:
18566109]

34. Kropski JA, Fremont RD, Calfee CS, Ware LB. Clara cell protein (CC16), a marker of lung
epithelial injury, is decreased in plasma and pulmonary edema fluid from patients with acute lung
injury. Chest. 2009 Jun; 135(6):1440–7. Epub 2009/02/04. [PubMed: 19188556]

35. Fremont RD, Koyama T, Calfee CS, et al. Acute lung injury in patients with traumatic injuries:
utility of a panel of biomarkers for diagnosis and pathogenesis. J Trauma. 2010 May; 68(5):1121–
7. [PubMed: 20038857]

36. Meyer NJ, Feng R, Li M, et al. IL1RN coding variant is associated with lower risk of acute
respiratory distress syndrome and increased plasma IL-1 receptor antagonist. Am J Respir Crit
Care Med. 2013 May 1; 187(9):950–9. Epub 2013/03/02. [PubMed: 23449693]

37. Moss M, Bucher B, Moore FA, Moore EE, Parsons PE. The role of chronic alcohol abuse in the
development of acute respiratory distress syndrome in adults. JAMA. 1996 Jan 3; 275(1):50–4.
[PubMed: 8531287]

38. Calfee CS, Matthay MA, Eisner MD, et al. Active and passive cigarette smoking and acute lung
injury after severe blunt trauma. American Journal Of Respiratory And Critical Care Medicine.
2011; 183(12):1660–5. [PubMed: 21471091]

39. Thille AW, Esteban A, Fernandez-Segoviano P, et al. Comparison of the Berlin definition for acute
respiratory distress syndrome with autopsy. Am J Respir Crit Care Med. 2013 Apr 1; 187(7):761–
7. Epub 2013/02/02. [PubMed: 23370917]

40. Thille AW, Esteban A, Fernandez-Segoviano P, et al. Chronology of histological lesions in acute
respiratory distress syndrome with diffuse alveolar damage: a prospective cohort study of clinical
autopsies. The lancet Respiratory medicine. 2013 Jul; 1(5):395–401. Epub 2014/01/17. [PubMed:
24429204]

Calfee et al. Page 12

Lancet Respir Med. Author manuscript; available in PMC 2015 August 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Research in Context

Systematic Review

We did not carry out a systematic review prior to the inception of these analyses. Some

prior analyses have attempted to identify ARDS subgroups using traditional regression-

based methods; however, to our knowledge, this manuscript represents the first report of

the use of latent class models to identify subphenotypes of ARDS within two separate

heterogeneous samples of ARDS patients.

Interpretation

Subphenotypes have been identified within heterogeneous syndromes such as asthma and

breast cancer, with important therapeutic implications. Whether subphenotypes exist

within ARDS, another clinically heterogeneous syndrome, is unknown. These analyses

identify two subphenotypes within ARDS, one of which is characterized by more severe

inflammation, shock, and metabolic acidosis, significantly worse clinical outcomes, and a

differential response to treatment with positive end-expiratory pressure. These findings

provide proof-of-concept that the clinical syndrome of ARDS contains distinct

subphenotypes and should prompt future studies aimed at further elucidating these

subphenotypes with comprehensive clinical and biological data, a novel approach that

could inform the design of future randomized controlled trials of new treatments for

ARDS.
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Figure 1.
Flow diagram of patient inclusion in the first (ARMA) cohort and second (ALVEOLI)

cohort.
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Figure 2.
Differences in the standardized values of each variable by phenotype on the y-axis, with the

individual continuous variables along the x-axis, for the ARMA cohort (Figure 2A) and the

ALVEOLI cohort (Figure 2B). The variables are sorted based on the degree of separation

between the classes from maximum positive separation on the left (i.e. Phenotype 2 higher

than Phenotype 1) to maximum negative separation on the right (i.e. Phenotype 2 lower than

Phenotype 1). Variable standardization, in which all means are scaled to zero and standard

deviations to one, is described in the Supplementary Methods; a value of +1 for the
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standardized variable signifies that the mean value for a given phenotype was one standard

deviation higher than the mean value in the cohort as a whole.

Abbreviations: IL = interleukin; TNFr1 = tumor necrosis factor receptor-1; PAI-1 =

plasminogen activator inhibitor-1; MinVent = total minute ventilation; ICAM-1 =

intercellular adhesion molecule-1; MAP = mean airway pressure; VWF = von Willebrand

Factor; Creat = creatinine; Resp Rate = respiratory rate; Tbili = total bilirubin; PEEP =

positive end expiratory pressure; Temp = temperature in Celsius; Hct = hematocrit; Urine =

urine output over prior 24h; SP-D = surfactant protein D; BMI = body mass index; TV =

tidal volume; Gluc = glucose; SBP = systolic blood pressure; ProtC = Protein C; Bicarb =

bicarbonate; Aspir = aspiration; Pneum = pneumonia.
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Figure 3.
Figure 3A. Differences in categorical variables based on phenotype assignment in the

ARMA cohort; p=0.007 for comparison of gender, p<0.0001 for other comparisons.

Figure 3B. Differences in ARDS risk factor by phenotype in the ARMA cohort; p<0.0001.

Figure 3C. Differences in categorical variables based on phenotype assignment in the

ALVEOLI cohort; p=0.96 for comparison of gender, p=0.004 for race, p<0.0001 for

vasopressors.

Figure 3D. Differences in ARDS risk factor by phenotype in the ALVEOLI cohort;

p<0.0001.
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Table 1

Comparison of Key Clinical Data Points (Pre-Randomization) Between ARMA (n=473) and ALVEOLI

(n=549) Cohorts

Clinical Variable* ARMA Cohort ALVEOLI Cohort p-value

Age, years 51 ± 17 51 ± 17 0.96

Female gender, n (%) 284 (60%) 302 (55%) 0.09

Caucasian race, n (%) 355 (75%) 412 (75%) 0.93

ARDS Risk Factor, n (%)†

 Trauma 59 (13%) 45 (9%)

 Sepsis 125 (27%) 120 (23%) < 0.001

 Aspiration 72 (16%) 84 (16%)

 Pneumonia 145 (32%) 221 (42%)

 Other 60 (13%) 52 (10%)

APACHE III score 82 ± 29 94 ± 32 < 0.001

On vasopressors at enrollment, n (%) 134/338** (40%) 144/549 (26%) < 0.001

PaO2/FiO2 ratio 132 ± 60 128 ± 58 0.25

Maximum temperature, °C 38.5 ± 0.9 38.5 ± 1.0 0.09

Lowest systolic blood pressure, mm Hg 88 ± 19 88 ± 17 0.90

Maximum heart rate, beats per minute 127 ± 22 125 ± 24 0.31

Maximum respiratory rate, breaths per minute 30 ± 10 33 ± 10 < 0.001

Urine output, prior 24 hrs, L 2.02 (1.24–2.98) 1.85 (1.13–2.93) 0.06

Lowest hematocrit, % 30 ± 6 30 ± 6 0.64

Peak white blood cell count, thousands 12.3 (8.9–17.9) 13.0 (8.7–18.2) 0.68

Platelets, thousands 164 ± 121 177 ± 124 0.10

Lowest sodium 137±5 137 ± 5 0.86

Highest creatinine, mg/dL 1.10 (0.80–1.70) 1.10 (0.8–1.9) 0.70

Lowest glucose 135 ± 57 133 ± 64 0.68

Lowest albumin 2.2 ± 0.6 2.1 ± 0.6 < 0.01

Total bilirubin 1.0 (0.60–2.10) .80 (0.5–1.5) < .001

Bicarbonate 21 ± 5 22 ± 6 0.24

Tidal volume, mL 671 ± 126 511 ± 119 < 0.001

Total minute ventilation, L/min 13 ± 4 12 ± 4 < 0.001

PEEP, cm H20 8.6 ± 3.8 9.5 ± 4.3 < 0.001

Plateau pressure, cm H20 30 ± 8 27 ± 7 < 0.001

Mean airway pressure, cm H20 16 ± 5 16 ± 5 0.38

PaCO2, mm Hg 37 ± 8 39 ± 9 < 0.001

Body Mass Index 27 ± 7 27 ± 7 0.53

*
Data shown as mean ± standard deviation, n (%), or median (interquartile range) as appropriate.

**
Demoninator = 338 due to missing data

†
Denominator = 461 for ARMA, 522 for ALVEOLI due to missing data
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Table 2

Comparison of Key Biomarker Values (Pre-Randomization) Between ARMA and ALVEOLI Cohorts

Biomarker* ARMA Cohort ALVEOLI Cohort p-value

Protein C (% control) 47 (32–66) 78 (45–122) < .001

Plasminogen activator inhibitor-1 (ng/ml) 70 (40–138) 61 (30–144) .002

Interleukin-6 (pg/ml) 264 (109–766) 238 (93–741) .26

Interleukin-8 (pg/ml) 43 (20–93) 40 (16–98) 0.001

Soluble tumor necrosis factor receptor-I (pg/ml) 3255 (2128–5600) 4265 (2599–8448) < .001

Soluble intercellular adhesion molecule-1 (ng/ml) 627 (345–1038) 924 (605–1385) < .001

Surfactant Protein D (ng/ml) 84 (40–162) 101 (50–218) .004

Von Willebrand Factor antigen (% control) 284 (173–436) 398 (247–624) < .001

*
Data shown as median (interquartile range)
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