Skip to main content
. Author manuscript; available in PMC: 2015 Aug 1.
Published in final edited form as: Lancet Respir Med. 2014 May 19;2(8):611–620. doi: 10.1016/S2213-2600(14)70097-9

Table 3.

Fit statistics for latent class models from two to five classes

ARMA Cohort:
Number of Individuals Per Class/Subphenotype
Number of classes BIC Entropy* N1 N2 N3 N4 N5 p-value**
2 39947.9 .78 318 155 .036
3 39760.2 .88 308 119 46 .59
4 39656.7 .86 212 126 43 92 .28
5 39583.8 .86 150 120 36 36 131 .64
ALVEOLI Cohort:
Number of Individuals Per Class/Subphenotype
Number of classes BIC Entropy* N1 N2 N3 N4 N5 p-value**
2 49709.5 .87 404 145 .016
3 49383.7 .92 400 145 4 .58
4 49098.8 .94 386 129 4 30 .35
5 48955.1 .87 242 154 4 30 119 .80

Abbreviations: BIC = Bayesian Information Criterion

*

Entropy is an index of how well the classes are separated. It ranges from zero to one and values around .8 and up are generally considered a sign of a useful model.

**

By Vuong-Lo-Mendell-Rubin test, testing whether the number of classes provides improved model fit compared to a model using one fewer class.