Table 3.
ARMA Cohort:
| ||||||||
---|---|---|---|---|---|---|---|---|
Number of Individuals Per Class/Subphenotype
| ||||||||
Number of classes | BIC | Entropy* | N1 | N2 | N3 | N4 | N5 | p-value** |
2 | 39947.9 | .78 | 318 | 155 | .036 | |||
3 | 39760.2 | .88 | 308 | 119 | 46 | .59 | ||
4 | 39656.7 | .86 | 212 | 126 | 43 | 92 | .28 | |
5 | 39583.8 | .86 | 150 | 120 | 36 | 36 | 131 | .64 |
ALVEOLI Cohort:
| ||||||||
---|---|---|---|---|---|---|---|---|
Number of Individuals Per Class/Subphenotype
| ||||||||
Number of classes | BIC | Entropy* | N1 | N2 | N3 | N4 | N5 | p-value** |
2 | 49709.5 | .87 | 404 | 145 | .016 | |||
3 | 49383.7 | .92 | 400 | 145 | 4 | .58 | ||
4 | 49098.8 | .94 | 386 | 129 | 4 | 30 | .35 | |
5 | 48955.1 | .87 | 242 | 154 | 4 | 30 | 119 | .80 |
Abbreviations: BIC = Bayesian Information Criterion
Entropy is an index of how well the classes are separated. It ranges from zero to one and values around .8 and up are generally considered a sign of a useful model.
By Vuong-Lo-Mendell-Rubin test, testing whether the number of classes provides improved model fit compared to a model using one fewer class.