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Abstract

The rapid development of high-throughput technologies and computational frameworks enables

the examination of biological systems in unprecedented detail. The ability to study biological

phenomena at omics levels in turn is expected to lead to significant advances in personalized and

precision medicine. Patients can be treated according to their own molecular characteristics.

Individual omes as well as the integrated profiles of multiple omes, such as the genome, the

epigenome, the transcriptome, the proteome, the metabolome, the antibodyome, and other omics

information are expected to be valuable for health monitoring, preventative measures, and

precision medicine. Moreover, omics technologies have the potential to transform medicine from

traditional symptom-oriented diagnosis and treatment of diseases towards disease prevention and

early diagnostics. We discuss here the advances and challenges in systems biology-powered

personalized medicine at its current stage, as well as a prospective view of future personalized

health care at the end of this review.

Personalized or precision medicine is expected to become the paradigm of future health

care, owing to the substantial improvement of high-throughput technologies and systems

approaches in the past two decades1, 2. Conventional symptoms-oriented disease diagnosis

and treatment has a number of significant limitations: for example, it focuses on only late/

terminal symptoms and generally neglects preclinical pathophenotypes or risk factors; it

generally disregards the underlying mechanisms of the symptoms; the disease descriptions

are often quite broad so that they may actually include multiple diseases with shared

symptoms; the reductionist approach to identify therapeutic targets in traditional medicine

may over-simplify the complex nature of most diseases3. Advances in the ability to perform

large-scale genetic and molecular profiling are expected overcome these limitations by

addressing individualized differences in diagnosis and treatment in unprecedented detail.

The rapid development of high-throughput technologies also drives modern biological and

medical researches from traditional hypothesis-driven designs toward data-driven studies.

Modern high-throughput technologies, such as high-throughout DNA sequencing and mass

spectrometry, have enabled the facile monitoring of thousands of molecules simultaneously
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instead of just a few components that have been analysed in traditional research, thus

generating a huge amount of data to document the real-time molecular details of a given

biological system. Ultimately, when enough knowledge is gained, these molecular

signatures, as well as the biological networks they form, may be associated with the

physiological state/phenotype of the biological system at the very moment when the sample

is taken.

Future personalized health care is expected to benefit from the combined personal omics

data, which should include genomic information as well as longitudinal documentation of all

possible molecular components. This combined information not only determines the genetic

susceptibility of the person, but also monitors his/her real-time physiological states, as our

integrated Personal Omics Profile (iPOP) study exemplified4. In this review we will cover

recent advances in systems biology and personalized medicine. We will also discuss

limitations and concerns in applying omics approaches to individualized, precision health

care.

GENOMICS IN DISEASE-ORIENTED MEDICINE

The revolution of omics profiling technologies significantly benefited disease-oriented

studies and health care, especially in disease mechanism elucidation, molecular diagnosis

and personalized treatment. These new technologies greatly facilitated the development of

genomics, transcriptomics, proteomics and metabolomics, which have become powerful

tools for disease studies. Today, molecular disease analyses using large-scale approaches is

pursued by an increasing number of physicians and pathologists5, 6.

Initially, genome-wide association studies (http://gwas.nih.gov/) were launched in search of

association of common genetic variants to certain phenotypes of interest, which typically

assayed more than 500,000 Single Nucleotide Polymorphisms (SNPs) and/or Copy Number

Variations (CNVs) with DNA microarrays in thousands to hundred thousands of

participants7. To date, 1,355 publications are listed in the NHGRI (National Human Genome

Research Institute) GWAS Catalog reporting the association of 7,226 SNPs with 710

complex traits7. The studied complex traits vary vastly, from cancers (e.g. prostate cancer

and breast cancer) and complex diseases (e.g. Type 1 and Type 2 Diabetes, Crohn’s Disease)

to common traits (e.g. height and body mass index). These findings greatly broadened our

knowledge on disease loci, and can potentially benefit disease risk prediction and drug

treatments (as discussed in the section INTEGRATIVE OMICS IN PREVENTATIVE

MEDICINE). Although powerful, GWAS studies have proven difficult for most complex

diseases as typically a large number of loci are identified, each contributing to a small

fraction of the genetic risk. These studies have many limitations including the small fraction

of the genome that is analysed, and failure to account for gene-gene interactions, epistasis

and environmental factors8.

Whole genome sequencing (WGS) and whole exome sequencing (WES) have become more

and more affordable for genomic studies and are rapidly replacing DNA microarrays.

Single-base analysis of a genome/exome is achieved, which allows scientists to investigate

the genetic basis of health and disease in unprecedented detail. Assigning variants to
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paternal and maternal chromosomes i.e. “phasing” can be obtained through the analysis of

families9 or other methods1, 10, 11. With the generation of massive amount of whole genome

and exome data from diseased and healthy populations, understanding of both human

population variation and genetic diseases, especially complex diseases, has been brought to

a new level1, 12.

One field that significantly benefited from WGS technologies is cancer-related research. A

large number of cancer genomes have been sequenced through individual or collaborative

efforts, such as the International Cancer Genome Consortium (http://www.icgc.org/) and the

Cancer Genome Atlas (http://cancergenome.nih.gov/). The DNA from many types of cancer

have been sequenced, including breast cancer13-15, chronic lymphocytic leukaemia16,

hepatocellular carcinoma17, pediatric glioblastoma13, melanoma18, ovarian cancer19, small-

cell lung cancer20, and Sonic-Hedgehog medulloblastoma21, and databases are established,

such as the Cancer Cell Line Encyclopedia22. In addition, single-cell level cancer genome

has also been investigated by WES for clear cell renal cell carcinoma23 and JAK2-negative

myeloproliferative neoplasm24. Somatic mutations and subtyping molecular markers were

identified from these genomes. These different studies have revealed that nearly every

tumour is different with distinct types of potential “driver” mutations. Importantly, cancer

genome sequencing often reveals potential targets that may suggest precision cancer

treatment for the specific patients. As an example, a novel spontaneous germline mutation in

the p53 gene was identified by WGS in a female patient, which accounted for the 3 types of

cancers she developed in merely 5 years25. An attempt has been made recently to treat a

female patient with T Cell Lymphoma based on the target gene, CTLA4, identified by whole

genome sequencing26. The patient’s cancer was suppressed for two months with the anti-

CTLA4 drug ipilimumab, although she died of recurrence soon after.

Whole genome and exome sequencing can also facilitate the identification of possible causal

genes for hereditary genetic diseases, and is increasingly used for trying to understand the

basis of these “mystery diseases” once obvious candidates are ruled out. In one successful

example, whole genome sequencing of a fraternal twin pair with dopa (3,4-

dihydroxyphenylalanine)-responsive dystonia helped the identification of one pair of

personalized compound heterozygous mutations in the gene SPR, which accounted for the

disease in both individuals27. Importantly, based on the genome information the authors

supplemented the L-dopa therapy with 5-hydroxytryptophan (SPR-dependent serotonin

precursor) and significantly improved the health of both patients. In another example, Roach

et al. sequenced the whole genomes of a family quartet and identified rare mutations in the

genes DHODH and DNAH5 responsible for the two recessive disorders in both children –

Miller syndrome and primary ciliary dyskinesia28.

Pharmacogenomics is another important application of genomic sequencing. It is known that

the same drug may have different effect on different individuals due to their personal

genomic background and living habits8, 29. Genetic information can be used to assign drug

doses and reduce side effects. For example, genetic variants are known to affect patients’

response to antipsychotic drugs30. Based on pharmacogenomic trials, genetic tests for four

drugs are required by the FDA (US Food and Drug Administration) before the

administration of these drugs to patients, including the anti-cancer drugs cetuximab,
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trastuzumab, and dasatinib, and the anti-HIV drug maraviroc, and more are recommended

such as the anticoagulant drug Warfarin and the anti-HIV drug Abacavir8.

OTHER OMICS TECHNOLOGIES AND MEDICINE

Other omics technologies are also likely to impact medicine. High throughput sequencing

technologies have enabled whole transcriptome (cDNA) sequencing, or abbreviated as

RNA-Seq31. RNA-Seq has become a powerful tool for disease-related studies, as it has great

accuracy and sensitivity relative to microarray technology and it can also detect splicing

isoforms32. As RNA profiles reflect actual gene activity, it is closer to the real phenotype

compared to genomic sequence. With RNA-Seq, Shah et al. discovered varied clonal

preference and allelic abundance in 104 cases of primary triple-negative breast cancers, and

observed that ~36% of the genomic mutations were actually expressed33. Combining such

information with genomic information may be valuable in treatment of cancer and other

diseases. Moreover, RNA-Seq also captures more complex aspects of the transcriptome,

such as splicing isoforms34 and editing events35, which are generally overlooked by

hybridization-based methods. Splicing variants have now been associated with several

distinct types of cancer and cancer prognosis36-40.

Although proteins have long been deemed as the executors of most biological functions,

clinical proteomics is still a relatively young field due to technological limitations to profile

the complexity of the proteome with high sensitivity and accuracy. Since the development of

new soft desorption methods that enabled the analysis of biological macromolecules with

mass spectrometry, proteomics advanced significantly in the past decade41, 42. With current

mass spectrometry technology, one can now quantify thousands of proteins in a single

sample. For example, we were able to reliably detect 6,280 proteins in the human Peripheral

Blood Mononuclear Cell proteome4. Mass spectrometry also allows the detection of

expressed mutations, allele-specific sequences and editing events in the human

proteome4, 43, as well as profiling of the phosphoproteome44. Also of note is the MALDI-

TOF (matrix-assisted laser desorption/ionization-time of flight) mass spectrometry-based

imaging technology (MALDI-MSI) developed by Cornett et al., which allows the spatial

proteome profiling in defined 2-dimentional laser-shot areas using tissue sections45. Using

MALDI-MSI, Kang et al. identified immunoglobulin heavy constant alpha 2 as a novel

potential marker for breast cancer metastasis46.

The field of metabolomics has also advanced significantly with the improvement of mass

spectrometry. Both hydrophilic and hydrophobic metabolites can be profiled in specific

samples4, 47. As the metabolome reflects the real-time energy status as well as metabolism

of the living organism, it is expected that certain metabolome profiles may associate with

different diseases48. Therefore, metabolomic profiles become an important aspect for

personalized medicine49, 50. Jamshidi et al. profiled the metabolome of a female patient with

Hereditary Hemorrhagic Telangiectasia (HHT) along with 4 healthy controls, and identified

differences which highlighted the nitric oxide synthase pathway51. The authors then treated

the patient with bevacizumab and shifted her metabolomic profile towards those of the

healthy controls and improved the patient’s health. In addition, branched-chain amino acids

such as isoleucine have been associated with Type 2 diabetes and may ultimately prove to be
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valuable biomarkers52. Finally, since some metabolites bind and direct regulate the activity

of other biomolecules (e.g. kinases)53, there is significant potential to modulate cellular

pathways using diet and metabolic analogs that serve as agonist or antagonist of protein

function.

INTEGRATIVE OMICS IN PREVENTATIVE MEDICINE

The concept of personalized medicine emphasizes not only personalized diagnosis and

treatment, but also personalized disease susceptibility assessment, health monitoring and

preventative medicine. Because disease is easier to manage prior to it onset or when a

disease is at its early stages, risk assessment and early detection will be transformative in

personalized medicine. Systems biology has the potential to capture real-time molecular

phenotypes of a biological system, which enables the detection of subtle network

perturbations preluding the actual development of clinical symptoms.

Disease susceptibility and drug response can be assessed with a person’s genomic

information8. This information may serve as a guideline for monitoring the health of a

particular patient to achieve personalized health care, as showcased by Ashley et al.54.

Whole genome sequence revealed variants for both high-penetrance Mendelian disorders,

such as HTT (Huntington’s Disease55) and PAH (Phenylketonuria56), as well as common,

complex diseases, such as the disease-associated genetic variants reported in GWAS

studies57. Disease risks can be evaluated for a given person and an increase or decrease in

disease risk compared with the population risk (of the same ethnicity, age and gender) can

be estimated (Figure 1). In the study of Ashley et al., the genome of a patient was analysed

and increased post-test probability risks for myocardial infarction and coronary artery

disease were estimated54. Their estimation matched the fact that the patient, although

generally healthy, had a family history of vascular disease as well as early sudden death58.

Genetic variants associated with heart-related morbidities as well as drug response were

identified in the patient’s genome, the information of which, as the authors stated, may

direct the future health care for this particular patient. Similarly, Dewey et al. further

extended this work by analysing a family quartet using a major allele reference sequence,

and identified high-risk genes for familial thrombophilia, obesity and psoriasis59.

To further explore variation and power of the full human genome, projects and databases

(such as the Personal Genome Project60) are being launched to help advance this field.

However, genomic information alone usually is not adequate to predict disease onset, and

other factors such as environment are expected to play a critical role in this process61, 62.

The predictive capability of whole genome sequence was assessed by Roberts et al. through

modelling 24 disease risks in monozygotic twins63. For each disease, the authors modelled

the genotype distribution in the twin population according to the observed concordance/

discordance, and discovered that for most individuals and most diseases, the relative risk

would be tested negative compared to the population, and in the best-case scenario, only one

disease or more could be forewarned for any individual. The results of Roberts et al. are not

surprising, as disease manifestation is probabilistic and not deterministic. Nonetheless,

whole genome information by itself is expected to have partial value in disease prediction

for complex diseases. In addition, from a systems point of view, peripheral components of
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the biological network would be more likely to contribute to complex diseases, as

perturbation of the main nodes, which are usually essential genes, would be lethal64.

Therefore it is more difficult to identify the exact contributors of complex diseases.

Moreover, as stated above, non-genomic factors may also exist and further complicate the

situation. As an example of this, multiple sclerosis is known to have genetic components

however, Baranzini et al. failed to identify genomic, epigenomic or transcriptomic

contributors in discordant monozygotic twins, which may indicate the existence of other

factors, such as the environment65.

Current technologies, especially high-throughput sequencing and mass spectrometry, enable

the monitoring of at least 105 molecular components, including DNA, RNA, protein and

metabolites in the human body. Therefore it is now feasible to identify the profiles of these

components that correlate with various physiological states of the body, and profile

alterations as a result of physiological state changes and diseases. Compared with genomic

sequences alone, the profiles of transcriptome, proteome and metabolome are closer

indicators to the real-time phenotype, therefore collecting these omics information in a

longitudinal manner would allow monitoring an individual’s physiological state. To test this

concept, we implemented a study by following a generally healthy participant for 14 (now

28) months with integrated Personal Omics Profile (iPOP) analysis, incorporating

information of the participant’s genome with longitudinal data from the person’s

transcriptome, proteome, metabolome and autoantibodyome4. As blood constantly circulates

the human body and exchanges biological matters with local tissues and is presently

analysed in medical tests, we chose to monitor the participant’s physiological states by

profiling the blood components (PBMCs, serum and plasma) with iPOP analysis. The

genome of this individual was sequenced with 2 WGS (Illumina and Complete Genomics)

and 3 WES (Agilent, Roche Nimblegen and Illumina) platforms to achieve high accuracy,

which was further analysed for disease risk and drug efficiency. The identified elevated risks

included coronary artery disease, basal-cell carcinoma, hypertriglyceridemia and Type 2

Diabetes (T2D), and the participant was estimated to have favourable response to

rosiglitazone and metformin, both are anti-diabetic medications. Although the participant

has a known family history for some of the high-risk diseases (but not T2D), he was free

from most of them (except for hypertriglyceridemia, for which he used medication) and had

a normal Body Mass Index at the start of our study. Nonetheless, these elevated disease risks

served as a guideline to monitor his personal health with iPOP analysis. We profiled the

transcriptome, proteome and metabolome from 20 time points in the 14 months, and

monitored molecular profile changes for physiological state change events during our study,

including 2 viral infections. The subject also acquired T2D during the study, immediately

after one of the viral (respiratory syncytial virus) infection. Two types of changes were

observed from the iPOP data: the autocorrelated trends that reflect chronic changes, and the

spikes which include significantly up/down-regulated genes and pathways especially at the

onset of each event. With our iPOP approach, we acquired a comprehensive picture of

detailed molecular differences between different physiological states, as well as during

disease onset. In particular, interesting changes in glucose and insulin signalling pathways

were observed during the onset of T2D. We also obtained other important information from

our omics data, such as dynamic changes in allele-specific expression and RNA-editing
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events, as well as personalized autoantibody profiles. Overall, this study revealed an

important application of the use of genomics and other omics profiling for personalized

disease risk estimation and precision medicine, as we discovered the increased T2D risk,

monitored its early onset, and helped the participant effectively control and eventually

reverse the phenotype by proactive interventions (diet change and physical exercise).

Another important feature of our study is that samples are collected in a longitudinal fashion

so that aberrant/disease states can be compared to healthy states of the same individual.

Another advantage of our iPOP approach is its modularity, as other omics and quantifiable

information can also be included in the iPOP profile, which can be readily tailored to

monitor any biological or pathological event of interest (Figure 2). Examples of other

information are: epigenome66, gut microbiome67, microRNA profiles68 and immune

receptor repertoire69. Moreover, quantifiable behavioural parameters such as nutrition,

exercise, stress control and sleep may also be added to the profile70.

THE IMPORTANCE OF DATA MINING AND RE-MINING

One important aspect of systems biology is data mining. Data management and access can

become a daunting task given the tremendous amount of data generated with current high-

throughput technologies, and the data size is constantly increasing with time71. Challenges

exist computationally in each step to handle, process and annotate high-throughput data,

integrate data from different sources and platforms, and pursue clinical interpretation of the

data72. These steps can be quite computationally intensive and require significant

computational hardware; for example, to map short reads to achieve 30 X coverage of the

human genome, 13 CPU days is typically required72 although these times are rapidly

decreasing. Moreover, as biological systems act more than just the sum of its individual

parts, knowledge from multiple levels (such as epistasis, interaction, localization and

activation status) should be considered to capture the underlying highly organized networks

for functional annotations73. Ultimately it will be important to have a comprehensive

database that contains Electronic Health records (including treatment information), genome

sequences with variant calls and as much molecular information as possible. In principle

with appropriate algorithms such a database could be mined by physicians to make data-

driven medical decisions.

Currently many high-throughput datasets of similar types (for example, expression and

genome-wide association data collected from different populations of the same disease)

were created as smaller, separate studies. Thus combining these publicly available datasets

bioinformatically may provide more statistical power and lead to a clearer conclusion that

could not be achieved in the individual studies. The work by Roberts et al. mentioned above

serves as one example63. In order to test the capacity of whole genome information, the

authors combined monozygotic twin pair data from a total of 5 sources in 13 publications to

obtain a much large dataset for their test. Similarly, Butte and colleagues combined the

results of 130 functional microarray experiments for T2D and remined the data for

repeatedly appeared candidate genes74. They identified CD44 as the top candidate gene

associated with T2D. In a related effort, by analysing curated data of 2510 individuals from

74 populations, the group led by Butte also discovered that T2D risk alleles were unevenly
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distributed across different human populations, with the risk higher in African and lower in

Asian populations75.

CONCERNS AND LIMITATIONS

Personalized health monitoring and precision medicine is just accelerating at a rapid pace

due to development of systems biology. As noted above, multiple efforts in both technology

development and biological application have occurred, and an increasing number of

researchers and physicians alike are sharing this vision. Hood et al. termed this approach as

“P4 Medicine” for predictive, preventive, personalized and participatory medicine12.

Nevertheless, many concerns also exist, and guidelines on translational omics research have

been recommended by the Institute of Medicine76. Khoury et al. suggested “a fifth P”, i.e.

the population perspective be added to personalized medicine77 and population validation of

systems results with strong evidence should be achieved before its clinical application.

Many disease-associated genetic variants discovered in GWAS still need to be functionally

validated78. In addition, Khoury et al. raised concerns that restricted health care resources

might be wasted if unneeded disease screening/subclassification with systems approaches

were conducted rather than lowering health care costs. However, with the rapid drop in

technology costs and carefully designed pilot studies, the optimal screening frequencies/

levels of subclassification necessary for precision medicine could be determined and costs

maintained at affordable levels. It is worth noting that generating personalized omics data

with appropriate interpretation can greatly benefit our understanding of physiological events

for health and disease, and precision health care as we gain more knowledge in this field. In

addition to personalized diagnosis and treatment, the future of precision medicine with

omics approaches should emphasize personalized health monitoring, molecular symptom

early detection and preventative medicine, a paradigm shift from traditional health care.

As the human body is a highly organized, complex system with multiple organs and tissues,

it is important to select the correct sample type for understanding a specific biological

problem. However, as many sample types are unavailable (e.g. brain tissue) or not regularly

accessible (e.g. biopsy samples from internal organs) from living individuals, our scope for

personalized health monitoring is thus restricted. Therefore systems biology results,

especially iPOP results, should not be over-interpreted. Although iPOP data from blood

components may indicate changes in the other parts of the human body, the actual profiles

for the tissue of interest might be underrepresented in blood or delayed in phase.

It is still not clear who is to develop and deliver personalized treatments for personalized

medicine if they are not available as conventional medication. The cost for developing

personalized drugs may become prohibitive to accurately address personal specificity, and

may face other difficulties such as Food and Drug Administration approval. However,

advances in high-throughput drug discovery will help accelerate this field.

In addition, personalized medicine using omics approaches relies heavily on technology

development for biological research. This includes advances in both research

instrumentation and computational framework. For example, it is still not possible to

accurately determine the entire sequence of a genome due to limitations of current
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WGS/WES methods79, 80, even after computational improvement of signal-to-noise

ratio81, 82. A low sequencing error rate was claimed by both the Illumina HiSeq (for 2 × 100

bp reads, more than 80% of the bases have a quality score above Q30, or 99.9% accuracy,

http://www.illumina.com/documents//products/datasheets/datasheet_hiseq_systems.pdf) and

the Complete Genomics platform (1 × 10-5 at the time of our study80 and 2 × 10-6 as of

October 8th, 2012, www.completegenomics.com); however, per variant error rate is still

high (15.50% and 9.08% for Illumina and Complete Genomics respectively with no filter,

and 1.01% and 1.12% post multiple filters) as reported by Reumers et al.81, which agreed

with our observation that only 88.1% of the SNP calls overlapped when the same genome

was sequenced with the two platforms80. Thus possible disease-associated variants in these

regions would be overlooked or misinterpreted. Another issue lies in storage and processing

of the omics data, as petabytes of data can easily be generated for a small iPOP study of 200

participants and demanding computing resources will be needed for data analysis. Therefore,

interdisciplinary efforts from biologists, computer scientists and hardware engineers should

be organized to ensure the continued improvement of this field.

CONCLUSION

The era of personalized precision medicine is about to emerge. The steady improvement of

high-throughput technologies greatly facilitates this process by enabling omics profiling

such as whole genome, epigenome, transcriptome, proteome and metabolome, which convey

detailed information of the human body. Integrated profiles of these omes should reflect the

physiological status of the host at the time the samples are collected. Personalized omics

approach catalyzes precision medicine at two levels: for diseases and biological processes

whose mechanisms are still unclear, omics approach will facilitate researches that would

greatly advance our understanding; and when the mechanisms are clarified, individualized

health care can be provided through health monitoring, preventative medicine, and

personalized treatment. This would be especially helpful for complex diseases such as

autism83 and Alzheimer’s disease84, where multiple factors are responsible for the

phenotypes. Furthermore, omics approach also facilitates the development of other less-

stressed but important health-related fields, such as nutritional systems biology, which

studies personalized diet and its relationship to health in systems point of view85. With the

rapid decrease in the cost of omics profiling, we anticipate an increased number of

personalized medicine applications in many aspects of health care besides our proof-of-

principle study. This will significantly improve the health and cut down health care costs of

the general public. Scientists, governments, pharmaceutical companies and patients should

work closely together to ensure the success of this transformation86.
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Figure 1.
Example personalized RiskGraph. Each horizontal line symbolizes genetic risk of one

disease tested for a specific individual. The tail of each arrow shows the pretest probability

of a disease in a population of certain ethnicity, age and gender. The frond end of each arrow

displays the posttest probability with consideration of the person’s genomic information.

Red arrow, increased risk; green arrow, decreased risk.
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Figure 2.
The concept of integrative Personal Omics Profile (iPOP). Physiological status of the body

can be reflected by the integrated profiles of different omic profiles, as well as the

interactions amongst them.
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