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Abstract

The health of an individual depends upon their DNA as well as environmental factors

(environome or exposome). It is expected that although the genome is the blueprint of an

individual, its analysis with that of the other omes, such as the DNA methylome, the

transcriptome, proteome, as well as metabolome will further provide a dynamic assessment of the

physiology and health state of an individual. This review will help to categorize the current

progress of omics analyses, and how omics integration can be used for medical research. We

believe that integrative Personal Omics Profiling (iPOP) is a stepping stone to a new road to

personalized health care and may improve 1) Disease risk assessment, 2) Accuracy of diagnosis,

3) Disease monitoring, 4) Targeted treatments and 5) Understanding the biological processes of

disease states for their prevention.

Introduction

Health care has always been personal in that patients are treated according to their individual

symptoms, exposures and family history. Current medical exams measure a limited number

of components in healthy individuals and slightly more in those with suspected diseases.

However, the revolution in new technologies allows measurements of DNA and other

molecules at an unprecedented level for more precise diagnostics and treatment at a

personalized level.

A personal genome, the ~6 billion nucleotides that encode each individual, can now be

deduced at a reasonable cost. The effects of environmental exposures (pathogens, food, and

other contacts) are also likely to shape ones physiology and their effects on other omes such

as epigenome (DNA methylation), transcriptome (RNA), proteome, metabolome, auto-

antibodyome, and microbiome (summary in Table 1), can be measured by many new

technologies (e.g. DNA sequencing, mass spectrometry, protein microarrays). These
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measurements, along with standard medical tests, are expected to capture the additional in-

progress omic dimensions of an individual’s biological condition. The integration of omics

information, referred to as integrated Personal –Omic Profiling (iPOP), is expected to better

assist in health care in many ways including 1) disease risk assessment, 2) early and accurate

diagnosis, 3) monitoring disease progression, 4) targeted therapeutic treatments and 5)

understanding the biological basis of disease states and 6) disease prevention.

Omics information can in principle be collected from a variety of tissues and cell types,

although for medical purposes typically only accessible fluids such as blood or urine are

analyzed in healthy individuals. Of particular importance in such studies is the collection of

longitudinal information so that changes can be identified during the onset of disease states.

However, for individuals with diseases, biopsies and surgically removed samples can be

analyzed and subjected to detailed analyses.

Below we summarize the different omes and their application to personalized medicine.

The use of ‘–ome’ or ‘-omics’ as a suffix to represent an encompassing new field of study is

rapidly growing, whereby in 2010 over 200 omic types were annotated in Medline

(McDonald et al., 2012). Bolded –omes are those used in an initial iPOP study by Chen et

al., 2012. In this case, iPOP collection was performed at relatively-healthy time points which

was compared to un-healthy states (viral infections, green figure in Figure 1D). iPOP can be

implemented over a lifetime; particularly informative with individuals with high disease risk

assessment (from genome), and/or family histories of illness. This will allow for analysis of

patterns in disease manifestation, progression and ideally identification of gene/pathway

targets for treatment; many of which are hypothesized to overlap in large-scale population

iPOP studies (personalized ↔ population).

More than meets the eye: The complexity of personalized –omics

The 1941 article communicating the ‘one-gene/one-enzyme/one-function’ hypothesis by

Beadle and Tatum, discussed the first insights that this was “ranging from simple one-to-one

relations to relations of great complexity” (Beadle and Tatum, 1941). Crick in 1970 re-

assessed his ‘central dogma of molecular biology’, and discussed the intricate inter- and

intra- relationships between DNA ↔ RNA ↔ proteins (Crick, 1958). A myriad of different

omes can currently be measured, each with its own contributions and challenges to detect

disease states. Current research continues to reveal the multi-faceted mechanisms first

within each omic level, as well as the crosstalk between the omes.

Genome (DNA)

The reference human genome was ’completed‘ in 2003 (Genomics, 2004) and is a haploid

composite of multiple individuals. It has been revised over the years but still contains

several gaps and errors. Since then the sequences of a large number of human genomes have

been determined including with the Personal Genomes Project and the International Hapmap

Project. Many of these have been determined at low coverage as part of the 1000 Genomes

Project (Abecasis et al., 2010). In personal genome sequencing, genomes are typically

sequenced using short read technologies (currently ~100 bp) and variants are called relative
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to the reference genome (Flicek et al., 2011; Snyder, Du, & Gerstein, 2010). The variants

fall into three classes: 1) single nucleotide variations (SNVs), 2) small insertion and

deletions (indels) typically 1-100 bp and 3) structural variants which are large

rearrangements that include deletions, duplications, inversions, and translocations. To assign

variants to each chromosome (i.e. DNA phasing) several technologies can be used such as

sequencing of family members and imputation using known haplotypes. DNA phasing is

important in order to identify compound heterozygous mutations (different mutations that lie

in the same gene but on different chromosomes), and to better interpret disease risk. Other

key distinctive features of the genome are pseudogenes, transposons and repetitive regions,

which collectively comprise about 45% of the genome. While much attention has been

placed on coding sequences (which comprise only ~1.5% of the genome and can be targeted

by exome sequencing); growing focus is on non-coding regions of DNA (Boyle et al., 2012;

Chen et al., 2012). For example, new insights based on the ENCODE (ENCyclopedia Of

DNA Elements) project have revealed millions of transcription factor-binding sites, as well

as epigenetic modifications (histone marks, chromatin accessibility, DNA methylation) that

ultimately effect the transcription landscape (Birney et al., 2007). The genome sequence can

be used to predict disease risk using two approaches: 1) examination of rare variants in

protein coding genes that are highly penetrant and associated with human disease and 2)

examination of complex disease risk by integration of information over multiple variants,

each of low penetrance (Ashley et al., 2010). Curation of such DNA variants relative to

different forms of cancers has been ongoing since 2005 as part of The Cancer Genome Atlas

(TCGA). In spite of the many advances in this area, interpretation of most variants remains a

formidable challenge requiring considerable effort (we spend 100 manual hours per

genomes) and in many cases the effects of personal variants remain unclear.

Transcriptome

Analysis of gene expression levels of mRNAs and their various spliced isoforms is typically

the main focus of transcriptomics, although there is interest in other RNAs such as rRNA,

tRNA, miRNA, lincRNA, snoRNAs (Table 1). Changes in an individual’s RNA expression

are tissue specific and time-course dependent. Measurements of RNA transcripts by RNA

sequencing affords a very large dynamic range (greater than five orders of magnitude)

enabling the detection of transcripts expressed at a low level. Deep RNA sequencing allows

for more accurate quantification of expression of the heterozygous variants namely, allelic

specific expression (ASE). Similarly those RNA variants that are absent at the DNA level,

suggest the occurrence of post-transcriptional RNA-editing (editome), typically in mammals

either A→G or I and C→U (Chen et al., 2012; Li et al., 2009). Many of these RNA variants

result in missense or nonsense changes that can also be identified at the proteomic level.

Proteome and metabolome

The proteome and metabolome are expected to be more closely connected to phenotype and

thereby provide more precise measures of a physiological state. Liquid chromatography

mass spectrometry (LC-MS/MS) analysis can currently identify up to ~5000 expressed

proteins, typically the most abundant proteins in the sample. A personal proteome that

detects the variants present in an individual can be generated using a personal reference

genome or transcriptome enabling a better detection of protein variants. Like RNA, protein
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expression is time course- and tissue-dependent. Increasing evidence shows that the

expression levels of RNAs are only partially correlated with those of their protein

counterparts (De Sousa Abreu, Penalva, Marcotte, & Vogel, 2009). Proteins can undergo

several modifications, their detection limited by current methods. Such modifications

include: phosphorylation (via kinases), ubiquitination, methylation, acetylation,

glycosylation, oxidation and nitrosylation.

Metabolome profiling is a considerable challenge due to the diverse chemical nature of

metabolites (e.g. hydrophobic/hydrophilic, basic/acidic). It is typically either targeted (e.g.

GC-MS) which allows the analysis of several hundred metabolites, or untargeted (LC-MS)

which reveals >4000 mass spectrometry peaks, a fraction of which can be tentatively

assigned based on column retention time and molecular mass. Nonetheless, key metabolites

have been associated with important diseases such as Type II Diabetes (glucose and

branched amino acids) and cancer.

Integrative Analyses of Omics information

Omics information has been combined to better understand and monitor healthy and disease

states. Two recent examples include cancer and healthy person profiling.

Cancer Omics

Cancer omics began with genome sequencing, which revealed that each individual cancer

contains unique somatic mutations. These mutations often fall into particular pathways, for

example in ovarian cancer patients, mutations often occur in PIK3/Rb, BRCA1 and Notch

pathways (Cancer & Atlas, 2011). More recently, efforts have been made to incorporate

other types of information, notably RNA-expression, DNA methylation, and phosphoprotein

studies (using reverse phase arrays). These studies have revealed common genes and

pathways that can be affected. For example, although mutations in the EGFR gene are

uncommon in colon cancer, the EGFR signalling pathway is often elevated from

phosphosignaling analyses (Perkins et al., 2010). As such, integrative profiling is expected

to reveal such changes and provide a better understanding of the disease state and its

etiology. There is also growing value in longitudinal genome analysis (monitoring somatic

changes), particularly in cases with early genome information and/or family history that are

associated to diseases like cancer (Dawson et al., 2013).

Personal Omics Profiling

Chen et al., 2012 discussed the first example of integrated Personalized Omics Profiling

(iPOP), where the complete genome was sequenced and overlaid with the corresponding

exome, transcriptome, proteome, metabolome and auto-antibodyome (Figure 1). This was

performed on a 54 year old, initially healthy male, at 20 time points over the time course of

726 days which included two viral infections and the onset of Type 2 Diabetes (T2D).

Peripheral blood mononuclear cells (PBMC) and serum or plasma were isolated for nucleic

acid, protein and metabolite analyses. A plethora of biologically relevant information was

gleaned using iPOP, and several novel highlights are summarized below (Figures 2 and 3):
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1) Disease-risk and pharmacogenetic assessment via DNA variants

A major component of iPOP analysis is the ability to accurately assess disease risk. This is

challenging, given both the large number of genetic variants and the fact that many diseases

likely involve combinations of both genetic and environmental factors. The RiskGraph

(Ashley et al., 2010) takes into account age, gender, and ethnicity as well as multiple

independent disease-associated genomic SNVs to calculate the subject’s posttest probability

(%) of illness risk (Figure 2A, top). In this case, higher risks were shown for coronary artery

disease and triglycemia (known family history) as well as T2D (unexpected). Importantly

during the course of this study the subject experience high levels of glucose and

Hemoglobin A1c (HgA1c) and was diagnosed as diabetic. Thus, the genome information

indicated risk for a previously unsuspected disease which the subject acquired (and

managed) during the study (Figure 2B, bottom).

A pharmacogenetic assessment for drug response to common pharmaceuticals was also

ascertained and the response relevant to the subject potential disease treatments noted

(Figure 2A, bottom). For example, sensitivity to particular statins (which were being taken

by the subject) and metformin (which was not used but is pertinent to diabetes) was noted.

This type of personalized matching of patients to medications has the potential to greatly

reduce cost, treatment time and adverse side effects to medications. While genome analysis

is predictive, complementary analysis can be used at the different –omic levels, including

their overall crosstalk with environmental factors, to better gauge disease progression.

2) RNA, proteins and metabolites exhibit dynamic changes over disease-states and
provide a more comprehensive view in monitoring disease progression

A key highlight to iPOP is monitoring changes in omics profiles over time. Molecules that

are up- or down- regulated and linked to disease states are of particular interest as they can:

A) be used for understanding mechanisms of disease progression and B) in turn, be targets

for therapeutics. An example in this study showed that a number of RNAs, proteins and

metabolites changed in abundance during both viral infections (human rhinovirus - HRV

and respiratory syncytial virus -RSV) and the elevation of glucose levels. Both gradual

changes as well as aberrant spikes in molecular profiles were systematically extracted from

the profiles. Notably, of the biological pathways that showed spike maxima (Figure 2B,

heatmap), these occurred post- RSV infection, at elevated glucose (Figure 2B, bottom) and

HgA1c levels. Indeed, up-regulated RNA and/or the protein levels linked to genes involved

in similar function were found to group together. Based on GO ontology, several biological

pathways were enriched (network representation in Figure 2B, left). One pathway was

involved in glucose regulation and insulin secretion which corroborated with clinical data

(and the onset of T2D). Metabolites from overlapping time points also clustered in similar

patterns to RNA and protein data. This included lauric acid (Figure 2B, inset), found to be

associated to the sterol regulatory element binding transcription factor 1 (SREBF1) involved

in glucose metabolism and lipid production (Nafikov et al., 2013). Thus, changes of RNA,

protein and metabolic components were elucidated and provided a clearer picture of the

biological changes that occurred during disease onset and progression.
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3) DNA phasing to allele specific expression (ASE) and RNA editing

Though disease-risk can be estimated from DNA variants, the expression of genes and

proteins is equally if not more, phenotypically relevant. In this study, additional variants

were assigned to parental chromosomes (i.e. paternal and maternal), and heterozygous gene

expression was monitored. The majority of allelic specific expression (ASE) was found at

equal levels, although a number of RNAs exhibited differential allele expression. An

example is represented in Figure 3A, where ASE variants on correspondent 3’ UTRs of the

ENDOD1 (an endonuclease) transcript were each found to be differentially expressed, those

on the maternal copy at 0.40 and paternal copy at 0.60. This data was integrated with Chip-

Seq data (regulome) to further investigate the biology of selective transcript expression.

The editome is a new field of investigation whereby variants in RNA (undetectable in DNA)

are observed. These are due to post-transcriptional modifications. Figure 3B illustrates two

consecutive edit sites (red arrows) in BLCAP (bladder cancer-associated protein gene, on the

reverse strand) resulting in amino acid changes at the protein level. A ratio of transcripts

~0.20 (A→G) were found to be edited in PMBCs, suggesting low levels of RNA editing are

detectable (Chen et al., 2012). Edit sites are also commonly found in non-coding regions as

well as non-genic regions, including Alus (Ramaswami et al., 2012).

Allele specific gene expression and RNA editing can be observed at the protein level. One

example is shown in Figure 3C where the two known isoforms of UQCR10a mitochondrial

ubiquinol-cytochrome c reductase, are both expressed, each containing an allelic specific

variant A or G (rs76013375). This holistic approach of integration of the transcriptome with

the proteome allowed for a full scope analysis of all the missense and nonsense changes

detectable using mass spectrometry, whereby both amino acid types, I (AUC) and V (GUC),

were expressed at the protein level (Figure 3C inset).

Overall, we speculate that allele specific gene expression and differential RNA editing is

important for phenotypic differences among individuals in disease susceptibility and

progression.

Progress and the future of iPOP and health care

Development of iPOP and its application to an individual’s health needs have focused on: 1)

the advancement of high-throughput technology, 2) data storage and sharing, and 3) world-

wide bioethics and discussion on health-states and the environment.

Current genome-wide methods, as Illumina sequencing, Complete Genomics, SOLiD (ABI),

454 Life Sciences, Ion Torrent (Life Technologies) and other platforms are improving in

cost, speed, and quality. For genomic sequencing, the cost has greatly reduced from

$500M-1B/genome in 2001 to <5K/genome (Green & Guyer, 2011). Still there are

significant challenges such as sequencing and mapping errors that are present from using

short reads. De novo and direct sequencing are technologies that are still under development,

with limitations in quality and depth. Likewise, the analyses of large numbers of proteomes

and metabolomes can be challenging, as can be the storage and dissemination of large data

sets.
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The use of diverse technologies and the generation of large data reflect the growing need for

an amalgamation and cooperation of overlapping expertise in diverse fields. In our Chen et

al., study, the least-squares spectral time-series analysis was implemented to compensate for

unevenly sampled data when integrating the transcriptome, proteome and metabolome

(Figure 2B). This method was based on methodology developed for astronomical

observations by physicists Lomb and Scargle. Consortiums are being formed for

optimization of resources and expertise, and omic methods as iPOP are being recognized as

tangible study options in multi-disciplinary sciences.

The growing understanding of the multifaceted layers of omics, as the regulation of allele

specific expression (ASE) resulting in diverse translated products (Figure 3C); reveal the

importance of an integrated approach. Such studies will improve understanding of

compound heterozygous mutations (inherited and private), as well as compensatory

mutations, which may unravel the biology of complex diseases. Longitudinal studies,

whereby healthy versus disease-states can be compared (Figures 1D, 2B), reveal clearer

biological patterns matched to an individual and captured in a dynamic environment. Thus,

more precise methods of monitoring, treatment and prevention can be applied and fine-tuned

with each patient. In turn, iPOP studies overlapping large cohorts are underway for a better

understanding of overall biochemical mechanisms in disease manifestation and progression.

The medical interpretation of iPOP is a balance of both nature (omics) and nurture

(environment). Major concerns in data interpretation and re-distribution to the individual

(and to the public) raise bioethical questions on information privacy (de-identification). The

challenging path from the laboratory to the clinic is also being addressed; few biomarkers of

the 150K described through research have made it to the clinic (Poste, 2011) and in our

study it is yet undetermined which sets of markers are likely to be of highest clinical

significance. Genetic counsellors partnered with medical staff are indispensable for a patient

assessing their omics and medical choices, both biologically and psychologically.

Particularly in cases of high disease risk, the individual can make a more informed decision

on their medical course of action. In this light, iPOP has opened the way to a new

perspective on the plasticity of biological processes that underlie health states in flux.

Integrated personal omics profiling is facilitating the discovery of novel genes and pathways

and their interplay with the environment, allowing for improved health monitoring and

targeted therapeutics, and leading the road to an improved personalized health care.
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Figure 1. Schematic representing the implementation of iPOP for personalized medicine
(A) Participant tissue sample (e.g. PBMC) is collected, while environment (incl. diet,

exercise, etc.), medical history and clinical data are recorded. T1 is the first time point.

(B) Selected omic analysis involved in a sample iPOP study (Chen et al., 2012).

(C) Sample Circos plot (Krzywinski et al., 2009) of DNA (outer ring), RNA (middle ring)

and protein (inner ring) data matching to chromosomes.

(D) iPOP performed and integrated at multiple time points: T2, T3, T4 (viral-infected), T5

up to Tn states, including disease-state(s). Grey and green forms represent relative-healthy

individual and a disease-state, respectively.

(E) Report data back to genetic counsellor and medical practitioner with better informed

choices for prevention and/or treatment (matched with pharmacogenetic data), if needed.
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Figure 2. Highlights in iPOP
(A) Integration of DNA variants to assess disease risk (RiskGraph, top panel) and a sample

pharmacogenome (bottom panel). Arrow heads point in the direction of the change in post-

test probability (%).

(B) Expression analysis (partial heatmap) of the transriptome and proteome over a time

course spanning a respiratory syncytial viral (RSV) infection, with glucose monitoring

(bottom, onset of T2D). Genes showing relative change in expression are clustered and

represented as a network of inter- and intra-connected pathways: RNA (blue circle), protein

(yellow square) and both RNA and protein (green hexagon). An example of a metabolite

identified during the time course (inset panel).

Li-Pook-Than and Snyder Page 10

Chem Biol. Author manuscript; available in PMC 2014 September 04.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. Highlights in iPOP
(A) Sample phased DNA overlaid with RNA variant data corroborated with allelic specific

expression (ASE) ratios for the ENDOD1 gene. Maternal transcript is expressed at 0.40,

while the respective paternal transcript is expressed at 0.60. The triangle represents an indel

in the paternally inherited transcript.

(B) RNA editing in BLCAP (red arrows) result in protein level amino acid changes. BLCAP

is found on the reverse strand (rev), and A→G editing appear as T→C.

(C) An example of the diversity of isoforms observed in UQCR10 RNA and protein data.

The two isoforms each contain the allelic specific variant A and G (rs76013375). Note

isoform 2 spans into the intron position of DNA (faded); the true match is at the alternate

spliced region located further downstream (not shown). RNA variant (A/G) results in amino

acid change I:V, as identified in proteome mass spectrometric data (bottom).

For (B) and (C), DNAnexus was used as a genome browser, where red nucleic acid

represents mis-matches to reference genome (top). Blue and green nucleic acid strands

represent forward and reverse Illumina reads, respectively.
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Table 1

Selected topics in the expanding world of omics

-ome Level Description Selected resources

Genome DNA Complete/whole DNA
sequence,
chromosomes

http://www.personalgenomes.org/
http://www.1000genomes.org/
dbSNP:
http://www.ncbi.nlm.nih.gov/snp

Exome DNA DNA sequence
assoc. to coding
regions

http://www.nhlbi.nih.gov/resources/exome.htm
http://www.nhlbi.nih.gov/resources/geneticsgenomics/programs/mendelian.htm

Epigenome DNA/RNA DNA methylation and
histone modification,
can affect chromatin
and gene expression

NIH Roadmap Epigenomics Mapping
Consortium
http://www.roadmapepigenomics.org/

Methylome DNA DNA methylation -

Regulome DNA
binding
regions

Regulation factors
that affect gene
expression

ENCODE: ENCyclopedia Of DNA
Elements
http://www.genome.gov/ENCODE/

Transcriptome RNA Gene expression,
isoforms, miRNA,
allelic specific
expression

http://www.h-invitational.jp/
http://www.ncbi.nlm.nih.gov/refseq/

Splice-ome RNA Alternative splicing
(not the spliceosome
complex)

http://jbirc.jbic.or.jp/h-dbas/

Editome RNA RNA edits, variants
not present in DNA

-

miRNome RNA miRNAs http://genetrail.bioinf.uni-sb.de/wholemirnomeproject/

Proteome protein Protein expression,
isoforms

http://www.humanproteinpedia.org/
http://www.hprd.org/

Autoantibodyome protein Antibody targeted
against one’s own
protein(s)

-

Metabolome metabolites Small molecules of
metabolism (eg.
nucleotides, amino
acids, vitamins)

Human Metabolome Database:
http://www.hmdb.ca/

Metagenome DNA Genomes of multiple
organisms

https://www.ebi.ac.uk/metagenomics/

Microbiome DNA/RNA/
protein

Microbial
characterization at
multiple human body
sites

http://www.human-microbiome.org/
NIH: http://www.hmpdacc.org/

Interactome All Networks of all –omic
interactions

http://interactome.dfci.harvard.edu/

Pharmacogenome DNA/RNA/
protein

-omic variants
reflecting an
individual’s response
to drugs

http://hapmap.ncbi.nlm.nih.gov/
http://www.pharmgkb.org/
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