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Abstract

The majority of melanomas have been shown to harbor somatic mutations in the RAS-RAF-MEK-MAPK and PI3K-AKT
pathways, which play a major role in regulation of proliferation and survival. The prevalence of these mutations makes these
kinase signal transduction pathways an attractive target for cancer therapy. However, tumors have generally shown
adaptive resistance to treatment. This adaptation is achieved in melanoma through its ability to undergo
neovascularization, migration and rearrangement of signaling pathways. To understand the dynamic, nonlinear behavior
of signaling pathways in cancer, several computational modeling approaches have been suggested. Most of those models
require that the pathway topology remains constant over the entire observation period. However, changes in topology
might underlie adaptive behavior to drug treatment. To study signaling rearrangements, here we present a new approach
based on Fuzzy Logic (FL) that predicts changes in network architecture over time. This adaptive modeling approach was
used to investigate pathway dynamics in a newly acquired experimental dataset describing total and phosphorylated
protein signaling over four days in A375 melanoma cell line exposed to different kinase inhibitors. First, a generalized
strategy was established to implement a parameter-reduced FL model encoding non-linear activity of a signaling network in
response to perturbation. Next, a literature-based topology was generated and parameters of the FL model were derived
from the full experimental dataset. Subsequently, the temporal evolution of model performance was evaluated by leaving
time-defined data points out of training. Emerging discrepancies between model predictions and experimental data at
specific time points allowed the characterization of potential network rearrangement. We demonstrate that this adaptive FL
modeling approach helps to enhance our mechanistic understanding of the molecular plasticity of melanoma.
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Introduction

Curated signaling networks are derived from reported interac-

tions between proteins, including posttranslational modifications

like phosphorylation. However, these interactions may be cell line

dependent, occur at specific time points, or depend on context [1].

Moreover, the pathway of interest may be regulated by additional,

unreported interactions. Such complexity is relevant in tumors,

where signaling pathway rearrangements underlie resistance to the

treatment, both via genetic mutations or epigenetic changes [2].

This treatment resistance is achieved in melanoma through its

molecular plasticity, which includes neovascularization, migration

[3], pathway rearrangement [4], and presence of subpopulations

of cancer cells that may contain stem cell-like properties [5].

Specifically, resistance to treatment by small molecules has been

reported to be developed through switching among the serine

threonine kinase BRAF isoforms to activate the MAPK pathway

[4,6], a signaling network which plays a major role in proliferation

and is a very attractive target for therapy due to the fact that it

harbors somatic mutations in the majority of melanomas [7,8]. In

addition, alternative splicing can be used by tumors to establish

crosstalk between apoptotic and survival pathways, thereby

rearranging signaling in order to develop protection against

apoptosis. In work by Kurada et al., the authors show that

MADD, a splice variant of IG20, is overexpressed in cancer cells

and tissues and can specifically activate MAPKs through Grb2 and

Sos1/2 recruitment to grant protection against apoptosis upon

tumor necrosis factor-a (TNFa) treatment [9].

On one hand, to identify those differences between reported

and experimental signaling activated by a cancer cell to acquire

resistance, it is necessary to study dynamic changes in signaling

network topologies arising after perturbation. On the other hand,

static differences are equally possible, with the reported and

experimental topologies differing from the initial, unperturbed
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state of observation. This context-dependent network topology

enables the cell to achieve important properties such as specificity

of signaling and robustness of signaling. Indeed, the activation

initiated by a ligand is not stably propagated through the full range

of reported interactions in the corresponding cascade, since so

many points of crosstalk exist that several unspecific responses

could be activated [1]. Instead, a range of mechanisms enable the

cell to enhance certain pathways or prevent some reported

interactions from happening in order to trigger a specific response

depending on the context or cell type [10,11]. In addition, the

threshold at which cells respond to stimulation present in a given

context depends on the signaling pathway [12], and there exist

several changes in the signaling network that can grant this

robustness. In Figure 1, we describe dynamic and static changes in

network topology according to the property that the cell can

achieve by undergoing such changes. The existence of said

mechanisms requires studying, rather than assuming, which

amongst the reported interactions are active in the cell line used

for experimental observation. In this work, we propose a method

based on computational modeling to aid identification of both the

dynamic and static topological changes in signaling that grant

tumors its ability to maintain proliferation and develop resistance.

Several systems biology methods have been established to study

network topology. In work by Ma et al., the authors provide a

framework to define the range of network topologies that can

achieve biochemical adaptation, where each network is represented

by a system of Ordinary Differential Equations (ODEs) [13].

However, while this study provided insight into the motifs that can

acquire adaptation, usage of ODEs requires vast knowledge on the

specific reactions governing the interactions of the species [14].

Logic-based models offer one solution. In such formalisms, logic

rules relate two species by using only the measurements of these two

species and the information concerning their relation. Boolean logic

has been used for functional analysis of extensive signal transduction

networks [15], with the limitation that it assumes an on-off behavior

of the modeled species. Fuzzy logic (FL) can predict intermediate

states, utilize increased prior biological information, and thus

improve content and accuracy of predictions.

A number of approaches based on FL have been used to encode

signaling networks, and can be grouped in two major frameworks.

In the first framework, models are constructed manually based on

prior knowledge of topology and experimental measurements.

Aldridge et al. established an approach to encode responses of

colon cancer cells treated with combinations of pro-death and pro-

survival cytokines, incorporating the role of time to model slow

processes [16]. Within the same framework, FL was combined

with other algorithms to represent the hedgehog-mediated

regulation of the cell cycle [17]. This framework, however, has

the limitation that one must manually calibrate FL models, which

is a tedious task. In addition, manual parameterization requires

extensive prior knowledge regarding the biochemical reactions

included in the model, which is in several biological processes

condition-dependent or unavailable. To overcome these limita-

tions, the second framework consists of studies, in which the

parameters of FL system are learned from data by means of

training algorithms [18]. Using such an approach, we established a

neuro-fuzzy-based method to reverse-engineer a potential hierar-

chy of interactions between mitochondrial morphological states

and apoptotic events [19]. A limitation of these data-trained

systems is that they require a high number of parameters, which

grant the system its flexibility, but also increase the risk of over-

fitting. As a solution, Morris et al. developed a constrained FL

system that focused on specific states and applied it to elucidate

interactions that were a priori possible but not present in the

experimental data [20].

Here, we describe a data-derived modeling technique consisting

of (i) a mathematical formalism, i.e. a generalization of a FL

Inference System (which we termed gFIS) as the outcome of a

strategy to reduce the number of free parameters, and (ii) a

training and simulation pipeline. This approach can be used to

characterize dynamic signaling rearrangements arising during

observation to grant adaptation to treatment, as well as static

context-dependent topologies, which are different from those

reported in the unperturbed state. As a proof of concept, we used a

dataset derived from a melanoma cell line exposed to different

pharmacological kinase inhibitors, consisting of phosphorylated

and total protein levels of 10 signaling intermediates involved in

the MAPK pathway measured over 4 days. Next, we assembled a

literature-based network of kinase signal transduction pathways

containing the 10 readouts of our experiments. For each signaling

intermediate in the network we created a gFIS model, which we

calibrated using a subset of the data determined by the topology of

the network. For instance, the model for CREB as regulated by

P38 and ERK was trained using the normalized phospholevels

measured for these three intermediates. Thereby, the prolonged

non-linear behavior of the signaling network upon treatment was

encoded. Subsequently, specific time points were removed from

the training process and the performance of the trained network

was evaluated in every iteration of this process. Finally, the model

identified emergent literature-based versus model fit topological

discrepancies in a time-dependent manner.

Overall, we demonstrate that novel insights in terms of signaling

can be derived from time-defined FL training and simulation,

allowing characterization of the time point of network rearrange-

ment and can, therefore, be used to investigate the mechanisms

that grant melanoma its molecular plasticity.

Results

Phosphorylation of MAPK signaling components over
time

A375, a melanoma cell line featuring constitutive activation of

the MAPK pathway due to the activating BRAF mutation V600E

[21], was treated with three pharmacological kinase inhibitors.

Author Summary

Signal transduction pathways can be described as static
routes, transmitting extrinsic signals to the nucleus to
induce a transcriptional response. In contrast to this
reductionist view, the emerging paradigm is that signaling
networks undergo dynamic crosstalk, both in disease and
physiological conditions. To understand complex pathway
behavior, it is necessary to develop methods to identify
pathway interactions that are active as a consequence of
stimuli and, importantly, to describe their evolution in
time. To that end, we developed a method relying on prior
knowledge networks in order to predict signaling crosstalk
evolution, in response to perturbation and over time. The
challenge we addressed was to establish a method
dependent on information related to the topology of
reported interactions, and not their mechanistic charac-
teristics, and at the same time complex enough to
reproduce the behavior of the signaling intermediates.
The work presented here demonstrates that such an
approach can be used to predict mechanisms that
melanoma uses to rearrange its signaling and maintain
its abnormal proliferation upon treatment.

Unraveling Signaling Plasticity from Data
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The transduction of the signal through the pathway was measured

as level of phosphorylated protein for 10 signaling intermediates

and transcription factors involved in the MAPK pathway at 8 time

points spanning over 4 days. Therefore, we used the bead-based

ELISA assays of xMAP technology (Luminex, Austin, TX) to

measure the abundance of phosphorylated signaling intermediates

and transcription factors including mitogen-activated protein

kinase 1 (MEK1), extracellular signal-regulated kinase 1/2

(ERK1/2), cAMP response element-binding protein (CREB),

protein kinase B/Akt (Akt), c-Jun n-terminal kinase (JNK), the

Figure 1. Overview of known mechanisms of MAPK signaling plasticity. Many reported interactions may not occur in the context of own
experiments. Here, we review two types of mechanisms that yield differences between reported and experimental interactions. First, interactions can
dynamically arise during observation to adapt to perturbation - here termed dynamic signaling rearrangements. Second, unreported interactions can
be present from the unperturbed, onset of observation - here termed context-dependent topology. The upper row shows two known dynamic MAPK
signaling rearrangements, which are achieved by preferentially expressing alternate transcripts to maintain tumor proliferation upon of treatment. In
the middle section, three mechanisms are shown to change network topology in order to grant cells the ability to trigger a specific response to a
ligand. Such specificity is achieved by tightly regulating known crosstalk interactions, thereby, preventing cross-signaling between pathways. Below,
3 rows describe different robustness mechanisms. When such mechanisms are present, an increase in the total protein concentration of a certain
signaling regulator due to expression noise can be compensated to maintain the functionality of the pathway. The spectrum of mechanisms leading
to both dynamic rearrangements and context-dependent topologies illustrates the need for methods to corroborate the activity of reported
interactions in a timely and cell type specific manner.
doi:10.1371/journal.pcbi.1003795.g001

Unraveling Signaling Plasticity from Data
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JNK substrate c-Jun, IKK, P38 kinase, the cell cycle regulator P53

and the transcription factor ATF-2. Over such time ranges,

expression and degradation events play an important role in the

dynamics of the system [22]. Hence, abundance of the total

proteins was also measured. Figure 2A shows measurements of

total levels of ERK1/2 in control conditions and the level of the

phosphorylated ERK1/2 proteins measured in the same sample is

shown in Figure 2B.

Subsequently, phosphorylated protein levels were normalized to

total in order to remove apparent loss of activation due to loss of

total protein (Figure 2C). In the last step of our data processing

pipeline, normalized values were scaled to the maximum value

across all measurements in the same condition to avoid that higher

intensity values could dominate the modeling process (Figure 2D).

The phosphorylation state over 4 days of the full normalized

dataset is shown in Figure 2E. Confirming drug potency, we

observe that upon MEK-specific inhibitors U0126 and AZD6244

phosphorylation of ERK1/2 -the target of MEK1- is blocked,

while upon multi-specific kinase inhibitor Sorafenib MEK1

phosphorylation decreases. As expected, a large number of

Figure 2. Strategy to study phosphorylation profiles in order to identify signaling rearrangements. Using bead-based multiplex
analysis, the total and phosphorylated protein levels of 10 MAPK-related signaling intermediates and transcription factors were measured
simultaneously at 0, 0.5, 6, 12, 24 36, 48, 72 and 96 hours in A375, a melanoma cell line with a constitutive MAPK activation driven by the BRAF V600E
mutation. As an example, (A) total ERK1/2 and (B) phosphorylated ERK1/2 are depicted (MFI: Mean Fluorescence Intensity). (C) Phosphorylated
protein levels were normalized to total, to account for total protein loss. (D) To enable model fitting and comparison, measurements were scaled to
maximum protein value for each condition. (E) Full normalized dataset. Rows represent intracellular readouts assayed. The first column was measured
in control conditions (DMSO). Columns 2 and 3 were acquired upon MEK-specific pharmacological inhibitors U0126 and AZD6244. The last column
was acquired after treatment with multi-kinase inhibitor Sorafenib. (F) Cartoon illustrating the modeling approach presented here to identify
rearrangements. When treated with a specific inhibitor, the phosphorylation of a regulatory kinase (black curve, upper panel) should be inhibited.
Consistently, its target (black curve, lower panel) should be down-modulated. If signaling is rearranged, the target should stop responding to
regulatory behavior, and a mathematical model (grey curve) assuming the original situation should exhibit an error increase (red area under the
curve). The model expresses the target as a function of the regulator or regulators, hence inhibition, e.g. a phosphatase-substrate interaction, could
equally be captured and revealed to be lost by error increase.
doi:10.1371/journal.pcbi.1003795.g002

Unraveling Signaling Plasticity from Data
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signaling intermediates exhibit a constitutively high phosphoryla-

tion profile even though no stimulus was used, due to the BRAF

V600E mutation. The fluctuations exhibited by a number of

readouts can be due to the mechanisms described in Figure 1. For

instance, it has been shown in silico that the combination of a

negative feedback loop and ultrasensitivity can result in sustained

biochemical oscillations [23]. Confirmation that the observed

fluctuations are biochemical oscillations over such a broad time

range would require higher density of measurements.

Identifying emerging disagreement between prior
knowledge based signaling networks and experimental
data

We next developed a method to identify dynamic changes and

differences between literature-based topologies and the regulatory

network of interactions in the specific cell line of interest. The

method is based on the assumption that if a signaling rearrange-

ment occurs at a certain time point, the agreement between the

involved intermediate and its substrates should greatly decrease

after the given time point. Such disagreement should be revealed

by an increase of the RMSE calculated for the model downstream

of the rearrangement (Figure 2F). Therefore, the model should be

able to capture directed regulation, i.e. not only activation but also

inhibition. We subsequently describe the data-derived modeling

strategy established to implement this concept. For clarification,

Box 1 summarizes the terminology used hereafter. To illustrate the

modeling process to encode a single intermediate and its behavior

as a component of a signaling network, we considered the

interaction between c-Jun and JNK. JNK is a member of the

MAPK pathway that has been shown to be tyrosine and threonine

phosphorylated as part of the stress and inflammatory response.

Phosphorylated JNK can translocate to the nucleus to activate a

number of transcription factors including c-Jun [24]. To map

input data onto output data, IF-THEN logic rules lay at the core

of logic models such as ‘‘if phosphorylation of JNK is high then
phosphorylation of c-Jun is high’’. Here, sets such as high, medium,

or low are fuzzy sets. Conversely to Boolean logic, fuzzy sets have

unsharp boundaries, i.e. measurements can belong to several fuzzy

sets to a certain degree, requiring a transformation known as

fuzzification [25] performed by the so-called membership func-

tions (MF).

In previous work, we used Gaussian functions to fuzzify

measurements of mitochondrial morphology and apoptotic

signaling in order to explore their non-linear relationships in

human breast carcinoma [19]. Analogously, input MFs were

defined here as shown in equation 1 and used to establish the

degree of membership of the JNK measurements –here repre-

sented as x- to the sets low and high (Figure 3A).

mlow(x)~e
{

(x{a)2

2s2 ð1Þ

Output MFs were defined as a first order polynomial, as

established in first order Takagi-Sugeno systems (see methods for

further detail). In this framework, logic rules establish which

combination of input and output MFs are connected. Hence, a

two-rules FL model f (x) illustrated in Figure 3B can be expressed

using the normalized outputs from the rule premise and a first-

order polynomial for each rule as shown in equation 2.

f (x)~
X2

i~1

�vvifi~
e
{
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2
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{
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Premise and consequent MF parameters can be learned from data

[26], and these parameters can take negative values, enabling to

account for opposite behavior such as an input being an inhibitor

of the output modeled target.

In the shown model, it would be necessary to fit a, s1, p1 and q1

for the first rule and b, s2, p2 and q2 for the second rule, to a total

amount of 8 parameters solely for the definition of the MFs.

Additionally, a list of model parameters can be learned from the

data, e.g., variables related in each rule [27], number of rules [28]

and type of MFs, increasing the number of parameters by orders of

magnitude [18]. Importantly, an overly high degree of model

complexity cannot be adequately met by experimental data

typically leading to over-fitting when learning model parameters

from data. Hence, we next reduced the number of parameters.

As the first step of our parameter reduction strategy, we fixed

the number of fuzzy sets –and thereby the number of input MFs –

to two, i.e. measurements were separated into being low and high
to a certain degree. Next, the number of logic rules was fixed. As

the number of rules depends on the number of inputs, to illustrate

the reduction strategy we use an example FL system with two

inputs, implemented to model P53. P53 has been shown to be

activated by P38 kinase [29] and via JNK signaling [30]. To fix the

number of rules we used a grid partition where all combinations of

inputs MFs were allowed. Given that two fuzzy sets are defined for

each input, the number of combinations was 2n~4, where n is the

number of inputs (Figure 3C, table). Finally, the number of output

MF parameters was fixed. Importantly, in Takagi-Sugeno systems,

parameters of output MFs cannot be shared. Instead, in classical

training different parameters are learned for each output MF [31].

Therefore, the above-mentioned system of rules would yield 3

consequent parameters for the linear combination of 2 inputs for

each rule, i.e. 2n(nz1)~12 output parameters. Together with the

8 parameters for the input MFs, such a rule setup yields a total of

20 parameters. Therefore, a constraint was added to the reduction

strategy, where only combinations of analogous MFs in all inputs

Box 1. Summary of modeling terminology.

Fuzzy Inference System (FIS): A model that uses fuzzy
logic (FL) to infer an output based on an input. There are
two main types of FIS: a linguistic model features logic
rules with fuzzy sets such as high both in the premise and
the consequent, e.g. ‘‘If JNK is high, then c-Jun is highly
phosphorylated’’. A Takagi-Sugeno model is a simplifica-
tion of a Mamdani system, which uses fuzzy sets in its rule
premise, but in its rule consequent is constrained to
combinations of the inputs.
Membership function (MF): A function to transform
experimental data into fuzzy sets, thereby enabling use of
FL rules.
gFIS: a generalized type of Takagi-Sugeno FIS established
in this work, where a number of parameters and model
qualities have been fixed, keeping as free parameters
those enabling fitting to a generic dataset.
mtFIS: a multi-treatment FIS defined in this study. An
mtFIS is the result of training a gFIS with n free parameters
to multiple-treatment data, yielding a model with as many
estimated parameters as n times the number of conditions.
Given a number of regulators and one target, a trained
mtFIS captures their relation and expresses the behavior of
the target as a function of the regulators. Once a full
signaling network has been trained, each node in the
network is represented by one mtFIS.

Unraveling Signaling Plasticity from Data
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Figure 3. Parameter reduction strategy and data-derived model implementation. (A) JNK experimental data was transformed into fuzzy
sets via 2 Gaussian input membership functions (MF), thereby enabling use of fuzzy logic rules. (B) The table shows logic rules mapping the
phosphorylation of JNK to the phosphorylation of c-Jun, as an example. The diagram shows the parameters needed to implement those rules. 8 free
parameters are required for the MFs (blue circles), which could increase for other types of function. In addition, the MFs to be combined in each rule
need to be determined, here represented as 2 additional free parameters to a total of 10 in this simple FL system with two rules. (C) Implementation
of a more complex FL model of P53 regulation by both P38 and JNK to illustrate the parameter reduction strategy. The number of consequent
parameters depends on the number of rules, which in turn depend on the number of inputs, hence the setup described in (B) yields here 4 rules
(table) with 20 parameters. To reduce the number of free parameters, we fixed the number of input-output combinations (left, in bold), reducing the
system to 2 rules and 14 parameters (diagram). By fixing the premise parameters, the number of parameters to estimate was reduced to 6, below the
number of experimental time points. (D) Simulation of the model shown in (B). The free parameters were reduced and estimated, and they proved to
be sufficient to capture the data trend (blue dots) upon simulation (green dots, RMSE = 0.181), here illustrated in DMSO. The black curve shows the
simulation of the model at 100 interpolated data points distributed uniformly. (E) Simulation of the model shown in (C), reduced and trained to the

Unraveling Signaling Plasticity from Data
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where allowed. Thereby, the number of rules was fixed to the

same number of fuzzy sets, yielding a system of 2 rules, 8

parameters of the input MFs and 6 parameters for the different

output MFs summing to a total of 14 parameters (Figure 3C). In

the last step of the parameter reduction strategy, we aimed at

fixing the parameters themselves, as opposed to the above-

mentioned steps to fix the number of parameters. Because the

consequent parameters of each rule cannot be shared, we fixed the

premise parameters (see materials and methods for the specific

values and their rationale). Hence, the final number of parameters

fitted is 2(nz1)~6 where n is the number of inputs. The system

following the example shown in Figure 3C is expressed as f (x,y)
in equation 3

f (x,y)~

e
{

(x)2

2�0:42472 e
{

(y)2

2�0:42472 (p1xzq1yzr1)ze
{

(x{1)2

2�0:42472 e
{

(y{1)2

2�0:42472 (p2xzq2yzr2)

e
{

(x)2

2�0:42472 e
{

(y)2

2�0:42472 ze
{

(x{1)2

2�0:42472 e
{

(y{1)2

2�0:42472

ð3Þ

Subsequently, we sought to assess whether the free parameters

sufficed to capture the patterns in the data. Upon training, the

JNK-c-Jun system (equation 2, illustrated in Figure 3B) showed a

considerable accuracy, root-mean-square error (RMSE) = 0.181

(Figure 3D). For the JNK-P38-P53 system (equation 3, illustrated

in Figure 3C), the data trend was captured as well (0.223,

Figure 3E). Due to the high flexibility of the fuzzy inference

system, several solutions could be found during the fitting process

(see materials and methods for a detailed description of the

objective function defined to select fits with best interpolation

power).

Hence, the method established enabled to satisfactorily fit

exclusively 2(nz1) consequent parameters, where n is the number

of inputs, thereby avoiding estimating (i) the number of rules, (ii)

4n premise parameters and (iii) up to 2n(nz1) consequent

parameters.

Model complexity reduction retains model flexibility
To successfully represent the behavior of a signaling interme-

diate solely as a function of the activity upstream and reveal time-

defined disagreements (as illustrated in Figure 2E), the modeling

approach established above had to be flexible, retaining its

capability to adapt to changes in experimental data in spite of the

reduction of free parameters. To validate this, we sought to assess

the sensitivity of the data-derived model. One approach to

sensitivity analysis is to directly modify the model parameters and

subsequently measure model outcome. Instead, due to the data-

derived nature of our approach, here the training data was

resampled, which in turn led to modification of the fitted

parameters. To study the effect of our reduction strategy on the

flexibility of the system, the analysis was performed on the fully

reduced setup (represented in Figure 4A, left) and two partially

reduced systems where the number of rules and MFs was fixed but

not the premise parameters: (i) the equivalent 0-order Takagi-

Sugeno system (Figure 4A, center), featuring free parameters for

the premise and free constant parameters instead of linear for the

consequence clause [32] and (ii) the system shown in equation 2,

which features free premise and consequent parameters (Fig-

ure 4A, right). Consequently, the fixed-linear setup rendered 4 free

parameters, as opposed to 6 in the adaptive-constant and 8 in the

adaptive-linear. The three systems were trained using the JNK-c-

Jun measurements in control conditions –the reference model- and

resampled versions of the same dataset (Figure 4B). Resampling was

performed following the method known as bootstrapping intro-

duced by Efron [33] creating 100 new datasets with 8 data pairs

drawn with repetition from the JNK-c-Jun control observations.

Model flexibility was calculated by simulating the resampled models

and computing the standard deviation at each observed data point

across models (Figure 4B). Fixed-linear and adaptive-linear setups

varied greatly in their trajectories, adapting to resampled datasets

and their differences with the dataset used to train the reference

model (means(fixed-linear) = 0.188 and means(adaptive-line-

ar) = 0.186), while adaptive-constant setup showed less flexibility

to adapt to the resample data (means(adaptive-linear) = 0.156).

These results were reproduced when performing the analysis on the

3 additional datasets acquired upon treatment with MAPK

inhibitors (see Table S1). The adaptive-constant setup showed a

noteworthy loss of accuracy, while no such loss was observed when

comparing the fixed-linear model to the adaptive-linear model,

indicating that most of the information on the data is captured by

the consequent parameters. The estimated parameters in the

adaptive-linear model were close to the fixed ones in the fixed-linear

(see data-derived sensitivity analysis in materials and methods).

The high flexibility of the chosen fixed-linear setup could

indicate over-fitting, which is typically assessed via cross-validation

by splitting the experimental data into a training and a test set:

when a modeling method performs well on a training set but yields

a large test set error, this indicates that the patterns found in the

training do not exist in the test data, and are due to random

chance rather than true properties of the function that one seeks to

estimate [34]. We sought to assess over-fitting using leave-one-out

cross-validation by splitting the eight JNK-c-Jun pairs into two

sets, where a single pair observed at a given time point was used

for test and the remaining time points were used for training. A

gFIS was fit to the training set and a prediction was made for the

excluded observation using its JNK value. This process was

performed for all eight data pairs, yielding eight predictions for the

same number of differently trained models. Next, a gFIS was

trained to the full dataset, creating a reference model that was used

to make a prediction for each observed JNK value. The

predictions of the reference model largely correlated with the test

predictions (R = 0.89, Figure 4C), confirming model predictivity

for this subset of experimental data (see Table S2 for the

parameters estimated for the training models and the reference

model).

After cross-validation and seeing that neither flexibility nor

accuracy seemed to be compromised, we concluded that the

parameter reduction strategy rendered a valid system encoding the

nonlinear behavior of a signaling intermediate or transcription

factor as a function of the upstream activity. Next, this method was

used to model the dynamic behavior of the full network containing

the 10 above-mentioned measurements upon 4 experimental

scenarios.

Prior knowledge and literature-based definition of initial
prior knowledge network to determine training subsets

First, a network topology based on prior knowledge derived

from literature was assembled (Figure 5, Definition of starting

phosphorylation profiles of P38, JNK and P53. The simulation of P53 phosphorylation is depicted here as a mesh (RMSE = 0.223). Training data points
are depicted in blue and simulation at the same data point in green. The black surface shows the simulation of the model at 100 interpolated data
points distributed uniformly.
doi:10.1371/journal.pcbi.1003795.g003
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topology). Table S3 references the sources used for each

interaction included. The network was used to determine the

training data subset for one gFIS for each signal experimentally

measured and subsequently for simulation. For training, the three

perturbation and one control experiment parameters were fitted

independently, yielding four sets of model parameters (Figure 5,

Condition-dependent gFIS training). Thereafter, these condition-

dependent parameters were used to create a multi-treatment

model (mtFIS). A naive condition switch was included in the multi-

treatment FIS equation to enable choice of corresponding

Figure 4. Data-derived sensitivity analysis confirms accuracy and flexibility of approach. Three formalisms were compared. (A) The
schematic left represents the approach presented here, with fixed premise parameters ai, bi and number of rules (black circles) and free linear
consequent parameters pi and qi (blue circles) for each rule i (see equation 2). A zero-order Takagi-Sugeno fuzzy logic system is represented in the
center schematic, which features the same input MFs –with free parameters here- and simpler consequent MFs, i.e a constant, with a single free
parameter. The right-hand schematic shows the same setup as the left one, with the difference that no parameter was fixed. (B) 100 bootstrapped
datasets, i.e. resampled with repetition, were used to train 100 models implemented with each setup (grey curves). The reference model was trained
to the full original dataset (black curves for the model, blue dots for the experimental data). The standard deviation s for the model simulation at
each data point was calculated across the 100 bootstrapped models. As a signature of accuracy and flexibility, the mean of the deviation means for
all data points was next calculated. While both the adaptive-linear and fixed-linear show an ability to adapt to the different datasets (means(fixed-
linear) = 0.188 and means(adaptive-linear) = 0.186), the adaptive-constant setup exhibited a less flexible performance (center, means(adaptive-
constant) = 0.156) confirming that the consequent parameters outweigh the premise parameters in impact. (C) Leave-one-out cross-validation was
performed to assess over-fitting by splitting the eight JNK-c-Jun pairs into two sets, leaving a single pair of observations as test set and the remaining
time points as training set. A gFIS was fit to the training set and a prediction was made for the excluded observation using its JNK value for all eight
data pairs, yielding one prediction for each differently trained model (x axis). Next, a gFIS was trained to the full dataset, creating a reference model
that was used to make a prediction for each observed JNK value (y axis). Confirming model predictivity, the predictions of the reference model
correlated largely with the test predictions (R = 0.89).
doi:10.1371/journal.pcbi.1003795.g004
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Figure 5. Workflow for network definition, fitting and simulation. Definition of starting topology. The initial step was the
implementation of a network topology. Grey nodes are measured in our experimental assay. Blue nodes are not modeled or measured and are
depicted here to enable understanding of network as a whole. Edges represent directed regulatory interactions reported in literature, and hence can
represent activation or inhibition of the target. Condition-dependent gFIS training. A gFIS for each signal measured was trained to the
corresponding dataset independently for each condition acquired. This enabled determination of the parameter set specific for each condition.
mtFIS implementation. The condition-dependent parameters were used to create a multi-treatment model, including a naive condition switch to
enable choice of parameters in the simulation for each condition. Network simulation. Upstream species could not be fitted to further upstream
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parameters in the simulation of each specific treatment scenario

(Figure 5, mtFIS implementation). See materials and methods for

details.

Finally, once all multi-scenario models in the signaling network

were defined, simulation of full network behavior was performed.

For the readouts positioned highest upstream in the network such

as Akt, a model could not be created due to lack of experimental

measurements upstream that serve as input for model training.

Therefore, to simulate the full network, a mapping function was

used to determine the value of upstream readouts at each observed

time point. Subsequently, propagation of the signal at the same

time points was achieved by evaluating each downstream model

with the simulated output of their upstream models (Figure 5,

Network simulation).

Analysis of model evolution
We next sought to identify potential signaling rearrangements.

Therefore, we created new training data subsets by removing late

time points in a stepwise manner, i.e. new datasets contained only

measurements from 0 to 72 h and from 0 to 48 h respectively. The

training process was iterated (Figure 5, dashed blue arrow),

including simulation of the newly trained network. Figure S1A

shows the simulations of all models trained to the full and two

reduced datasets. Figure S1B–E shows the RMSE resulting from

evaluation against the training data. We observed that models with

a RMSE below 0.2 accurately captured the trend in the data, and

hence we defined the models above the 0.2 threshold as suggesting

a disagreement between model simulation and experimental data.

For those models fitted to experimental data from the control

condition with a high error already at the period 0–48 hours, this

indicated that the topology was likely wrong. This was e.g. the case

for JNK (error 96 h = 0.18921 vs error 72 h = 0.20094) and c-Jun

(error 96 h = 0.28357 vs. error 72 h = 0.30519; Figure 6A).

Plotting the trajectories for those models and data as implemented

in the context of the literature based network suggests that the

reason for the large error for JNK and c-Jun is that in our

experimental system Akt does not regulate the activity of JNK and

c-Jun (Figure 6B), which is in contrast to the assumed model

topology.

We then modified the starting topology to account for the

emerging mismatch between model simulations and experimental

data. Vivanco et al. postulated that the JNK signaling pathway is

itself a functional target of PTEN in prostate cancer cells [35],

suggesting that Akt and JNK can be activated independently from

each other. Hence, we implemented JNK as being regulated

independently from Akt by turning it into an input node

(Figure 6C). The activity of c-Jun was then strongly associated to

JNK (RMSE for c-Jun at 96 h = 0.12241, see Figure S2). Note that

the larger RMSE of ATF-2 at early time points shown in

Figure 6B could thus be reduced as well (Figure 6D).

It is noteworthy that, upon simulation of the full network, the

error at each node features two components, i.e. (i) the topological

error and (ii) the error propagating from simulation of the

upstream layer. Therefore, in the specific case of the above-

described modification of the network topology that led to

improved simulation, the rectification in model misbehavior could

be due to the transformation of a third level network component

into a second level node, because a second level node receives as

direct input the experimental data instead of the simulated value of

the upstream model. Thereby, potential error propagation is

prevented. However, we empirically show that the propagation

error is not as great as that of the topology in e.g. the case of

CREB upon U0126 (see Figure S2), which is downstream of 3

levels of regulators and still shows a remarkably accurate fit.

Different mechanisms of action of two specific MEK
inhibitors

The study of network evolution using the newly implemented

topology revealed poor model fits in ERK1/2 regulation upon

treatment with MEK inhibitor AZD6244 (RMSE for ERK1/2 at

96 h = 0.30386) but not for U0126 (RMSE for ERK1/2 at

96 h = 0.013945; Figure 7A). This error then propagated to

CREB. Taken together, this indicated that the non-canonical

regulation of ERK1/2 by MEK1 suggested by the model was due

to the presence of AZD6244, as revealed comparing the

trajectories of ERK1/2 downstream of MEK1 in the literature-

based network for U0126 (Figure 7B) and AZD6244 (Figure 7C).

This is consistent with the fact that the phosphorylation level of a

kinase is not always a proxy for its activity. Indeed, Wilhelm et al.

showed that U0126 is a specific MEK1 inhibitor, which prevents

its phosphorylation [36], while AZD6244 was developed by Yeh

et al. [37] and reported as an inhibitor of ERK1/2 phosphory-

lation by selectively inhibiting enzymatic activity of MEK1. Its

mechanism of action is documented in [38].

Non-canonical MAPK signaling and Sorafenib-mediated
topology in the A375 melanoma cell line

Following the modeling concept illustrated in Figure 2F,

analysis of error evolution led to the identification of ERK1/2

(RMSE at 96 h = 0.2141 vs. RMSE at 48 h = 0.17851) as a

potential rearrangement upon Sorafenib treatment (Figure 7A).

The ERK1/2 trajectory upon Sorafenib treatment showed that

the reason for this model prediction was the late activation of

ERK1/2 at 96 h in spite of the decreasing activity of its regulator

MEK1 (Figure 7D, upper panel). However, a disagreement was

also shown to arise at 72 h in control conditions (Figure 7D,

lower panel) and was also observed at 6 h in both control and

Sorafenib (Figure 7A and 7B). The disagreement indicated by the

model in control conditions suggested a non-canonical MAPK

signaling network architecture, which could be further charac-

terized. Sorafenib is an inhibitor of RAF kinases and VEGFR-2

and, thereby, prevents phosphorylation of MEK1/2 [36].

Because RAF is upstream of MEK1 and ERK1/2 [39,40], the

MEK1-independent increase of ERK1/2 activity at 6 h and 96 h

upon Sorafenib treatment was unexpected. However, the A375

melanoma cell line used in this study has been shown to be more

resistant to apoptosis than other melanoma cell lines. For

instance, it has been shown that Sorafenib down-modulates the

levels of Bcl-2 and Bcl-XL, and such down-modulation was

shown to be MAPK-independent in A2058 and SKMEL5

melanoma cells but not in A375 cells [41]. Taken together, these

observations suggest (i) a non-canonical signaling mechanism in

the A-375 MAPK signaling network, and (ii) a Sorafenib-

regulators. Hence, an input node consisting of a mapping function specified the measured value of the upstream species at the simulated time point.
Thereby, the propagation of time as a signal was enabled. In turn, the fitted models were evaluated at the upstream-simulated value. The
discontinuous black arrow represents the possibility of additional signaling intermediates upstream of each model. Network evolution. Blue
dashed arrows indicate the workflow steps that can be repeated for a subset of the acquired data points up to a defined time point. See main text for
the simulation resulting for models fitted to 96, 72 and 48 hours.
doi:10.1371/journal.pcbi.1003795.g005
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mediated effect. The signaling mechanism could be a new link

upstream of MEK1, consistent with the observed ERK1/2

response upon MEK1 specific inhibition with U0126. Such

mechanisms have been reviewed in Figure 1. For instance,

scaffolding proteins have been shown to mediate crosstalk with

other pathways [10]. In turn, the Sorafenib-mediated effect could

be an off-target effect of Sorafenib on the crosstalk. Alternatively,

the 96 h model disagreement could suggest that Sorafenib affects

the crosstalk through a signaling rearrangement dynamically

acquired to enable tumor proliferation at 72–96 h, in accordance

with findings that up-regulation of resistance genes can arise

within days of the start of the treatment.

Figure 6. Model-suggested reimplementation of topology addresses emerging behavior. (A) Upon network simulation at the
experimental time points, RMSE was calculated for models fitted to training measurements up to 48, 72 and 96 hours. No readouts were measured
upstream of nodes Akt, P38 and MEK1, hence these were not trained. The model c-Jun shows a high error already at 48 h and no improvement over
time in control conditions (see Figure S1 for all models). (B) Plotting c-Jun simulation (trajectory of input species in smaller time course) in the context
of the signaling network for the models trained to measurements up to 48, 72 and 96 h (grey curves; a star and a square indicate the last training
data point used in 72 and 48 hour models respectively) shows that the reason for failed simulation is the error propagated from JNK, which in turn
could not be modeled as regulated by Akt, because the experimental data (black line) are indeed not related. On a neighbor branch of the prior
knowledge network, ATF-2 successfully reproduces the behavior of P38 but is also suffering from error propagation from Akt to JNK. (C) To account
for this emerging behavior, literature search suggested an alternative topology in which Akt signaling is parallel to JNK. (D) The reimplemented
topology corrected JNK-regulated c-Jun simulation (see Figure S2 for all models) and as there was no error propagation from JNK, simulation of ATF-2
(grey lines) was then able to correctly follow P38 signaling.
doi:10.1371/journal.pcbi.1003795.g006
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Figure 7. Analysis of error evolution with upgraded topology suggests A375-specific signaling rearrangement. Here, we implement
the modeling concept illustrated in Figure 2F. (A) Error evolution displayed as errors for models trained with 0–96 h dataset (abscissas) against errors
for models trained with 0–48 h dataset (ordinates). Each point represents a model trained to experimental data upon DMSO (triangle), U0126
(square), AZD6244 (circle) and Sorafenib (diamond). All models with errors at 96 h and 48 h below 0.2 RMSE capture the trend in the data (see Figure
S2 for simulations and error calculations). Hence, models above 0.2 RMSE suggest a topological disagreement. The diagonal shows the models,
whose errors exhibited no change upon retraining and simulation. CREB and ERK1/2 upon treatment with specific MEK1 inhibitor AZD6244 show a
high error both at 48 h and 96 h, indicating that a disagreement in MEK1-ERK1/2 regulation is present from the first acquirement onwards. This
disagreement is not present with specific MEK1 inhibitor U0126. The region of confidence constrains the models that have simultaneously a low error
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Benchmarking mtFIS implementation and simulation
against a previous approach based on manually
calibrated fuzzy logic modeling

To assess the performance of mtFIS, we compared the

performance of our method with an already established fuzzy

logic based modeling approach [16], where each model in the

signaling network was manually implemented and calibrated, i.e.

without parameter fitting. Our method was used to implement

each node in the benchmark network and subsequently the data

presented in [42] was used for automated parameter estimation, as

detailed in Text S1. Figure S3A shows our simulation together

with the benchmark simulation and experimental data. Figure S3B

shows the RMSE of both simulations, revealing that high accuracy

was achieved with our method. With the exception of IKK upon

EGFR stimulation, all signals were more accurately encoded via

mtFIS training and simulation. This is not a direct method

comparison; instead, it specifically illustrates (i) a gain in

performance when using our automated parameter reduction

and training approach as compared to manually implemented

fuzzy logic modeling, and (ii) the readiness of this work to be

adapted to other datasets. In addition, benchmarking revealed

limitations of our method in terms of data requirements, or in

other words the ability to extend the number of inputs to a model,

as described in Text S1.

Discussion

In this work, we present a data-derived method to elucidate

topological changes in experimentally measured signaling net-

works and pathway rearrangements that grant certain tumors their

plasticity. We developed a training setup to fit the parameters of a

Fuzzy Inference System (FIS) to experimental time-defined

measurements. To increase interpretability, the number of

qualities that are traditionally trained in a fuzzy inference system

was importantly reduced. As part of this parameter reduction

strategy, the contribution of the model features to the flexibility

and accuracy of the output was calculated. Thereby, we could

conclude that circumventing training of a number of model

qualities without greatly compromising accuracy is possible. The

number of free parameters was reduced to below the threshold of

our 8 data points per condition acquired in our dataset per

signaling intermediate or transcription factor measured. This

pipeline rendered a generalized FIS that we termed gFIS. Based

on literature, we defined a signaling network containing our

experimental measurements, and subsequently a gFIS could be

trained to the data corresponding to each model in the network.

Next, a multi-treatment model (mtFIS) was created for each single

experimental measurement that could reproduce its nonlinear

behavior upon the 4 conditions of our experimental setup.

Evaluation of the network’s performance revealed a mismatch

in the MAPK stress response pathway, specifically in Akt-JNK-c-

Jun as reported by Vivanco et al. and Aikin et al. [43,44]. This

mismatch was found in control conditions, indicating a context-

dependent topology different from the canonical pathway

implemented as initially found in literature. By introducing an

alternative topology reported in the literature [35], we could take

this emerging behavior into account, thereby improving the

simulation. However, this manual literature search and imple-

mentation of modified network motifs can introduce a bias and be

tedious when upscaled. We anticipate that methods that assume a

prior knowledge network and then automatically optimize the

topology of the network to identify signaling rearrangements that

improve fit to data will be a key advance. In principle, this might

be achieved via a combination of the objective function used here

with the one presented by Saez-Rodriguez et al., which was

developed to assemble Boolean logic models from a prior

knowledge network and determine the optimal topology by

quantifying the difference between data and global simulation

while penalizing model size [15]. We acknowledge that there

should be more rigorous definitions of the optimization process to

account for models fitted to different number of time points to

analyze network evolution than the ones used here. Hence, we

propose that the exploration of the objective function mentioned

above would be highly interesting.

Analyzing the evolution of the selected topology revealed a non-

canonical architecture of the MAPK pathway in the A-375

melanoma cell line and a Sorafenib-mediated effect: while

Sorafenib is a BRAF kinase and VEGFR-2 inhibitor and, thereby,

prevents phosphorylation of MEK1/2 [36], the observed phos-

phorylation profile of ERK1/2 was not consistently inhibited. This

lack of regulation of ERK1/2 by MEK1 was also present in the

model in control conditions, suggesting crosstalk to the MAPK

signaling in the cell line used in this study. This crosstalk regulator

could be an off-target of Sorafenib or a signaling intermediate

enhanced as a resistance mechanism, the latter being consistent

with the late time point of the modeling disagreement. For

instance, it has been reported that A375 melanoma cell lines show

higher resistance to apoptosis than other melanoma cell lines,

where anti-apoptotic proteins are down-modulated in a MAPK-

independent manner, contrary to A375 [41]. Additionally, the

analysis of model evolution described here led to observation of

different mechanisms of action of the two specific MEK1

inhibitors used in this work. Such differential mechanisms were

consistent with literature. Taken together, the fact that specific

targeting of MEK1 led to consistent inhibition of ERK1/2

indicated that the above-mentioned A375-specific crosstalk should

be upstream of MEK1.

To further evaluate our method, the dataset presented in [42]

was used to benchmark it against the method described by

Aldridge et al. [16]. Thereby, it was possible to show that our

strategy for parameter reduction and automated model training

increases performance over manual model implementation. In

addition, due to the establishment of the general process for

automation of model building, the model can readily be adapted

to different datasets without demanding unavailable knowledge

required to manually parameterize the MFs. On the limitations

side, benchmarking revealed that the high accuracy and reusability

of our method came at the cost of increased number of parameters

and density of experimental data points for their estimation.

When modeling signal transduction, would it be possible to

differentiate between transient versus sustained activation using

at 48 h and a high error at 96 h. This is the case of ERK1/2 both in control conditions and Sorafenib, which suggests a potential rearrangement in the
canonical MAPK pathway. (B) Plotting ERK1/2 trajectory for retrained simulations and experimental data supports the suggestion by the model that
MEK1 regulation follows canonical pathway implemented in the prior knowledge network upon treatment with specific inhibitor U0126, but (C) not
upon specific MEK1 inhibitor AZD6244, indicating differential mechanisms of action of both inhibitors. (D) Trajectory plot for ERK1/2 confirms lack of
regulation by MEK1 throughout early and late time points upon treatment with both Sorafenib inhibitor (upper panel) and control conditions (lower
panel). The observation that canonical MEK1-ERK1/2 regulation is present upon U0126 suggests that he rearrangement is upstream of ERK1/2, and as
supported by literature it could be specific in A375 melanoma cell line.
doi:10.1371/journal.pcbi.1003795.g007
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our approach? To include the role of time in network topology, we

based our method on the assumption that the behavior of each

single node was the consequence of the behavior upstream of it.

Therefore, to simulate the behavior of the whole network, only the

upstream models were simulated on the first step, and its predicted

value was used to propagate the signal throughout the signaling

cascade for every simulation step. The role of time in logic models

has been reviewed in depth elsewhere [45,46]. It has been shown

that transient ERK1/2 activation in PC12 cells upon EGFR

stimulation by EGF induced proliferation, whereas sustained

ERK1/2 activation by NGF induced differentiation [47]. In the

future, data-derived logic models should be a key step forward to

facilitate identifying the events in which duration of activation i.e.

transient versus sustained is critical for cell signaling decisions. In

principle this should be straightforward to achieve by including

time as input analogously to the above-shown inclusion of

signaling intermediates as inputs, which in turn would increase

the constraints regarding dataset density. Thereby, direct quan-

tification of the contribution of time as a signal would be enabled.

The exploration of network evolution described here suggested

a Sorafenib-mediated effect that could be characterized, but the

specific rewired interaction could not be identified and its cause

could range from genetic mechanisms such as mutations to tight

spatio-temporal pathway regulation (see Figure 1). To elucidate

the mechanisms of topological complexity, more heterogeneous

datasets combining phosphoproteomics with other data should

provide a stronger basis. For instance, single-cell imaging data

might facilitate understanding of spatio-temporal pathway regu-

lation [48]. In previous work, we have used an exhaustive search of

trained fuzzy models to identify nonlinear relationships in

heterogeneous measurements of mitochondrial morphological,

apoptotic, and energetic states by high-resolution imaging of

human breast carcinoma MCF-7 cells [19]. This raises the

possibility that further exploration of data-derived logic and other

modeling approaches fitted to heterogeneous datasets should yield

valuable insights into the sources of the mechanisms granting

specific tumors its plasticity.

Materials and Methods

Multiplex measurements of phosphorylated and total
protein concentrations

Cell culture. A375 melanoma cells were grown in RPMI

1640 medium supplemented with 10% fetal calf serum, sodium

pyruvate, pen/strep and L-glutamine (Invitrogen, USA). MEK1/

2-specific inhibitor U0126 was solved in DMSO (stock solution,

10 mM), and used at a final concentration of 10 mM. One pill of

the multikinase inhibitor Sorafenib, targeting BRAF in melanoma

cells was solved in 31,4 ml DMSO (stock solution, 10 mM) and

used at a final concentration of 5 mM. MEK1/2-specific inhibitor

AZD6244 was solved in DMSO (stock solution, 10 mM) and used

at a final concentration of 3 mM. Measurements were acquired at

0 min, 30 min, 6 h, 12 h, 24 h, 36 h, 48 h, 72 h and 96 h.

0.16106 cells per sample were seeded in 6-well plates, one 6-well

plate for each time point. Medium was discarded prior to addition

of drug-containing medium for the given time points. DMSO was

used as solvent control for the inhibitors.

Luminex-based analysis of total and phosphorylated

proteins. We used the cell lysis kit from Bio-Rad (Hercules,

USA) for the preparation of tumor cell lysates. After treatment,

cells were washed by ice-sold PBS and lysed using 125 ml lysis

solution according to the manufacturer’s instructions Protein

concentrations were determined using the Pierce BCA Protein

Assay Kit (Thermo Scientific). To allow for the comparison of

drug perturbations as well as comparison between cell lines, we

detected the lowest protein concentration within this set of samples

(100 mg/ml), and adjusted all other sample concentrations

accordingly, using the phosphoplex assay buffer for dilutions.

50 ml of lysates containing 5 mg protein were then used for total

and phosphoplex analyses according to the Bio-Rad protocol. At

least 50 beads for each analyte region were collected for each

lysate. Analysis was performed using Bio-Rad Manager6.0.

Reported median fluorescence intensity (MFI) values for each

analyte were used as a measure for the total or phosphorylated

protein content in the samples. The following phosphorylation

sites were detected using the Luminex machine: MEK1Ser217/221,

ERK1/2Thr202/Tyr204/Thr185/Tyr187, AktSer473, GSK3bSer21/9, c-

JunSer63, JNKThr183/Tyr185, p38MAPKThr108/Tyr182, ATF-2Thr71,

CREBSer133, IKBaSer32/36.

Parameter reduction strategy and model implementation
In fuzzy logic, membership functions (MFs) allow transforma-

tion of the experimental data, thereby enabling the use of logic

rules. To parameterize input and output MFs, two types of fuzzy

logic systems have been widely used for inference, namely Takagi-

Sugeno models [32] and Mamdani or linguistic models [49].

While the output MFs are constrained to constant or linear in a

Takagi-Sugeno model, the output MFs in a Mamdani model are

generalized to fuzzy sets. To enable the process of parameter

estimation, the Takagi-Sugeno framework was used in this work.

Fixing number of rules and value of premise membership

function parameters. The number of rules was fixed by

considering only the combinations of low sets with themselves and

analogously for high sets. Choosing rules with a combination of

similar behavior, e.g. low and low, for multiple inputs was a

simplification that yielded increased interpretability, since subse-

quently the degree to which each input contributes to the output

could be extracted during the fitting process and is directly

represented by the parameters of the consequent MFs. However,

unlike kinetic rates in a physicochemical differential equation,

some qualities of a FL model can be relatively abstract. Examples

of abstract qualities are the number of rules, the width of a premise

MF or, even more in a Takagi-Sugeno model than in a linguistic

model, the consequent parameters. This renders the interpretabil-

ity of the specific values of these qualities difficult in spite of the

model reduction.

Because output parameters cannot be shared in Takagi-Sugeno

fuzzy inference systems, we chose to fix the parameters of all input

MFs to a generalized gauss function. In the case of low sets, the

center of the function was set at a = 0 and in the case of high

datasets at b = 1, which means that input measurements of 0 and 1

fully belong to the low and high input MFs, respectively (i.e. the

degree of membership to the set low mlow of a 0 input in Figure 3A

equals 1 and mhigh(0) equals 0, and conversely to a 1 input

mlow(1)~0 and mhigh(1)~1). For both cases, we took 0.4247 for the

width s, as this is the default MATLAB standard. The effect of

fixing said parameters was assessed by resampling the training

dataset in fixed versus free setups (see data-derived sensitivity

analysis).

Model implementation. MATLAB Release R2011b, The

MathWorks Inc., Natick, Massachusetts, United States, was used

for model implementation, fitting and simulation. Equation 2 and

3, i.e. a gFIS for single and another for double regulated

intermediates, were implemented as a MATLAB function.

Another function was implemented to fit them using an

unconstrained nonlinear optimization process. Due to the

flexibility of the fuzzy inference system, the solver converged to

solutions which where very accurate at the data points but out of
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range between them. In turn, poor interpolation power led to large

error propagation when the signal of upstream models was

propagated to simulate downstream models. To correct for this by

selecting those fits with the best interpolating power, 20 equidistant

points were synthesized to evaluate the model between the data

points and a Euclidean penalty was calculated by taking all

distances for those simulations over 1 and below 0, which we

respectively termed PositiveOffset and NegativeOffset. This

penalty was then used to punish the root-mean-square error

calculated in the objective function Q(P) as shown in equation 4

for a given vector P containing the parameters calculated by the

optimization algorithm:

Q(P)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i~1

yi{y
_

i(P)

n

vuut z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

j~1

(PositiveOffsetj{NegativeOffsetj)

m

vuut
; ð4Þ

where n is the number of data points, m is the number of

interpolated i.e. synthetic points, y
_

(P) is the simulation calculated

by the model at a given data point and y is the experimental

measurement at the same data point. The use of the number of

data points for the root mean squared calculation of the model

error served as simple means to account for number of training

data points when comparing models during network evolution.

To prevent the fitting process to be trapped in local optima, all

values for initial parameters were randomized following a uniform

distribution.

Finally, a MATLAB structure formatted as a Takagi-Sugeno

fuzzy inference system (e.g. P53.fis) was created with rules and

input MFs parameterized as mentioned above and the different

parameters resulting of the fitting process as output MF

parameters for each rule. All other FIS qualities were implemented

as default in MATLABS’s Fuzzy Logic Toolbox.

Data-derived sensitivity analysis
The reference model for the fixed-linear setup (Figure 4A, left)

was implemented as previously shown. The adaptive-constant

setup (Figure 4A, center) was implemented by creating a structure

consisting of a zero-order Takagi-Sugeno FIS, i.e. the input MFs

were Gaussian and parameterized as mentioned above and the

output MFs were set as constant. Fitting was performed via a

combination of the least-squares method and the backpropagation

gradient descent method for training FIS in the Fuzzy Logic

Toolbox. Analogously, the adaptive-linear setup (Figure 4A, right)

was implemented by creating a structure consisting of first-order

Takagi-Sugeno system and using the same fitting process. The

bootstrapped predictions were calculated by submitting the three

above-mentioned ‘‘create and fit system’’ functions to boot-

strapping for 1006 resampling with repetition, a method

introduced in [33]. All models are shown in Figure 4B, and

standard deviation was calculated for the prediction at each data

point. As a signature of model flexibility in terms of impact of

training dataset in the simulation at each data point, the mean of

the standard deviation across models is displayed.

As a signature of accuracy, the error E was calculated as root-

mean-squared error for all models and deviation s(") was

calculated across errors. This analysis is displayed in Figure 4B

for control conditions and extended to all conditions in Table S1.

Comparing the estimated premise parameters in the adaptive-

linear model to the fixed ones in the fixed-linear model revealed

high similarity (a = 0, b = 1, s1 = s2 = 0.4247 in the fixed-linear

model, while a = 0.0223, b = 1.019, s1 = 0.431 and s2 = 0.427

were estimated for the adaptive-linear setup with an error of

0.122). However, other values yielded estimated premise param-

eters similar to those new values, indicating a bias of the training

algorithm towards the initial parameters and confirming that the

consequent parameters outweigh the premise in their contribution

to accuracy. This bias had no effect in our approach because the

premise parameters were fixed.

Implementation of multiple perturbation models
The free parameters for a gFIS corresponding to each species in

the signaling network were fitted to the experimental data

separately for each condition. To compile all parameters in a

multi-treatment trained FIS at no increased parameter cost, two

Boolean functions were introduced to represent absence a(d) and

presence r(d) of each drug d, which we together termed naive

condition switch as shown in equation 5 and 6:

a(d)~
1,Vd : 0vdv0:5

0,Vd : d§0:5

�
ð5Þ

r(d)~
0,Vd : 0vdv0:5

1,Vd : d§0:5

�
ð6Þ

Automation of the model building process was achieved by

modifying the above-mentioned MATLAB function to ‘‘create

system and fit it’’ to include the naive drug switches. Loosely

speaking the 4 naive condition switches are simple Boolean

functions added to all rules of each FIS, so that upon simulation

they are evaluated at a value with the sole purpose of outputting

either 1 or 0, thereby neglecting the parameters learned in the

conditions that are not currently simulated. Equation 5 and 6 were

included in the code by adding 1 input with 2 trapezoidal MFs

parameterized as Boolean functions for each one of the 3

pharmacological inhibitors.

Formally, as shown in Figure 3, the parameter reduction

strategy yielded 2 rules per system per dataset. Hence, to include

all parameters trained for the 4 datasets, the multi-treatment

model for each species in the signaling network consisted of 8

rules. Consider for illustration the model f (x) encoding the

transcription factor c-Jun, which according to starting topology in

Figure 5 is regulated by one single intermediate, namely JNK.

Following equation 2, the model including the 3 naive condition

switches f (x,d1,d2,d3) for a value x of JNK is shown in equation 7:

f (x,d1,d2,d3)~

X8

i~1

(pixzqi)vi

X8

i~1

vi

; ð7Þ

where v1~mlow(x)a(d1)a(d2)a(d3), v2~mhigh(x)a(d1)a(d2)a(d3),

v3~mlow(x)r(d1)a(d2)a(d3), v4~mhigh(x)r(d1)a(d2)a(d3), v5~

mlow(x)a(d1)r(d2)a(d3), v5~mhigh(x)a(d1)r(d2)a(d3), v7~

mlow(x)a(d1)a(d2)r(d3), v8~mhigh(x)a(d1)a(d2)r(d3), p and q are

the fitted parameters and d is a discrete value that represents each

drug and will let the switches output zero when absent (equation 5)

and one when present (equation 6) for each drug in order to

neglect all but the parameters learned in the conditions being

simulated. This approach is valid for our experimental setup,
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where treatment consists of single drugs. It can easily be adapted to

other experimental scenarios, such as multiple drugs present

simultaneously, and can be implemented using MATLAB’s

graphical interface for the Fuzzy Logic Toolbox. For more details

on the simulation process, the reader is referred to the next section.

Full network simulation
For model simulation, values were defined for each naive

condition switch corresponding to the current simulation. Simu-

lation was performed by automatically assigning to each upstream

node the experimental value measured at a given time point. No

model was implemented for the upstream nodes because no

experimental measurement was acquired upstream of them that

could serve as input. An exception to this was the benchmark

simulation, where the upstream nodes are models implemented to

encode their behavior as a function of time, analogously to the

benchmark method. Subsequently, models downstream were

evaluated, thereby propagating the signal via the SIMULINK

model.

The network states in a logic model can be updated in a

synchronous and deterministic manner or asynchronously [45].

Here, the state of each node in the network was synchronously

determined by the state of the nodes upstream at a specific time

point.

Supporting Information

Figure S1 Time-defined model simulations against
training subsets and corresponding errors according to
initial prior knowledge network. (A) Simulation of full

network. Each species in the network is shown as rows for each

treatment used (columns). Simulations are shown in grey upon

training to data subsets containing measurements from 0 to 96 h,

up to 72 h (indicated with a star) and 48 h (indicated with a

square). Experimental measurements are shown as black lines. (B–
E) Root-mean-squared error was calculated for each simulation

for all treatments. Control conditions show a high error for the

Akt-JNK-c-Jun pathway implemented in the prior knowledge

network. This observation led to literature-based reimplementa-

tion of the network topology (see Figure 6).

(TIF)

Figure S2 Time-defined model simulations against
training subsets and corresponding errors according to
reimplemented signaling network to account for emerg-
ing behavior. (A) Simulation after reimplementation of the

initial prior knowledge network. Each species in the network is

shown as rows for each treatment used (columns). Simulations are

shown in grey upon training to data subsets containing

measurements from 0 to 96 h, up to 72 h (indicated with a star)

and 48 h (indicated with a square). Experimental measurements

are shown as black lines. (B–E) Root-mean-squared error was

calculated for each time-defined simulation for all treatments,

enabling analysis of network evolution. This analysis revealed a

potential rearrangement upstream of ERK1/2, which could be

specific for A375 melanoma cell line. Additionally, high error in

ERK1/2 simulation upon AZD6244 but no U0126 suggested

differential mechanism of action of the two specific MEK1

inhibitors (see Figure 7).

(TIF)

Figure S3 Benchmarking our method shows high re-
producibility, reduced prior knowledge demanded for
model parameterization and increased reusability at the
cost of large increase of data requirements. (A) Model

simulation (grey line) shows up to 10 fold increase of accuracy with

respects to benchmarking method (blue line) and an improvement

in capturing the trend over the 24 hours of measurement in the

benchmarking data (black line). This improvement was enabled by

the described modeling approach over the 4 conditions out of 10

in the benchmark dataset (columns) selected to enable comparison.

The application of the approach presented here to an additional

dataset revealed that parameters can be readily estimated, thereby,

easing the process of model implementation and simulation to

encode the behavior of a signaling network. This is an advantage

over methods that require manual model implementation. (B)

RMSE calculated for our method (grey bars) and the benchmark

method (blue bars) corroborate the increased accuracy of the

method presented here. RMSE was normalized to the max for

each simulation. Challenges revealed by benchmarking in terms of

data density requirements are extensively described in Text S1.

(TIF)

Table S1 Extension of data-derived sensitivity analysis
to all experimental conditions. The analysis resampling the

data to evaluate flexibility and accuracy of the approach, as

described in Figure 4 for control conditions, was performed for

all conditions. The model implementation and training setup

featuring fixed premise parameters and adaptive linear conse-

quent parameters was contrasted to two established setups: (i) A

system with adaptive premise parameters and adaptive zero-order

consequent parameters and (ii) a system with adaptive premise

parameters and adaptive linear consequent parameters, i.e. the

same setup as the fixed-linear system with the difference that here

the premise parameters were not fixed. For each condition, a

reference system was created which was trained to all data points

acquired in said condition. The RMSE E was calculated for the

reference model as a metric of accuracy. The training data set

was resampled 100 times via bootstrapping and the standard

deviation of the simulations at each data point was calculated as a

metric of flexibility (first raw for each modeling approach). The

error of every bootstrapped model was calculated, and the

deviation for all 100 models is shown (second raw for each setup).

Ranking the calculations for the metrics of the setups for each

condition shows that the first in accuracy (third raw for each

modeling approach), i.e. the setup with least references error is

the adaptive-linear closely followed by the fixed-linear. The most

robust setup is the adaptive-constant, and the fixed-linear and

adaptive-linear perform similarly, indicating that neither accura-

cy nor flexibility are greatly compromised by using the

parameter-reduced setup. See main text for further details on

the resampling rationale.

(XLS)

Table S2 Parameters estimated for the reference and
cross-validation JNK-c-Jun models. In order to discard over-

fitting we performed a leave-one-out cross-validation approach.

The JNK-c-Jun control dataset featuring eight data pairs was split

into a test set, consisting of one excluded observation, and a

training set consisting of the remaining observations. A gFIS was

fit to the training set and a prediction was made for the excluded

observation using its JNK value. This process was performed for

all eight data pairs, yielding eight training set models. Next, a gFIS

was fit to the full dataset, creating a reference model. The

parameters shown in equation 2 for the reference model are shown

in the first row. Subsequent rows are the train set models for each

excluded time point. See main text for details on cross-validation.

The final row shows the parameters estimated during bootstrap

using the adaptive-linear setup.

(XLS)
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Table S3 References used to determine interactions
used for model fitting. Left column indicates the relationship

between a regulator and its downstream target. Interactions can be

direct or indirect, the latter being trough intermediates not

measured, hence not included. Right column indicates the source

where the corresponding relationship was found. During model

implementation process, reported interactions indicated which

data subset to use as input e.g. regulatory kinases and which data

to use as output e.g. regulated transcription factor for each model

fitted in the topology. An overview of the pathway map can be

found online at the KEGG database http://www.genome.jp/

dbget-bin/www_bget?map04010.

(XLS)

Text S1 Benchmarking methodology and limitations.
(DOC)
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26. Übeyli ED (2009) Adaptive neuro-fuzzy inference system for classification of

ECG signals using Lyapunov exponents. Computer Methods and Programs in
Biomedicine 93: 313–321. doi:10.1016/j.cmpb.2008.10.012.

27. Chiu SL (1994) Fuzzy model identification based on cluster estimation. Journal

of intelligent and Fuzzy systems.

28. Wang Z, Palade V (2011) Building interpretable fuzzy models for high

dimensional data analysis in cancer diagnosis. BMC Genomics 12: S5.

doi:10.1186/1471-2164-12-S2-S5.

29. Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, et al. (1999)

Phosphorylation of human p53 by p38 kinase coordinates N-terminal

phosphorylation and apoptosis in response to UV radiation. EMBO J 18:
6845–6854. doi:10.1093/emboj/18.23.6845.

30. Fuchs SY, Adler V, Pincus MR, Ronai Z (1998) MEKK1/JNK signaling

stabilizes and activates p53. Proc Natl Acad Sci USA 95: 10541–10546.

31. Jang JSR (1993) ANFIS: adaptive-network-based fuzzy inference system. IEEE

Trans Syst, Man, Cybern 23: 665–685. doi:10.1109/21.256541.

32. Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications
to modeling and control. IEEE Trans Syst, Man, Cybern SMC-15: 116–132.

doi:10.1109/TSMC.1985.6313399.

33. Efron B (1979) Bootstrap methods: another look at the jackknife. The Annals of
Statistics 7: 1–26.

34. James G, Witten D, Hastie T, Tibshirani R (2013) An Introduction to Statistical

Learning. New York, NY: Springer New York. doi:10.1007/978-1-4614-7138-7.

35. Vivanco I, Palaskas N, Tran C, Finn SP, Getz G, et al. (2007) Identification of
the JNK Signaling Pathway as a Functional Target of the Tumor Suppressor

PTEN. Cancer Cell 11: 555–569. doi:10.1016/j.ccr.2007.04.021.

36. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, et al. (2004) BAY 43-
9006 exhibits broad spectrum oral antitumor activity and targets the RAF/

MEK/ERK pathway and receptor tyrosine kinases involved in tumor
progression and angiogenesis. Cancer Research 64: 7099–7109. doi:10.1158/

0008-5472.CAN-04-1443.

37. Yeh TC, Marsh V, Bernat BA, Ballard J, Colwell H, et al. (2007) Biological

Characterization of ARRY-142886 (AZD6244), a Potent, Highly Selective
Mitogen-Activated Protein Kinase Kinase 1/2 Inhibitor. Clinical Cancer

Research 13: 1576–1583. doi:10.1158/1078-0432.CCR-06-1150.

38. Davies BR, Logie A, McKay JS, Martin P, Steele S, et al. (2007) AZD6244
(ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/

extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action
in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for

combination in preclinical models. Mol Cancer Ther 6: 2209–2219.
doi:10.1158/1535-7163.MCT-07-0231.

Unraveling Signaling Plasticity from Data

PLOS Computational Biology | www.ploscompbiol.org 17 September 2014 | Volume 10 | Issue 9 | e1003795

http://www.genome.jp/dbget-bin/www_bget?map04010
http://www.genome.jp/dbget-bin/www_bget?map04010
http://www.nature.com/doifinder/10.1038/nrm2901
http://www.nature.com/doifinder/10.1038/nrm2901


39. Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated

protein kinase cascade for the treatment of cancer. Oncogene 26: 3291–3310.

doi:10.1038/sj.onc.1210422.

40. Fukuda M, Gotoh Y, Nishida E (1997) Interaction of MAP kinase with MAP

kinase kinase: its possible role in the control of nucleocytoplasmic transport of

MAP kinase. EMBO J 16: 1901–1908. doi:10.1093/emboj/16.8.1901.

41. Panka DJ (2006) The Raf Inhibitor BAY 43-9006 (Sorafenib) Induces Caspase-

Independent Apoptosis in Melanoma Cells. Cancer Research 66: 1611–1619.

doi:10.1158/0008-5472.CAN-05-0808.

42. Gaudet S, Janes KA, Albeck JG, Pace EA, Lauffenburger DA, et al. (2005) A

compendium of signals and responses triggered by prodeath and prosurvival

cytokines. Mol Cell Proteomics 4: 1569–1590. doi:10.1074/mcp.M500158-

MCP200.

43. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway

in human cancer. Nat Rev Cancer 2: 489–501. doi:10.1038/nrc839.

44. Aikin R (2004) Cross-Talk between Phosphatidylinositol 3-Kinase/AKT and c-

Jun NH2-Terminal Kinase Mediates Survival of Isolated Human Islets.
Endocrinology 145: 4522–4531. doi:10.1210/en.2004-0488.

45. Wynn ML, Consul N, Merajver SD, Schnell S (2012) Logic-based models in

systems biology: a predictive and parameter-free network analysis method.
Integr Biol 4: 1323. doi:10.1039/c2ib20193c.

46. Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA (2010) Logic-
Based Models for the Analysis of Cell Signaling Networks. Biochemistry 49:

3216–3224. doi:10.1021/bi902202q.

47. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient
versus sustained extracellular signal-regulated kinase activation. Cell 80: 179–

185.
48. Grecco HE, Schmick M, Bastiaens PIH (2011) Signaling from the living plasma

membrane. Cell 144: 897–909. doi:10.1016/j.cell.2011.01.029.
49. Mamdani EH, Assilian S (1999) An experiment in linguistic synthesis with a

fuzzy logic controller. International journal of human-computer studies 51: 135–

147.

Unraveling Signaling Plasticity from Data

PLOS Computational Biology | www.ploscompbiol.org 18 September 2014 | Volume 10 | Issue 9 | e1003795


