Figure 7. Phase transitions in endogenous β-cell network activity, as shown by the activity in a fully-coupled islet system as a function of the activity in the uncoupled islet system; where the latter represents the intrinsic excitability of the constituent cells.
A) Experimentally measured transition from global activity to quiescence in wild-type islets treated with varying diazoxide concentrations, showing phase transition in activity as constituent cellular activity is reduced B) Simulated transition from global activity to quiescence upon normal gap junction conductance as KATP is uniformly activated across the islet in the dynamical oscillator model. C) Modelled transition from activity to quiescence within the Boolean lattice resistor network model as Pexc is reduced, for p = 0.3 and Sp = 0.5. Note in all cases; for islets lacking gap junction coupling, with zero gap junction conductance and for p = 0, the transition is trivially linear (blue dashed).