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Abstract

Multiple algorithms are used to predict the impact of missense mutations on protein structure and

function using algorithm-generated sequence alignments or manually curated alignments. We

compared the accuracy with native alignment of SIFT, Align-GVGD, PolyPhen-2 and Xvar when

generating functionality predictions of well characterized missense mutations (n = 267) within the

BRCA1, MSH2, MLH1 and TP53 genes. We also evaluated the impact of the alignment employed

on predictions from these algorithms (except Xvar) when supplied the same four alignments

including alignments automatically generated by (1) SIFT, (2) Polyphen-2, (3) Uniprot, and (4) a

manually curated alignment tuned for Align-GVGD. Alignments differ in sequence composition

and evolutionary depth. Data-based receiver operating characteristic curves employing the native

alignment for each algorithm result in area under the curve of 78-79% for all four algorithms.

Predictions from the PolyPhen-2 algorithm were least dependent on the alignment employed. In

contrast, Align-GVGD predicts all variants neutral when provided alignments with a large number

of sequences. Of note, algorithms make different predictions of variants even when provided the

same alignment and do not necessarily perform best using their own alignment. Thus, researchers

should consider optimizing both the algorithm and sequence alignment employed in missense

prediction.
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INTRODUCTION

Nonsynonymous or missense changes found as either single nucleotide polymorphisms

(nsSNPs) or rare mutations result in amino acid substitutions in the protein product which
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may or may not affect protein function. Large-scale sequencing projects yield many

missense mutations with unknown biological significance. Determining the pathogenicity of

missense mutations is an important step in identifying and interpreting variants associated

with disease.

A number of algorithms have been developed to predict the impact of missense mutations on

protein structure and function including sequence and structure-based approaches. A review

of available computational methods for assessing the functional effects of missense

mutations has been performed (Ng and Henikoff, 2006; Karchin, 2009; Thusberg and

Vihinen, 2009; Jordan et al., 2010). Many methods base their predictions on phylogenetic

information implying the pathogenicity of missense mutations is assessed from the observed

amino acid variation at a given residue in the multiple sequence alignment employed.

Variables that affect the prediction accuracy of these algorithms include the gene examined,

the number of sequences in the alignment, the evolutionary distances among species, the

algorithm used, and the importance of absolute amino acid conservation versus relatively

conservative missense changes (Greenblatt et al., 2003). Researchers have used multiple

methods as a way to increase confidence in identifying deleterious mutations when

predictive results differ between methods (Chan et al., 2007; Chun and Fay, 2009) but it has

been argued these algorithms have major similarities ‘underneath the lid’ and the correlation

of their outputs is the result of similarity of their inputs, which is not a cause for increased

confidence (Karchin et al. 2009). Problems in comparing multiple methods extend further

because there is no standard classification system used to categorize the predicted

functionality of the variants, needed to provide a statistical measure of performance of the

methods. Researchers have addressed this problem by grouping the predictions from the

algorithms into two main categories: variants that are predicted to be deleterious or neutral

(Chan et al., 2007).

Several studies have compared the prediction accuracy of sequence (Balasubramanian et al.,

2005; Mathe et al., 2006) and structure-based algorithms (Bao et al., 2005; Chan et al., 2007;

Chao et al., 2008) using alignments generated by the algorithms or manually curated

alignments. However, it remains unclear how the predictions change when the sequence

alignment provided changes, since it has been suggested that when the outputs from the

algorithms differ, it is most likely due to employing different protein sequence alignments

(Karchin, 2009). Past research has shown high predictive values for methods that use

evolutionary sequence conservation, surprisingly with or without protein structural

information (Chan et al., 2007). Since sequence alignments influence sequence-based

methods which ultimately generate measures of pathogenicity (Kryukov et al., 2007), it is

important to determine which types of sequence alignments will lead to better in silico

assessments (Tavtigian et al., 2008).

In this study we employed four commonly used algorithms:

1. SIFT (http://sift.jcvi.org/). The method ‘Sorts Intolerant From Tolerant’ is a

sequence homology-based tool that predicts variants in the query sequence as

“neutral” or “deleterious” using normalized probabilities calculated from the input

multiple sequence alignment (Ng and Henikoff, 2001). SIFT obtains this multiple
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sequence alignment by internally generating it or by allowing the user to submit

their own FASTA-formatted alignment. The alignment built by SIFT contains

homologous sequences with a medium conservation measure of 3.0 where

conservation is represented by information content (Schneider et al., 1986) to

minimize false positive and false negative error. The authors mention better results

may be obtained using only ortholog sequences because including paralogs can

confound predictions at residues conserved only among the orthologs (Ng and

Henikoff, 2002). Variants at a position with normalized probabilities less than 0.05

are predicted deleterious and predicted neutral with a probability greater than or

equal to 0.05.

2. Align-GVGD (http://agvgd.iarc.fr/). This method predicts variants in the query

sequence based on a combination of Grantham Variation (GV), which measures the

amount of observed biochemical evolutionary variation at a particular position in

the alignment, and Grantham Deviation (GD), which measures the biochemical

difference between the reference and amino acid encoded by the variant (Mathe et

al., 2006). The original classifier uses a set of five criteria based on GV and GD

which classifies variants as “neutral”, “unclassified' or “deleterious” (Mathe et al.,

2006). For example, in the extreme case of GV = 0, the alignment is completely

conserved at that position and any other variant will be considered deleterious. The

new classifier provides ordered grades ranging from the most pathogenic to least

likely pathogenic (Tavtigian et al., 2008). The algorithm has primarily been used

for a few clinically relevant tumor suppressor genes such as BRCA1, TP53 and the

author provides highly manually curated alignments which may cause a favorable

bias towards this algorithm when applied to the class of genes studied here. These

alignments contain a small number of full-length ortholog sequences with a long

range of evolutionary depth. The author argues the alignment should not only be

restricted to true orthologs due to the biological phenomenon of functional

diversification among paralogs (Abkevich et al., 2004), but also should sample

enough sequences at sufficient evolutionary distance from each other (alignment

depth) for the best accuracy of the algorithms (Tavtigian et al., 2008). The

experimentalist can provide his or her own alignment for other genes.

3. PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/). This method is the latest tool

developed by the authors of the original PolyPhen (Ramensky et al., 2002). Its

novel features include the set of predictive features, the alignment pipeline and the

probabilistic classifier based on machine-learning methods. PolyPhen-2 predicts

variants as “benign”, “possibly damaging” or “probably damaging” based on eight

sequenced-based and three structure-based predictive features which were selected

by an iterative greedy algorithm. Another useful feature is the algorithm calculates

a Bayes posterior probability that a given mutation is deleterious (Adzhubei et al.,

2010). The web-based version requires use of the built in alignment pipeline, but

the user may download and install the latest version of PolyPhen-2 to submit their

own alignment. The alignment pipeline used in PolyPhen-2 selects homologous

sequences using a clustering algorithm and then constructs and refines the

alignment yielding an alignment containing both orthologs and paralogs that may
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or may not be full length, which yields a wider breadth of sequences but decreased

depth compared with the Align-GVGD alignment. The authors argue this leads to

more accurate predictions because a majority of deleterious variants affect protein

structure compared to specific protein function (Adzhubei et al., 2010).

4. Xvar (http://xvar.org/). This recently developed web-based algorithm (Reva et al.,

2010) by the same authors of the original algorithm combinatorial entropy

optimization (Reva et al., 2007) cannot accept user-defined multiple sequence

alignments from the investigator as input. The Xvar server can map the variant to

both the Uniprot (http://www.uniprot.org/) and NCBI Reference Sequence (Refseq)

protein (http://www.ncbi.nlm.nih.gov/refseq/) and to the 3D structure in Protein

Data Bank (PDB) (http://www.pdb.org/pdb/) if available. Once the Uniprot IDs are

identified, they are used to build local sequence alignments and extract information

about the domain boundaries, annotated functional regions and protein-protein

interaction instead of using full-length sequences as in the other three algorithms.

Xvar predicts variants as “neutral”, “low”, “medium” or “high”.

Sets of missense mutations with known functionality are needed to compare the algorithms.

Locus-specific databases (LSDBs), which are “curated collections of sequence variants in

genes associated with disease” (Greenblatt et al., 2008), can be used as a ‘gold standard’

containing both neutral and deleterious variants. The variants from the LSDBs are evaluated

by the algorithms which allow a comparison of the algorithms for sensitivity, specificity and

receiver operating curves. Tavtigian et al. (2008) argue the best data sets for comparing

these algorithms are LSDBs which are curated by individuals or groups specialized in the

analysis of each specific gene (Chan et al., 2007; Chao et al., 2008). A description of LSDBs

for cancer susceptibility genes available on the internet can be found in Greenblatt et al.

(2008). We evaluated the algorithms on four sets of variants with known functionality from

BRCA1 (MIM# 113705), MSH2 (MIM# 609309), MLH1 (MIM# 120436) and TP53

(MIM# 191170) cancer associated genes.

MATERIALS AND METHODS

Multiple Sequence Alignments

The four multiple sequence alignments used as input to compare the variability of

predictions from each algorithm include:

1. An automatically generated alignment from SIFT

2. An automatically generated alignment from PolyPhen-2 with a wide breadth of

sequences (http://genetics.bwh.harvard.edu/pph2/). After downloading and

installing the latest version of PolyPhen-2, the alignment automatically generated

by the alignment pipeline can be obtained in a FASTA-formatted alignment.

3. A small highly curated alignment with long evolutionary depth ideal for Align-

GVGD (http://agvgd.iarc.fr/). The BRCA1, MSH2, MLH1 and TP53 curated

protein alignments can be directly obtained from the website and formatted into a

FASTA-formatted alignment.
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4. An uncurated alignment (http://www.uniprot.org/) automatically generated in

Uniprot using the built in ClustalW feature with sequences included based on a

criteria of 50% identity. This alignment was used as an unbiased alignment in the

sense that none of the programs were built or trained on this type of alignment,

which makes it suitable for testing the variability of the predictions from these

algorithms.

All field tests using the four algorithms were run during July 23-27, 2010 on a Mac OS X

10.5.8. Safari 5.0 was used to access the web-based methods.

SIFT

The web-based method SIFT version 4.0.3 was used with all default settings. The alignment

built by SIFT was created using the SIFT Sequence option. The other three multiple

sequence alignments were each submitted under the SIFT Aligned Sequences option.

Variants were predicted as “neutral” or “deleterious”.

Align-GVGD

The web-based method Align-GVGD was used with all default settings. The Align-GVGD

alignment for BRCA1, MSH2, MLH1 and TP53 are freely available on the website. Each of

the other three types of multiple sequence alignments were also submitted. Variants were

predicted as “neutral”, “unclassified” or “deleterious”. For this study, the variants predicted

as “neutral” and “unclassified” were grouped together as neutral variants.

PolyPhen-2

The latest version of PolyPhen-2 version 2.0.22 and helper programs were downloaded and

installed on 3.06 GHz Intel Core 2 Duo processor with 6GB L2 Cache memory computer at

Rice University. The standard output reported by the downloaded algorithm uses the default

classifier model HumDiv, but predictions may also be obtained using the HumVar model

reporting only minor differences between the two models (data not shown). The alignment

built by PolyPhen-2 was automatically generated. The other three multiple sequence

alignments could be submitted because the downloaded algorithm allows the user to submit

their own FASTA-formatted alignment. Variants were predicted as “benign”, “possibly

damaging” or “probably damaging”. For this study, the variants predicted as “possibly

damaging” and “probably damaging” were grouped together as deleterious variants.

Xvar

The web-based method Xvar version 0.75 beta was used with all default settings. The

variants were submitted along with their Uniprot accession IDs. They were predicted as

“neutral”, “low”, “medium” and “high”. For this study, the variants predicted as “neutral”

and “low” were grouped together as neutral variants and the variants predicted as “medium”

and “high” were grouped together as deleterious variants.
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Mutation Databases

To test the algorithms we used existing sets of missense mutations with curated functionality

available either in the literature or curated locus specific databases for four cancer associated

genes: BRCA1, MLH1, MSH2 and TP53.

1. The online Breast Cancer Information Core (BIC) (Szabo et al., 2000) mutation

database (http://research.nhgri.nih.gov/bic/) was used to identify neutral (n = 16)

and deleterious (n = 17) mutations from BRCA1. The steering committee of the

BIC has manually reviewed available data from the literature and likelihood ratios

(Goldgar et al., 2004) to define clinically relevant or benign missense changes

using three categorizations of clinically relevant (yes, no or unknown).

2. The MLH1 missense mutations were obtained from two papers (Raevaara et al.,

2005; Chao et al., 2008). The first paper performed mismatch repair functional

assays to identify neutral (n = 10) mutations with wild-type activity and deleterious

(n = 18) mutations with impaired mismatch repair activity. These MLH1 mutations

were compared in a previous paper (Chan et al., 2007) that used the three

algorithms SIFT, Align-GVGD and PolyPhen, but they did not compare the results

using different alignments. The second paper compiled a list of all known MLH1

missense mutations from several LSDBs with supporting data which was used as

rigorous criteria to classify the variants as neutral (n = 18) or deleterious (n = 37).

Subtracting the overlap between the papers yielded a total of (n = 21) neutral and (n

= 39) deleterious variants.

3. The MSH2 variants were obtained from the same two papers as the MLH1 variants

above (Raevaara et al., 2005; Chao et al., 2008). The first paper identified neutral

(n = 3) mutations with wild-type activity and deleterious (n = 11) mutations with

impaired mismatch repair activity. These MSH2 mutations were also compared in

the paper (3). The second paper compiled classified neutral (n = 8) or deleterious (n

= 13) variants with the same criteria as above. Subtracting the overlap between the

papers yielded a total of (n = 11) neutral and (n = 19) deleterious variants.

4. The online TP53 database from the International Agency for Research on Cancer

(IARC) was used to identify neutral (n = 4) and deleterious (n = 140) mutations

from the TP53 gene (http://www-p53.iarc.fr/). A description of inclusion criteria

for the polymorphisms and germline deleterious variants is given (Olivier et al.,

2002).

Statistics

Several statistical measures of performance were used to compare the performance of the

algorithms for each of the four sets of mutations with known functionality. Using the

notation of true positives (TP), true negatives (TN) false positives (FP) and false negatives

(FN), we compute sensitivity as TP / (TP + FN) (probability of identifying true deleterious

mutations) and specificity as TN / (TN + FP) (probability of identifying true neutral

mutations). Some algorithms provide more than two prediction categories, e.g. neutral,

possibly and probably damaging for Polyphen-2. Therefore, as described above for each
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method, we grouped the output into two categories “deleterious” and “neutral” based on

similar groupings in previous studies (Chan et al., 2007).

A receiver operating characteristic (ROC) curve (Fawcett, 2006) is a technique that allows

combining the mutation data and visualizing the performance of the algorithm with the

native alignment and the three additional alignments provided (treated as a probabilistic

classifier in this case). The ROC graph is a two dimensional graph that plots sensitivity

against 1 -specificity depicting the relative tradeoffs between the true positives and false

positives. ROC curves can be based on discrete or continuous classifiers. An algorithm that

only reports a finite set of prediction categories, such as “neutral” or “deleterious” is a

discrete classifier. However, if the algorithm reports a continuous score, being the degree or

probability of a mutation belonging to a prediction category then it is a continuous classifier.

We have reported the ROC curves in Figure 3 using the associated continuous scores

available for any mutation tested in each algorithm (in fact, these scores underlie the discrete

classifications). [[COPYEDITOR AND TYPESETTER: PLEASE ALLOW THIS EARLY

CALL OUT OF FIGURE 3]] Accuracy is measured by the area under the ROC curve

(AUC); an area of 1 corresponds to a perfect prediction, whereas an area of 0.5 corresponds

to a “pure chance” prediction. AUC less than 0.5 may be interpreted as a systematically

incorrect prediction. The AUC of a given classifier can be represented as the probability that

given an alignment the algorithm will rank a randomly chosen deleterious mutation higher

than a randomly chosen neutral mutation (Fawcett, 2006). In our case, we use an AUC

formula equivalent to the Wilcoxon test of ranks (Hanczar et al., 2010). The confidence

intervals of the estimated AUC values are identical with the confidence intervals of the

Wilcoxon rank statistic (Hogg and Tanis, 2006). The ROC curves and AUC values for all

algorithm/alignment pairs were computed using the ROCR package in R (Sing et al., 2005).

RESULTS

In this analysis we compare the predicted functionality of the same set of curated missense

mutations in tumor suppressor genes using existing algorithms SIFT, Align-GVGD,

PolyPhen-2 and Xvar. In addition, we provided SIFT, Align-GVGD and Polyphen-2 the

same four sequence alignments for each gene analyzed to determine the impact of the

alignment on prediction. Xvar is excluded from this latter analysis because it currently does

not accept multiple sequence alignments as input. Specificity was measured by the

performance on correctly calling neutral variants neutral while sensitivity was measured by

the performance on correctly calling deleterious variants deleterious.

BRCA1 Tumor Suppressor Gene

The native BRCA1 sequence alignments were built for the four algorithms as described in

Methods. In addition, the three non-native alignments were used as inputs in each of the

three algorithms, SIFT, Align-GVGD and PolyPhen-2 (see Table 1 for the number of

sequences in each alignment). A description of the set of the well-characterized neutral (n =

16) and deleterious (n = 17) BRCA1 variants from the BRCA1 LSDB is described in

Methods.
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Figure 1A shows the output of each algorithm using the neutral (n = 16) BRCA1 variants

when given the same four alignments. We found the algorithm PolyPhen-2 to be the least

sensitive to the varying alignments. The Align-GVGD algorithm was the most sensitive to

the varying alignments because the algorithm will predict all variants neutral, regardless of

pathogenicity, when provided an alignment with a large number of sequences such as the

PolyPhen-2 and Uniprot 50% alignments. Although this translates to an apparently high

specificity for the Align-GVGD algorithm, this feature of the algorithm leads to the

prediction of neutrality being solely based on the number of sequences in the alignment.

Surprisingly, we see that algorithms do not necessarily perform best using their own

alignment (Table 1). For example, the SIFT algorithm has the highest specificity using the

Align-GVGD alignment (compared to its own) possibly because the Align-GVGD

alignment is only made up of orthologs (Ng and Henikoff, 2002). We also found that the

SIFT algorithm overcalls neutral variants as deleterious, low specificity, as previously noted

by others (Mathe et al., 2006; Karchin et al., 2008). Using its own or native alignment, the

Xvar algorithm has specificity (Table 2) that is equal to or smaller than the specificities of

the other three algorithms using their optimal alignment (Table 1).

The results in Figure 1B show the output of each algorithm for the deleterious (n = 17)

BRCA1 variants when given the same four alignments. The Align-GVGD algorithm shows

a poor sensitivity, again because it incorrectly predicts all 17 deleterious variants as neutral

when provided large number of sequences, as it is the case for PolyPhen-2 and Uniprot 50%

alignments. The algorithm PolyPhen-2 has the highest sensitivity using the SIFT alignment

which is another example of an algorithm performing best with an alignment other than its

own (Table 1). When comparing the Xvar algorithm using its native alignment to the other

algorithms, we see Xvar has a high sensitivity (Table 2) that is similar to the sensitivities

reported from the other algorithms using their optimal alignment (Table 1).

MSH2, MLH1 Mismatch Repair Genes and TP53 Tumor Suppressor Gene

The native MSH2, MLH1 and TP53 sequence alignments were built for the four algorithms

as described in Methods. In addition, the three non-native alignments for each gene were

used as inputs in each of the three algorithms, SIFT, Align-GVGD and PolyPhen-2 (see

Table 1 for the number of sequences in each alignment). The three sets of variants from

MSH2 (n = 11 neutral, n = 19 deleterious), MLH1 (n = 21 neutral, n = 39 deleterious) and

TP53 (n = 4 neutral, n = 140 deleterious) are described in Methods. Overall we found

similar results to BRCA1 for variants from these three cancer genes (Table 1). However,

SIFT algorithm reports higher sensitivities using the MSH2 and MLH1 variants compared to

the BRCA1 variants. We also note that although for BRCA1 the highest specificity of the

SIFT algorithm was seen by using the Align-GVGD alignment this was not true for the other

three genes. The results for MSH2, MLH1 and TP53 using the Xvar algorithm are given in

Table 2 which again demonstrates the algorithm using its native alignment reports similar

specificity values to the other algorithms. When comparing sensitivity, Xvar using its native

alignment reports higher sensitivities (Table 2) that is equal to or greater than the

sensitivities of the other algorithms using their best alignment (Table 1) for all three genes.
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Overall Sensitivity and Specificity

A boxplot summary of the sensitivity and specificity values for the three algorithms, which

combines the gene- and alignment-specific information, illustrates how much variation is

caused by employing different alignments (Figure 2). For each alignment, the four

sensitivity values are computed by grouping the mutations within each of the four genes

BRCA1, MSH2, MLH1 and TP53, yielding a total of 16 sensitivity values for each algorithm.

We note that there are only four neutral TP53 variants which may inflate the specificity

values; therefore we excluded TP53 specificity values in the figure and used only 12

specificity values for each algorithm. We also computed confidence intervals for the

sensitivity and specificity estimates (see Supp. Tables S1-S4), using the Wilson score

method (Agresti, 2002). The results from Figure 2 show PolyPhen-2 and SIFT both have a

high median sensitivity of 0.90 and 0.85, respectively. We note PolyPhen-2 and SIFT both

have similar median specificity values, 0.40 and 0.52, respectively, highlighting that the

specificities are significantly lower than the sensitivities. Thus, these algorithms are more

likely to make mistakes by calling neutral variants deleterious. For both sensitivity and

specificity PolyPhen-2 has a smaller interquartile range (IQR) than SIFT, which means that

PolyPhen-2 is less sensitive to the sequence alignment employed. As noted previously,

Align-GVGD is very sensitive to the algorithm employed. The high specificity seen in

Align-GVGD is misleading because the algorithm predicts all variants neutral, regardless of

pathogenicity, when using alignments with a large number of sequences. This feature of the

algorithm also results in low sensitivity with large IQR. Thus, even though Align-GVGD

performs well using its own alignment, it is more dependent on the alignment employed than

either SIFT or PolyPhen-2. The results of this analysis are that only PolyPhen-2 and SIFT

are appropriate for use with non-native alignments that are not manually curated, with

PolyPhen-2 modestly outperforming SIFT. The corresponding boxplot for the Xvar

algorithm is not provided because Xvar requires the use of its native alignment; however,

the median sensitivity is 0.98 and the median specificity (excluding TP53) is 0.33.

Receiver Operating Characteristic curves

Each algorithm provides a quantitative probability or score as output as well as a prediction

category, e.g. “probably damaging” for Polyphen-2. This enabled us to compare alignment-

specific information for each algorithm using the concept of receiver operating characteristic

(ROC) curves to provide a succinct graphical summary of all four algorithms, treated as

continuous classifiers (Figure 3A and Figure 3B; also, see Statistics Section in Materials and

Methods). Align-GVGD and PolyPhen-2 algorithms performed best using their native

alignment, but the SIFT algorithm had a higher AUC when using an alignment, manually

curated Align-GVGD, other than its own. When employing the optimal alignment for each

algorithm, the AUC values are 79% for all four algorithms. The PolyPhen-2 algorithm is

shown to be the least dependent on the alignment employed as seen by the nearly

overlapping ROC curves and similar AUC values for all four alignments provided. In

comparison the SIFT and Align-GVGD algorithms show much greater variation in their

ROC curves employing different alignments. As seen in Figure 2, Figure 3 shows

PolyPhen-2 and SIFT are the only two methods appropriate for use with non-native

algorithm-generated alignments. The area under the ROC curve (AUC) values are reported
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in Table 3 with the associated confidence intervals. When we rank the averaged AUC values

for each alignment strategy we obtain 0.790, 0.766, 0.674, and 0.579 for the Align-GVGD,

SIFT, PolyPhen-2 and Uniprot alignments, respectively.

Given that most investigators will utilize online tools where the algorithm employs its native

alignment we compared the ROC curves for the four algorithms using their native

alignments (Figure 3C). This analysis demonstrates no significant differences in the shape of

the curve or AUC values (between 78-79%) for all four algorithms. The same analysis

utilizing the optimal alignment for each algorithm results in only a small difference in the

AUC for the SIFT algorithm increasing from 78 to 79%.

DISCUSSION

Accurately predicting the impact of missense mutations on protein function depends on the

algorithm used, the type of sequence alignment provided, and on the number of sequences in

the alignment. In addition to problems of interpretation there are technical difficulties as

well. In our experience, when simply submitting a list of missense mutations to an algorithm

the user must be able to: (1) manipulate the input format specified by each algorithm, (2)

build an optimal protein sequence alignment, if required, (3) be knowledgeable of Unix

system commands, (4) interpret server error messages, and (5) transform the output to a

working format for further studies. Standard input and output formats are needed to alleviate

the burden on the user. Also tools to create informative protein sequence alignments for each

protein are necessary to accurately predict the impact of missense mutations on protein

function. An additional source of error in prediction when analyzing sequence variants

identified through disease status is that all algorithms focus on the missense change encoded

by the variant when in reality the sequence variant may also impact gene expression for

example through alternative splicing of the messenger RNA.

Chan et al. (2007) compared four methods: SIFT, Align-GVGD, PolyPhen and the

BLOSUM62 matrix, using the native alignments supplied by the program or manually

curated for Align-GVGD. In the paper each method individually had a limited overall

predictive value (72.9-82.0%), but when all four methods agree (62.7%), the overall

predictive value increased to 88.1%. Karchin et al. (2009) argued these algorithms have

major similarities ‘underneath the lid’ of each method and the correlation of their outputs is

the result of similarity of their inputs, which is not a cause for increased confidence. Chun

and Fay (2009) suggested differences between missense predictions from the algorithms

may be due to differences in the sequences and/or alignments used to identify evolutionary

conserved mutations. We directly tested this idea by comparing the predictions of the SIFT,

Align-GVGD and PolyPhen-2 algorithms by supplying the same four alignments to each

algorithm. Surprisingly we found a given algorithm did not necessarily perform best using

the alignment provided by the creator of the algorithm. For example, the PolyPhen-2

algorithm reported higher sensitivities in all four genes using alignments other than its own

and SIFT had a slightly higher AUC when provided the Align-GVGD alignment containing

only orthologs as originally predicted by Ng and Henikoff (2002). The three algorithms

SIFT, PolyPhen-2 and Xvar all had a high sensitivity, but low specificity implying these

algorithms may overcall neutral variants deleterious. This feature was most pronounced for
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Xvar with higher sensitivities and lower specificities than most of the other algorithms. We

showed Align-GVGD was the most affected by alignment employed, performing well when

using manually curated alignments, but calling all variants neutral when alignments contain

a large number of sequences. Thus, for large-scale sequencing experiments Align-GVGD

would require development of alignments with orthologous sequences through evolution for

all genes. Conversely, the PolyPhen-2 algorithm was shown to be the least sensitive to

alignment provided with nearly overlapping ROC curves. The ROC analysis resulted in

AUC values of 78-79% for all four algorithms using native alignments and 79% when using

the optimal alignment for each algorithm which shows despite the differences in predictions

from the algorithms and alignments the overall performance of these four commonly used

methods is similar.

Karchin et al. (2009) further argued that when the outputs from the algorithms SIFT and

PolyPhen differ, it is more likely due to using different protein sequence alignments

compared to the differences in scores used to classify the variants. From our experimental

design, we were able to directly test this hypothesis. Using a Venn diagram we depict the

disjoint classification of variants predicted deleterious and neutral, respectively by different

algorithms all employing the Align-GVGD alignment (as all three algorithms performed

well with this alignment) (Figure 4). When considering the predicted deleterious mutations

the four algorithms agree on 195 mutations (77%) using the Align-GVGD alignment, but the

SIFT, Align-GVGD and PolyPhen-2 algorithms agree on an additional three mutations for a

total of 198 mutations (79%). Of this 195 only 181 are actually classified as deleterious by

the LSDB. Interestingly, Chun and Fay (2009) compared the predicted deleterious mutations

from the three algorithms SIFT, PolyPhen and Likelihood Ratio Test (LRT) resulting in a

very low overlap of 5%, but when we perform a similar analysis employing the algorithms'

own alignment, we see a much higher overlap of 70%. When considering the predicted

neutral mutations, the four algorithms only agree on 15 mutations (20%); excluding Xvar

results in agreement for another 13 mutations for a total of 28 mutations (39%) which again

demonstrates problems in predicting variants to be neutral. Only 11 of the 15 variants are

classified as neutral by the LSDB implying even when provided the same alignment the

algorithms make different predictions. Further research is needed to understand the

underlying differences in these algorithms. Thus, in order to predict missense mutation

functionality, the researcher should consider optimizing both the algorithm and sequence

alignment employed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A) Predictions of neutral (n = 16) BRCA1 missense mutations using three algorithms with

four alignments each. The four alignments are represented by SIFT (SIFT), Align-GVGD

(A-GVGD), PolyPhen-2 (PPH2), and Uniprot 50% (Uniprot 50%). The prediction categories

for PolyPhen-2 Possibly Damaging and Probably Damaging have been abbreviated to

‘Possibly D’ and ‘Probably D’. The algorithm Xvar employs its own alignment. B)

Predictions of deleterious (n = 17) BRCA1 missense mutations using three algorithms with

four alignments each.
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Figure 2.
Boxplots of specificity (spec) and sensitivity (sens) for each algorithm as given in Table 1.

Sensitivity values are reported using all four genes BRCA1, MSH2, MLH1 and TP53, but

TP53 is excluded in specificity values to account for potential bias given that there are only

4 neutral variants. The three algorithms are represented by SIFT (SIFT), Align-GVGD (A-

GVGD) and PolyPhen-2 (PPH2).
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Figure 3.
A) Receiver operating characteristic (ROC) curves using probabilities and scores associated

with each prediction for each of the three algorithms SIFT, Align-GVGD, and PolyPhen-2.

For each algorithm, four colored lines (black, red, green blue) are drawn representing the

four alignments used in each algorithm. The area under the curve (AUC) is reported in the

legend. B) Receiver operating characteristic (ROC) curve using the four genes BRCA1,

MSH2, MLH1, and TP53 from the Xvar algorithm. The pink line drawn represents the Xvar

alignment. C) ROC curves comparing the performance of the four algorithms using their

own native alignments.
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Figure 4.
Predictions of neutral and deleterious mutations with the SIFT, Align-GVGD and

PolyPhen-2 algorithms using the Align-GVGD alignment and the Xvar algorithm using its

own alignment. We also depict the exclusive overlap of the predictions between the four

algorithms to show their agreement (dark yellow) and between the three algorithms SIFT,

Align-GVGD and PolyPhen-2 (light yellow).
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Table 1

Specificity and sensitivity summary for all four genes BRCA1 (n = 16 neutral, n = 17 deleterious), MSH2 (n =

11 neutral, n = 19 deleterious), MLH1 (n = 21 neutral, n = 39 deleterious) and TP53 (n = 4 neutral, n = 140

deleterious) using the same four alignments

Algorithms

SIFT Align-GVGD PolyPhen-2

Genes Alignments No. Sequences in Alignment Spec (%) Sens (%) Spec (%) Sens (%) Spec (%) Sens (%)

BRCA1 SIFT 360 31.3 94.1 93.8 64.7 56.3 94.1

Align-GVGD 13 75.0 70.6 93.8 70.6 31.3 82.4

PolyPhen-2 279 43.8 47.1 100.0 0.0 37.5 76.5

Uniprot 50% 275 50.0 47.1 100.0 0.0 25.0 76.5

MSH2 SIFT 45 45.5 89.5 81.8 21.1 27.3 94.7

Align-GVGD 14 18.2 89.5 54.5 89.5 27.3 89.5

PolyPhen-2 56 45.5 94.7 100.0 0.0 36.4 89.5

Uniprot 50% 53 18.2 94.7 100.0 0.0 18.2 94.7

MLH1 SIFT 29 52.4 71.8 81.0 48.7 42.9 66.7

Align-GVGD 11 57.1 97.4 52.4 97.4 42.9 97.4

PolyPhen-2 191 61.9 89.7 100.0 0.0 66.7 89.7

Uniprot 50% 45 52.4 82.1 100.0 0.0 42.9 97.4

TP53 SIFT 72 75.0 84.3 100.0 57.9 75.0 87.1

Align-GVGD 9 75.0 85.7 100.0 82.1 25.0 92.1

PolyPhen-2 93 100.0 73.6 100.0 0.0 100.0 84.3

Uniprot 50% 113 100.0 32.1 100.0 0.0 75.0 90.0
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Table 2

Specificity and sensitivity summary using the Xvar default alignment for the four genes BRCA1, MSH2,

MLH1 and TP53

Xvar

Genes Spec (%) Sens(%)

BRCA1 56.3 82.4

MSH2 27.3 100

MLH1 33.3 100

TP53 50.0 95.7
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Table 3

Area under the curve (AUC) from receiver operating curves for each algorithm using each alignment using

probabilities and scores associated with each mutation prediction

Algorithms Alignments AUC CI

SIFT SIFT 0.777 (0.690, 0.865)

Align-GVGD 0.790 (0.702, 0.877)

PolyPhen-2 0.730 (0.643, 0.818)

Uniprot 50% 0.487 (0.400, 0.575)

AGVGD SIFT 0.747 (0.659, 0.835)

Align-GVGD 0.791 (0.703, 0.878)

PolyPhen-2 0.500 (0.412, 0.588)

Uniprot 50% 0.500 (0.412, 0.588)

PPH2 SIFT 0.773 (0.686, 0.861)

Align-GVGD 0.779 (0.692, 0.867)

PolyPhen-2 0.792 (0.704, 0.879)

Uniprot 50% 0.750 (0.662, 0.838)

Xvar Xvar 0.790 (0.703, 0.878)

95% confidence intervals are also reported.
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