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Abstract Wheelchair control requires multiple degrees of

freedom and fast intention detection, which makes elec-

troencephalography (EEG)-based wheelchair control a big

challenge. In our previous study, we have achieved direc-

tion (turning left and right) and speed (acceleration and

deceleration) control of a wheelchair using a hybrid brain–

computer interface (BCI) combining motor imagery and

P300 potentials. In this paper, we proposed hybrid EEG-

EOG BCI, which combines motor imagery, P300 poten-

tials, and eye blinking to implement forward, backward,

and stop control of a wheelchair. By performing relevant

activities, users (e.g., those with amyotrophic lateral scle-

rosis and locked-in syndrome) can navigate the wheelchair

with seven steering behaviors. Experimental results on four

healthy subjects not only demonstrate the efficiency and

robustness of our brain-controlled wheelchair system but

also indicate that all the four subjects could control the

wheelchair spontaneously and efficiently without any other

assistance (e.g., an automatic navigation system).

Keywords Brain-controlled wheelchair � Hybrid brain–

computer interface � Asynchronous � Motor imagery �
P300 potentials � Eye blinking

Introduction

Brain-computer interfaces (BCI) can facilitate direct commu-

nication between the human brain and external environment by

translating human intentions into control signals, which pro-

vide a communication method to convey brain messages

independently from the brain’s normal output pathway (Bin

et al. 2009; Panicker et al. 2011). For people suffering from

severe motor disabilities, such as amyotrophic lateral sclerosis

(ALS) and locked-in syndrome, BCIs emerge as a feasible type

of human-computer and human-machine interface that can

allow these patients to interact with the world and help to

improve their quality of life (Bromberg 2008; Williams et al.

2008). Brain activity can be monitored using different

approaches, such as scalp-recording electroencephalograms

(EEGs), magnetoencephalograms (MEGs), functional mag-

netic resonance imaging (fMRI), and electrocorticograms

(ECoGs). However, an EEG-based BCI is considered to be a

practical method in daily life because it is noninvasive and the

acquisition system is portable. In this case, BCI systems are

categorized based on the brain activity patterns, such as

the P300 component of event-related potentials (ERPs),

event-related desynchronization/synchronization (ERD/ERS),

steady-state visual evoked potentials (SSVEPs), and slow

cortical potentials (SCPs) (Sellers et al. 2006; Pfurtscheller

et al. 2000; Williams et al. 2008; Birbaumer 1999).

The idea of moving robots by merely ‘‘thinking’’ has

attracted the interest of researchers for the past 40 years. Until

recently, experiments have shown the feasibility of using BCIs

for the control of simulated or real wheelchairs. One example is

the wheelchair developed by Millán et al. (2009) which real-

ized only three wheelchair steering behaviors: turning left,

turning right, and moving forward. Another example is the

wheelchair developed by Rebsamen et al. (2006), which used

P300 potentials. P300 can provide multi-commands, but the
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information transfer rate is low because dozens of rounds are

needed to improve the signal-to-noise ratio. Another 2-D

virtual wheelchair was designed by Huang et al. (2012). This

wheelchair is controlled by event-related desynchronization/

synchronization, but its steering behavior is limited to go, stop,

right turn, and left turn. The eye blinking causes larger elec-

trooculogram (EOG) potentials than EEG and background

noises. So it is not difficult to detect. In addition, EOG can be

recorded by using small numbers of electrodes. For these

reasons, EOG is attracting much attention, and it seems suit-

able for controlling wheelchairs. Nakanishi and Mitsukura

(2013) proposed double-eye blinking and left/right eye wink to

obtain go, stop, right turn and left turn for wheelchair control.

Kim et al. (2001) proposed an eye blinking detection method

and applied it to the control of robots. In addition, the control of

mouse cursors Borghetti et al. (2007), robotic vehicles Lv et al.

(2008) or virtual keyboards Usakli et al. (2010) using eye

blinking and eye movement were proposed. However, spon-

taneous eye blinking is inevitable.

Each type of BCI has its limitations. A hybrid BCI

combines different approaches to utilize the advantages

multiple modalities (Pfurtscheller et al. 2010; Allison et al.

2010). In hybrid BCI, either two or more types of mental

activity modalities can be combined or mental activity

modalities can be combined with non-brain based activities

system, such as electromyogram (EMG) or EOG. A hybrid

BCI combining motor imagery and P300 was proposed in

Li et al. (2010). It was further used to control the direction

and speed of a wheelchair in Long et al. (2012). However,

a fast and accurate design for the stop command and the

forward and backward commands has not been obtained.

The challenging issue for brain-controlled wheelchair

(BCW) is how to extract multi-commands from EEGs and

achieve fast intention detection. To address this issue, this

paper presents a hybrid EEG-EOG (HEE)-BCI by combining

motor imagery, P300 potentials, and eye blinking. Specifi-

cally, the forward and backward commands are produced by

motor imagery (continuously imagining the right/left hand for

4 s in our BCW system), and the stop command is produced by

eye blinking. Additionally, the commands for turning left and

right are produced by motor imagery, and the acceleration and

deceleration are determined by a joint feature composed of

P300 and motor imagery, as in Long et al. (2012). Therefore,

the users can navigate the wheelchair spontaneously by using

visual attention, motor imagery, and eye blinking. The

effectiveness of the proposed BCW was confirmed through

online experiments with four users in an indoor environment.

System paradigm of the BCW

As shown in Fig. 1, the BCW mainly consists of four

components: an EEG acquisition system, a host computer,

a communication module, and a robotic wheelchair. The

EEG acquisition system includes a commercial Neuroscan

EEG system and an EEG cap (LT37), with the channel

referenced to the right ear, digitized at a sampling rate of

250 Hz and bandpass filtered between 0.5 and 30 Hz. One

Intel(R) Core(TM)2 Duo 2.0 GHz host computer (Fujitsu)

was installed onboard to run the HEE-BCI algorithm. The

EEG acquisition system is connected via an USB interface

and a parallel port to the host computer. The online HEE-

BCI algorithm detects P300 potentials, motor imagery and

eye blinking, and then translates the detection result as a

control command to the USB interface of the host com-

puter. The wheelchair is constructed based on the SHOP-

RIDER P-424L wheelchair made by Shoprider Mobility

Products, with a PG joystick controller that can receive

control commands from a host computer via the commu-

nication module.

EEG data acquisition

In the data acquisition system, a NuAmps device from

NeuroScan is used to measure the scalp EEG signals. Each

user wears an EEG cap, and signals are measured from the

electrodes. The EEG signals are referenced to the right ear.

As shown in Fig. 2, standard wet Ag/AgCl electrodes are

employed, which are placed at electrode sites in the frontal,

central, parietal, and occipital regions, including 30 chan-

nels. All impedances are kept below 5 kX. The EEG

Fig. 1 Mechatronic design of our BCW
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signals are amplified, sampled at a rate of 250 Hz, and

band-pass filtered between 0.5 and 100 Hz. In EEG online

processing for left- and right-hand motor imagery and P300

potentials detection, 15 channels are selected, including

FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, CP4, P3, Pz, P4,

O1, Oz, and O2, whereas eye blinking detection uses two

channels, FP1 and FP2.

GUI

The GUI was developed using Microsoft C??, running at

the user level of a Windows XP system with a real-time

application interface (Matlab algorithm) for real-time

capabilities. As shown in Fig. 3, the GUI for the BCW is

displayed in the LCD screen of the host computer with two

blue horizontal bars and six flashing buttons. The left and

right bars are used to display the feedback (SVM classifi-

cation score) for the left- and right-hand motor imagery

respectively. The green line in each bar represents the

threshold, which is adjustable to the specific subject. When

in operation, the ‘‘Acceleration’’ button and the other five

buttons are randomly intensified for 100 ms with white

color, and the time interval between each intensification is

120 ms. The occurrence probabilities of the target and non-

target buttons are 1/6 and 5/6, respectively, to evoke P300

potentials.

Communication module

The robotic wheelchair in our study is driven by commands

from the host computer that are detected by HEE-BCI.

The original wheelchair was controlled by a joystick. We

designed a communication module to replace the conven-

tional joystick to achieve communication between the

robotic wheelchair and host computer. The hardware

architecture of the communication module is mainly based

on the STM32F103C6T6 microchip and DAC7612, which

can receive commands via an USB interface from the host

computer and output two analog voltages as the joystick

control signals.

Hybrid EEG and EOG based BCI

The proposed HEE-BCI approach combines motor imag-

ery, P300 potentials, and eye blinking to obtain seven

control commands and a greater information transfer rate.

As shown in Fig. 4, we consider two states during the

wheelchair navigation. The wheelchair is initially in a

static state. It can be started at a low speed of 0.1 m/s by a

continuous 4 s of motor imagery from the user. Left- or

right-hand motor imagery indicates forward or backward

movement, respectively. Otherwise, the wheelchair will

remain still. Once the wheelchair is started, it enters into a

motion state. In this state, the user can realize continuous

navigation because of the asynchronous mechanism. The

HEE-BCI algorithm will detect five other activities, so we

can navigate the wheelchair with the behaviors of turning

left, turning right, acceleration, deceleration, and stopping.

First, the motor imagery patterns are extracted to identify

the control commands for turning left and right. If the

right- or left-hand motor imagery is detected, then it is

interpreted as a right or left turn, respectively. Otherwise,

acceleration or deceleration is extracted. These two com-

mands are determined by a joint feature of motor imagery

patterns (foot motor imagery and idle state) and P300

potentials. If the P300 potentials of ‘‘Acceleration’’ button

with the idle state of motor imagery is detected, then it is

interpreted as an acceleration command, resulting in a low

Fig. 2 Names and distribution of the EEG cap electrodes. The 15 red

channels are used for motor imagery and P300 potentials detection,

and the left two blue channels FP1 and FP2 are used for eye blinking

detection

Fig. 3 GUI for our BCW. Two bar codes are used to display the MI

classification scores (red) as the feedback for the users. The green line

in each bar represents the threshold, which is adjustable to the specific

subject. The six buttons flash in a random sequence
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speed of 0.3 m/s; if foot motor imagery with an idle state

for P300 is detected, then it is interpreted as a deceleration

command, resulting in a low speed of 0.1 m/s. Whenever

rapid eye blinking (triple) is detected, it is interpreted as a

stop command, and the algorithm jumps back to detect a

continuous 4 s motor imagery from the user. The seven

steering behavior commands and relevant activities are

shown in Table 1. The user is instructed to navigate the

wheelchair by performing these activities.

Control of forward and backward movement based on MI

As introduced above, the control of forward and backward

motion is achieved by producing 4 s of right-or left-hand

motor imagery. First, the EEG signals are spatially filtered

with a common average reference (CAR) and then band-

pass filtered with a band of 8–32 Hz Blanchard and

Blankertz (2004). Second, we compute the spatial patterns

through the method of one versus the rest common spatial

patterns (OVR-CSP) proposed in Dornhege et al. (2004).

Based on system calibration data sets collected before the

online test, two CSP transformation matrixes Wl and Wr for

two classes are calculated by the well-known joint diago-

nalization method Li and Guan (2008). we select the first

three rows and the last three rows from each CSP trans-

formation matrix W for feature extraction. Third, a support

vector machine (SVM) classifier is used for classification.

The SVM scores are denoted as Sl and Sr. Finally, we

compare the SVM scores with the defined threshold values

hl and hr.

ŷ ¼
�1 if Sl\hl

0 otherwise

þ1 if Sr\hr

8
<

:
ð1Þ

In (1), if ŷ ¼ �1 for a duration of T ¼ 4s, then the algo-

rithm determines that the user is imagining left-hand motor

imagery for 4 s, and this case results in the forward com-

mand. Otherwise, if ŷ ¼ 1 for a duration of 4 s, then the

algorithm determines that the user is imagining right-hand

motor imagery for 4 s. This case results in the backward

command. Otherwise, if ŷ ¼ 0, then the user is considered

to be in an idle state. No command is given to the

wheelchair, and the algorithm continues motor imagery

detection. The variety of the SVM scores value (red) are
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Fig. 4 Flow chart of the HEE-BCI algorithm

Table 1 The control commands and their corresponding activities

Control

commands

Activities

Forward Left hand MI for 4 s

Backward Right hand MI for 4 s

Stop Eye blinking

Turning left Left hand MI

Turning right Right hand MI

Acceleration P300 and idle MI

Deceleration Foot MI and idle P300

No control

command

Idle (remain in static state or motion as previous

command)
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also displayed in the two bars in GUI as the feedback. T , hl

and hr are adjustable according to different subjects.

Control of stopping by eye blinking

Stopping is controlled by eye blinking. To identify the

user’s intention to stop, we adopted a rapid eye blinking

(triple) method and used two channels: FP1 and FP2 in

online processing. Eye blinking detection is performed

every 1,000 ms. First, the EEG signals are filtered within

the range of 0.1–15 Hz. Then, we extract the segment of

EEG signals from two channels (FP1 and FP2) in the 1 s

period (250 data points) before the current time point with

a window length of 250 points and 25 sliding points. In the

calibration procedure, we capture five typical triple eye

blinking templates with different phase and shape from the

off line blinking calibration data sets beforehand. Each

template includes two channels FP1 and FP2 with a win-

dow length of 250 points.

Second, we calculate the correlation coefficients

between the extracted online EOG segment and each

template signal using canonical correlation analysis (CCA)

Hardoon et al. (2004). Consider two multidimensional

random variables X and Y and their linear combinations

x ¼ xT Wx and y ¼ yT Wy, respectively. CCA finds the

weight vectors Wx and Wy that maximize the correlation

between x and y by solving the following problem:

max
Wx;Wy

q x; yð Þ ¼ E xT y½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E xT x½ �E yT y½ �

p

¼
E WT

x XYT Wy

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E WT
x XXT Wx

� �
E WT

y YYT Wy

h ir
ð2Þ

The maximum of q with respect to Wx and Wy is the

maximum canonical correlation. Projections onto Wx and

Wy, i.e., x and y, are called canonical variants. The stop

command S is recognized as

S ¼ max
i

qi; i ¼ 1; 2; 3; 4; 5 ð3Þ

where qi are the CCA coefficients obtained with the five

template signals.

Finally, if one of the five scores is higher than the

threshold hs, a stop command is sent out. The threshold hs

is a predefined positive constant, which can be chosen by

receiver operating characteristics (ROC) curves obtained in

blinking calibration procedure.

Control of direction and speed

In our previous study Long et al. (2012), we have achieved

wheelchair direction control by motor imagery. In this

section, we adopt the same method. Once the BCW is

started, the steering function of turning left or right is

determined by left-/right-hand motor imagery, which is

detected every 200 ms with the data window of 1 s. Each

command implies a constant rotation degree of 7�.

The acceleration and deceleration controls are imple-

mented by a joint feature combining two types of EEG

patterns using the method proposed in Dornhege et al.

(2004). The two types of EEG patterns involve motor

imagery (foot motor imagery and an idle state of motor

imagery) and P300 potentials. Specifically, foot motor

imagery without P300 potentials is detected as decelera-

tion, and the idle state of motor imagery with attention

given to the P300 ‘‘Acceleration’’ button is detected as

acceleration. So there are 4 classes in the motor imagery

based BCI(left hand, right hand, foot motor imageries and

idle state). We obtain 4 CSP transformation matrices Wl,

Wr, Wf and Wi. we select the first three rows and the last

three rows from each CSP transformation matrix W and

obtain a transformation matrix with 24 rows for feature

extraction (logarithm variances of the projections of the

EEG signals based on the transformation matrix). More

details can be found in Long et al. (2012).

Experiment and validation

To evaluate the performance of our BCW, four healthy

subjects from South China University of Technology (four

males aged between 24 to 32 with normal or corrected-to-

normal vision) participated two online experiments. All

subjects had prior experience with the wheelchair naviga-

tion during the system’s development. Before the online

experiments, imagery data sets, P300 data sets and eye

blinking data sets were collected for subject-specific sys-

tem calibration. After system calibration, the users started

to validate the proposed BCW by two online experiments.

System calibration

Motor imagery and P300 calibration data collection

The data collection of motor imagery and P300 calibration

was carried out as the follows: For the first 2.25 s, the

screen remains blank. From 2.25 to 4 s, a cross appeared in

the screen to attract the subject’s visual fixation. From 4 to

8 s, an arrow cue appeared. The subject was instructed to

perform a mental task according to the cue: left/right arrow

for left-/right-hand motor imagery, up arrow for foot motor

imagery and idle P300, and down arrow for ‘‘Acceleration’’

button attention and idle motor imagery. When an arrow

appeared on the screen, the six buttons began to flash

Cogn Neurodyn (2014) 8:399–409 403
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alternately in random order. Each button was intensified for

100 ms, whereas the time interval between two consecutive

button flashes was 120 ms. Thus, one round of button fla-

shes taken 720 ms, and there were four rounds (repeats) of

button flashes in each trial. One data session containing

three runs were collected for each user. In each run, 10 left

arrows, 10 right arrows, 10 up arrows, and 10 down arrows

were presented in random order. Thus, there were 120 trials

in each session. More details of motor imagery and P300

calibration can be found in Long et al. (2012), Li et al.

(2010).

Blinking calibration

The aim of the blinking calibration for stop is to set the

threshold according to the ROC curves and make five

templates using offline blinking celebration data sets.

Figure 5 illustrates the paradigm of a trial in calibration. At

the beginning of each trial (0–2 s), screen was blank. From

2 to 4 s, a cross was shown on screen to capture subject’s

attention. From 4 to 24 s, a cue ‘‘B’’ or ‘‘I’’ appeared. ‘‘B’’

cued making a triple blinking. ‘‘I’’ cued keeping in idle

state, where the subject was asked to rest for 20 s. The

blinking and idle trials alternatively appeared. The subject

was asked to do 20 trials in a section. A total blinking

calibration procedure contains 5 sections. The process of

blinking calibration can help the user to be familiar with

triple blinking operation. Hence no extra training is needed

for the subjects.

For wheelchair control system, true positive rate (TPR)

and false negative rate (FPR) are appropriate measures to

evaluate the performance of asynchronous control. In this

paper, the correct recognition of a triple blinking as a true

positive (TP), and TPR indicates how many true positives

the system is able to detect. Furthermore, misclassifying an

idle state as a control state is a false positive (FP), and FPR

indicates how many false positives the wheelchair system

will detect. The ROC curve depicts the relationship

between the two rates of TPR and FPR. We used these

calibration data sets to calculate the ROC curve for various

thresholds of the four subjects. The threshold varied from

0.4 to 0.8 and we select 0.01 as the discrimination

threshold interval. Figure 6 shows the ROC curve for all

the four subjects.

Next, we used the blink detector calibration data sets

collected as pilot data to define a threshold for online

experiments. We should find the threshold according to a

criterion, e.g., the top left threshold can achieve a satis-

factory TPR while keeping FPR below a given limit, which

is an optimal threshold (OT). In an actual application, there

is another considerable threshold in wheelchair control.

When navigating a wheelchair, we want to avoid false stop

triggering in order to realize asynchronous control. The

special threshold (ST) is a point on ROC where TPR equals

1 and FPR equals 0.

Furthermore, we capture the typical triple eye blinking

template in the off line EEG to build five templates from

the two channels FP1 and FP2 with a window length of 1 s

(250 points). One of the templates is shown in Fig. 7.

Evaluation for forward, stop and backward experiment

In this experiment, we defined the following parameters to

test the forward, stop, and backward steering behaviors

according to Rebsamen et al. (2010). Especially we con-

ducted twice according to the optimal threshold (OT) and

special threshold (ST). As shown in Fig. 8, the time

sequence for a trial was carried out in four steps as follows:

(1) step one: When the forward command was received,

the user began trying to start the wheelchair at a constant

speed of 0.1 m/s by imagining left hand movement for

4 s. We recorded the RT of forward.

(2) step two: The user navigated the wheelchair forward

for 1 min and we recorded the number of false stop

command, which was false triggered.

(3) step three: 1 min later, when the stop command was

received, the user began trying to use triple blinking to

stop the wheelchair (we recorded the RT of stop) and

stopped for 2 min. After that, when the backward

command was received, the user tried to start (backward)

the wheelchair by imagining right hand movement for

4 s and we recorded the RT of backward.

(4) step four: The user navigated the wheelchair

backward for 1 min and we recorded the times if stop

command was false triggered. 1 min later, when the stop

command was received, the user began trying to use

triple blinking to stop the wheelchair (we recorded the

RT of stop). During the experiment, if the RT of

forward/backward exceeded 5.5 s or the RT of stops

Fig. 5 Paradigm of a trial in blinking calibration. At the beginning of

each trail (0–2 s), screen is blank. From 2 to 4 s, a cross is shown on

screen to capture subject’s attention. From 4 to 24 s, a cue ‘‘B’’ or ‘‘I’’

appeared. ‘‘B’’ cues the subject make a triple blinking. ‘‘I’’ cues

keeping in idle state, where the subject was asked to rest for 20 s. The

blinking and idle trials alternatively appeared

404 Cogn Neurodyn (2014) 8:399–409
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exceeds 5 s, the trial was denoted as a task failure. Each

subject carried out 40 trials in this experiment.

(5) Response Time: The RT is the interval from the time

that the user initiates the control to the time the

command is issued.

(6) False Activation Rate: The FA is the number of times

per minute that a command is issued when the subject is

not intending to activate the interface, that is, the rate of

false triggering.

(7) Accuracy: Ratio of the task successes to the number

of total task.

(8) Results: The results are presented in Table 2: In this

online evaluation experiment for forward, stop and

backward. If the threshold is set to the special threshold,

stopping with eye blinking is effective within 4.5 s on

average, and the FA was 0/min. Whereas if the threshold

is set to the optimal threshold, stopping with eye

blinking is effective within 2.0 s on average, and the

FA was 0.3/min. Because the forward and backward

movements correspond to right- and left-hand motor

imagery from the subject, the RT of forward and

backward movements is similar: approximately 5 s on

average. The FA rate of forward or backward is 0/min.

Furthermore, the average accuracy of forward, back-

ward, stop (ST) and stop (OT) are 91 %, 93 %, 89 % and

92 % respectively. The result is remarkable and will

make a significant contribution to the safety of the BCW.

Overall evaluation of BCW navigation experiment

In this section, we designed an overall evaluation experi-

ment for BCW navigation in an indoor setting. The

objective of this experiment was to test the users’ ability to

accomplish complex maneuverability tasks-moving

forward, accelerating, decelerating, moving backward,

avoiding obstacles, and navigating in indoor settings by

performing the revelent corresponding activities as shown

in Table 1. A trial of the experiment was shown in Fig. 9.

Each subject performed 10 trials of this task. The metrics

proposed in Iturrate et al. (2009) were followed to evaluate

the performance of our BCW.

(1) Task success: accomplishment of the navigation task;

(2) Path length: distance in meters traveled to accom-

plish the task;

(3) Time: time taken in seconds to accomplish the task;

(4) Path length optimality ratio: ratio of the path length

to the optimal path (the optimal path was approximately

39-m-long);
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Fig. 6 ROC curves for all the

four subjects in blink calibration

experiment. The TPR is the rate

of control events being detected

during the control state, whereas

the FPR is the rate of false

control events detected during

the idle state
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(5) Time optimality ratio: ratio of the time taken to the

optimal time (the optimal time was approximated

assuming a low velocity of 0.1 m/s, a high velocity of

0.3 m/s, and a rotational velocity of 7�/command. The

consumption time of the forward, backward, and stop

commands was considered during the experimental

procedure, resulting in an optimal time of 282 s

(5?19/0.3?20/0.1?4.5?5?4.5, the guide length of

low speed (0.1 m/s) and high speed (0.3 m/s) segments

are 20 and 19 m, respectively. The time consumption of

start (5 s) and the time consumption of stop (4.5 s) were

also taken into account.);

(6) Collisions: number of collisions. The user navigated

the wheelchair from the start line to the destination,

following the guide ideal trajectories.

The results are summarized in Table 3. All four users

completed the course successfully without collisions. The

average time taken to accomplish the task was 345�22 s.

In particular, the metric for the path-optimal ratio is sat-

isfied, and the value for the time-optimal ratio is remark-

able because of multi-command extraction and fast

intention detection.

Discussion

For our asynchronous BCW, we applied two thresholds

(the special threshold and the optimal threshold) according

to the ROC in the first online experiment. The result is

remarkable that the average response time (RT) for stop by

blinking are 2 s and 4.5 s respectively, the false positive

rate (FA) for stop by blinking are 0.3 per minute and 0 per

minute respectively. We obtained a fast and accurate stop

command by performing triple blinking. First, by setting to

the optimal threshold, we can achieve a revelent satisfac-

tory TPR while keeping FPR below a given limit. Second,

When navigating a wheelchair, we want to avoid false stop

triggering in order to realize asynchronous control. By

setting to the special threshold, we can achieve a satis-

factory TPR while keeping FPR equal 0. That means false

stop triggering is well avoided while the correct detection

of blinking maybe longer. Therefore, Two thresholds are

available in our system.

As far as we known, only two existing studies utilized

a stop command in BCW. In Li et al. (2013) have

achieved a Go/stop(’GS’) command by P300 and

SSVEP. The average response time (RT) and false acti-

vation rate (FA) for stop are 5.28 and 0.52 respectively.

In Rebsamen et al. (2010) utilized a stop command using

a fast P300 and mu/beta rhythm. The RT and FA for

stop by fast P300 are 5.9�2.2 and 1.4�0.8 respectively,

while Mu/beta are 5.5�3.0 and 0.0�0.0 respectively. As

shown in Table 4, we compared these different methods

of stop.

Effective control of BCI-based wheelchair is a big

challenge. In our previous study, we have achieved direc-

tion (turning left and right) and speed (acceleration and

Fig. 8 Evaluation for forward,

stop and backward. Task

objective was to test the RT and

FA of each steering behaviors

Table 2 Metrics to evaluate response time and false activation rate

for forward, backward and stop

Commands Subject RT ± SD

(in seconds)

Accuracy

(%)

FA ± SD (in

per minute)

Forward Subject1 4.8 ± 0.5 90 0 ± 0

Subject2 5.2 ± 0.4 90 0 ± 0

Subject3 4.6 ± 0.5 95 0 ± 0

Subject4 5.4 ± 0.6 90 0 ± 0

Average 5.0 ± 0.5 91 0 ± 0

Backward Subject1 4.9 ± 0.6 90 0 ± 0

Subject2 5.1 ± 0.5 90 0 ± 0

Subject3 4.7 ± 0.5 95 0 ± 0

Subject4 5.4 ± 0.8 95 0 ± 0

Average 5.0 ± 0.6 93 0 ± 0

Stop (special

threshold)

Subject1 4.5 ± 0.6 90 0 ± 0

Subject2 4.7 ± 0.7 85 0 ± 0

Subject3 4.3 ± 0.6 90 0 ± 0

Subject4 4.6 ± 0.5 90 0 ± 0

Average 4.5 ± 0.6 89 0 ± 0

Stop (optimal

threshold)

Subject1 1.9 ± 0.5 90 0.3 ± 0.1

Subject2 2.2 ± 0.4 90 0.2 ± 0.1

Subject3 1.8 ± 0.6 90 0.4 ± 0.1

Subject4 2.2 ± 0.5 95 0.2 ± 0.1

Average 2.0 ± 0.5 92 0.3 ± 0.1

406 Cogn Neurodyn (2014) 8:399–409

123



deceleration) control of a wheelchair using a hybrid BCI

combining motor imagery and P300 potentials. In this

paper, we proposed an asynchronous BCW with seven

steering behaviors based on HEE-BCI. A summery of the

recent typical studies about BCW are shown in Table 5.

Compering with the existing systems, our BCW is vast

superior in multiple degrees of freedom and fast intention

detection.

Conclusions

An asynchronous BCW with seven steering behaviors based

on HEE-BCI combining motor imagery, P300 potentials,

and eye blinking is proposed. In our BCW system, the for-

ward and backward steering behaviors are determined by

left-/right-hand motor imagery with a duration of 4 s, and

the stop function is determined by eye blinking. Addition-

ally, the direction is determined by left-/right-hand motor

imagery, and acceleration/deceleration is determined by a

joint feature combining motor imagery and P300 potentials.

In this manner, seven commands are extracted effectively
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Fig. 9 Top view of the route used for the BCW in the overall

evaluation experiment. The objective of this experiment was to

navigate the wheelchair from the start line and stop at the destination

line by avoiding three obstacles. During the navigation the subject can

obtain seven control commands(forward, backward, turning right,

turning left, accelerating, decelerating, and stop) by performing the

revelent corresponding activities as shown in Table 1. The shaded

objects represent static obstacles. In addition, we advised the user to

navigate the BCW at high speed when moving in a straight line under

safe road conditions, as marked with a black bar according to the

guide ideal trajectories, whereas in the remainder of the experiment,

we advised the user to use low speed

Table 3 Metrics for evaluating our BCW

Subject

1

Subject

2

Subject

3

Subject

4

Average

Task success yes yes yes yes yes

Path length ±

SD (m)

42.5 ±

0.7

43.1 ±

0.5

45.1 ±

0.5

44.8 ±

0.6

43.9 ±

0.6

Path opt.ratio 1.09 1.1 1.13 1.15 1.13

Time ± SD (s) 342 ±

23

351 ±

20

338 ±

24

346 ±

28

345 ±

22

Time opt.ratio 1.21 1.24 1.19 1.23 1.22

Collisions 0 0 0 0 0

Table 4 Comparison of different methods of stop

Method RT ± SD

(in sec.)

FA ± SD

(per min.)

Blinking (OT) 3.0 ± 0.5 0.3 ± 0.1

Blinking (ST) 4.5 ± 0.6 0 ± 0

Fast P300 Rebsamen et al. (2010) 5.9 ± 2.2 1.4 ± 0.8

Mu/Beta Rebsamen et al. (2010) 5.5 ± 3.0 0 ± 0

P300 and SSVEP Li et al. (2013) 5.28 0.52
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for continuous wheelchair navigation without any other

assistance(e.g., an automatic navigation system). Evaluation

experiments were conducted, the results demonstrate not

only the effectiveness of the HEE-BCI strategy but also the

high robustness of the BCW system. The proposed BCW

demonstrates its potential as a mobility aid for those suf-

fering from severe neuromuscular disorders.
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