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ABSTRACT

Motivation: In recent years, there has been an increasing interest in

using common single-nucleotide polymorphisms (SNPs) amassed in

genome-wide association studies to investigate rare haplotype effects

on complex diseases. Evidence has suggested that rare haplotypes

may tag rare causal single-nucleotide variants, making SNP-based

rare haplotype analysis not only cost effective, but also more valuable

for detecting causal variants. Although a number of methods for

detecting rare haplotype association have been proposed in recent

years, they are population based and thus susceptible to population

stratification.

Results: We propose family-triad-based logistic Bayesian Lasso

(famLBL) for estimating effects of haplotypes on complex diseases

using SNP data. By choosing appropriate prior distribution, effect

sizes of unassociated haplotypes can be shrunk toward zero, allowing

for more precise estimation of associated haplotypes, especially those

that are rare, thereby achieving greater detection power. We evaluate

famLBL using simulation to gauge its type I error and power. Compared

with its population counterpart, LBL, highlights famLBL’s robustness

property in the presence of population substructure. Further investiga-

tion by comparing famLBL with Family-Based Association Test (FBAT)

reveals its advantage for detecting rare haplotype association.

Availability and implementation: famLBL is implemented as an R-

package available at http://www.stat.osu.edu/�statgen/SOFTWARE/

LBL/.

Contact: shili@stat.osu.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Genome-wide association studies (GWAS) have identified41500

common variants that are associated with common diseases with

genome-wide significance. However, GWAS failed to explain a

majority of the heritability, and hence, it is hypothesized that

rare single-nucleotide variants (rSNVs), which cannot be

detected by GWAS platforms, are responsible for at least part

of the missing heritability (Manolio et al., 2009). With the

next-generation sequencing (NGS) technology, it becomes

possible to investigate the role of rSNVs. However, the extremely

low frequencies and high dimensionality render the tests

developed for GWAS powerless when applied to rare variants.

Numerous methods aiming at detecting rSNVs for case-

control studies have been developed in recent years. One class of

tests, ‘burden tests’, focus on aggregating rare variants and then

using the collapsed super-variant for the test. Tests of this category

include the combined multivariate and collapsing method (Li and

Leal, 2008) and the weighted-sum method (Madsen and

Browning, 2009). Collapsing multiple variants into a single vari-

ant can indeed effectively reduce the dimension of the data and

increase the frequency of the super-variant; however, power can

be diminished when the rare variants being collapsed are of op-

posite effects on the trait of interest. Other tests, like C-alpha

(Neale et al., 2011), Sequence Kernel Association Test (SKAT)

(Wu et al., 2011) and a hierarchical modeling approach (Yi et al.,

2011), are more powerful if there exist different directionality and

variability in the coefficients of the regression parameters.
Most of the methods proposed thus far can only detect regions

of interests. To identify the combination of causal variants

responsible for the disease, it is advantageous to investigate

haplotypes within each region. While association between

common haplotypes and diseases is well studied in GWAS,

those methods typically fail to detect individual effects of rare

haplotypes. Traditionally, rare haplotypes are either ignored,

combined into a super-variant or grouped with common haplo-

types of similar sequence variation. Such a practice is clearly

deficient, as causal rare haplotypes can result from common

single-nucleotide polymorphisms (SNPs) (Guo and Lin, 2009).

Further, rare haplotypes that are disease associated may tag

rSNVs that are causal (Lin et al., 2012, 2013), and can even

lead to greater power for detecting association (Supplementary

Tables S1 and S2 and Figure S1). To remedy this situation so

that rare haplotypes can be investigated, Guo and Lin (2009)

proposed a LASSO regularization of logistic regression model

for case-control data that effectively combat the problem of

non-convergence of the EM algorithm due to estimation instabil-

ity. Although methods are available for selecting optimal penalty

parameters for LASSO-type regularization methods, they are

typically computationally intensive. Moreover, uncertainty

resulted from setting the tuning parameters is hard to be inves-

tigated and be accounted for. To avoid the need for specifying

tuning parameters, Biswas and Lin (2012) proposed a Bayesian

model in which Laplace distribution is used as prior distribution

for effect size, effectively shrinking the coefficient toward zero.

This approach also allows for testing individual haplotype effects

and constructing confidence intervals for effect sizes. Further, in

their model, a retrospective likelihood is used, which is more

appropriate than a prospective formulation for case-control

data given the data collection process.*To whom correspondence should be addressed

� The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2611

http://www.stat.osu.edu/~statgen/SOFTWARE/LBL/
http://www.stat.osu.edu/~statgen/SOFTWARE/LBL/
http://www.stat.osu.edu/~statgen/SOFTWARE/LBL/
mailto:shili@stat.osu.edu
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu347/-/DC1
more than 
fifteen hundred
single 
powerless
``
''
,
,
are 
super 
,
single 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu347/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu347/-/DC1
, 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu347/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu347/-/DC1


It has been argued recently that linkage peaks detected by

family-based methods can potentially be caused by rare variants

(Bowden, 2011), and that using family data can avoid heterogen-

eity and be more fruitful for detecting such rare variant associ-

ation (De et al., 2013). Further, family-based design should

provide an increase in power compared with population-based

designs for rare variants, as such variants are enriched in a family

if it does exist (Zhu et al., 2010). Most importantly, family-based

design will not be affected by population stratification, whereas

case-control design may see an increase in type I error rate if left

unadjusted.
The stage is therefore set for detecting associated rare (and

common) haplotypes using family data. Commonly used

family-based methods for detecting common haplotypes such

as FBAT (Laird and Lange, 2006) may suffer from loss of

power if used for detection of rare haplotypes, because the esti-

mated variance of rare haplotype effects could be large. Recent

extension of FBAT does provide a way to analyze rSNVs by

collapsing and optionally weighting each variant (De et al.,

2013), but the method is not amenable to haplotypes. In this

article, we propose a family-based method aiming to detect

both rare and common haplotype associations using common

SNP data on case-parent trios. Our retrospective likelihood

correctly reflects the ascertainment procedure, and its factoriza-

tion resembles a ‘match-pair’ design as we will see in Section 2.

To shrink the coefficients of unassociated haplotypes so that the

effects of rare associated haplotypes can be more precisely

estimated to increase the statistical power of detection, we

adopted the Logistic Bayesian Lasso (LBL) methodology for

parameter estimation and statistical inference (Biswas and Lin,

2012), leading to the famLBL algorithm. The proposed famLBL

method is thoroughly investigated to gauge its power and type I

error rate. We also compare famLBL with LBL and FBAT in

terms of robustness to population stratification and effectiveness

in detecting rare haplotype association. Finally, we apply

famLBL to the Framingham Heart Study (FHS) data to

illustrate its utility.

2 METHODS

Likelihood, logit and haplotype distribution modeling

Suppose we have n case-parent triads for which the families are

ascertained due to the child being affected with a particular disease. Let

Zi=ðZif;Zim;ZicÞ denote the familial haplotype configuration of triad i

(i.e. father, mother and child haplotype pairs, in that order), which is

typically unobservable, as phase information is usually not deductible

from genotype data Gi=ðGif;Gim;GicÞ. We assume the SNPs are located

close to one another so that there is no recombinant haplotype in the

child. Thus, we may write Zi equivalently as Zi=ðZiu;ZicÞ, where Ziu is

the haplotype pair that was not passed to the child. Note that parental

ordering is not necessary if allelic exchangeability is assumed, a weaker

condition than Hardy–Weinberg Equilibrium (HWE) (Yang and Lin,

2013). Let Di denote the event that family i is ascertained; for

case-parent triad design, this is equivalent to the event that the child is

affected, i.e. Yic=1. The complete data likelihood for a collection of n

triads is then

Lð�Þ=
Yn
i=1

PðZic jYic=1; �ÞPðZiu j �Þ; ð1Þ

where �=ð�; �Þ denotes the collection of individual haplotype effects

(�, regression coefficients) and parameters associated with haplotype

frequencies (�), which will be specified more explicitly as our formulation

unfolds. Note the similarity between this likelihood and that based on

case-control data (Biswas and Lin, 2012); thus, this may be interpreted

as a ‘matched-pair’ design, although the pseudo individual with the

Ziu haplotype pair comes from the target, not the control, population.

We use logistic regression to model the odds of disease for a given

haplotype Z: �Z=PðY=1 jZÞ=PðY=0 jZÞ. Specifically,

log �Z=�+XZ�;

where XZ is a row vector associated with haplotype Z, � is the intercept

and � is a vector of coefficients representing the haplotype effects. Note

that XZ can code for dominant/recessive/additive effects, which can be

specified by the investigator (Guo and Lin, 2009).

Let f=ðf1; . . . ; fmÞ denote the frequencies of a total of m haplotypes

with the constraints that fk40 and
Xm

k=1
fk=1: For a haplotype pair

Z=zk=zk0 , we model its frequency in the target population by

aZð�Þ=
f 2k +dfkð1� fkÞ if zk=zk0

2ð1� dÞfkfk0 if zk 6¼ zk0
;

(

where d 2 ð�1; 1Þ is the within-population inbreeding coefficient that can

be used to capture excess/reduction of homozygosity (Weir, 1996). By

modeling the frequency in this way, we do not need to make the assump-

tion of HWE. Assuming that the haplotype pair distribution in the

control population is the same as in the target population, we can express

the distribution in the diseased population as

bZ =PðZic jYic=1; �Þ=
�ZaZX

H

�HaH
:

The complete data likelihood in (1) can now be rewritten more fully as:

Lð�Þ =
Yn
i=1

aZiu
ð�ÞaZic

ð�Þ �
exp fXZic

�gX
H

ðexp fXH�gaHð�ÞÞ
;

ð2Þ

which, we note, does not contain the regression parameter �, as it is

canceled out.

Specification of priors

To shrink the coefficients of the unassociated haplotypes toward zero so

that the effects of the associated ones can be estimated more precisely to

increase statistical power, we cast the problem into the Bayesian Lasso

framework (Park and Casella, 2008). As such, we need to assign prior

distributions to the parameters �=ð�; �=ff; dgÞ. For each �j in �, we use

the Laplace distribution, leading to the following density function:

�ð�jj�Þ=
�

2
exp ��j�jj

� �
; �15�j51; j=1; . . . ;m� 1;

where the variance is 2/�2, and the hyperparameter � controls the level of

shrinkage. Instead of picking a fixed value of �, we let it follow

Gamma(a, b) with pdf �ð�Þ= ba

ð	Þ
�a�1expð��bÞ. This specification of the

priors has been shown to give the Bayesian version of LASSO when

normal likelihood is used (Park and Casella, 2008) and has led to satis-

factory shrinkage in LBL (Biswas and Lin, 2012). The hyperparameters a

and b are selected to realistically reflect the odds ratio (OR) of associated

haplotypes for complex diseases; the range of [15, 25] will be explored

following Biswas and Lin (2012).

The parameters for modeling haplotype-pair frequencies, f and d, are

not independent. Because aZð�Þ must be non-negative, it poses the fol-

lowing constraint: d 4max f�fk=ð1� fkÞ; k=1; . . . ;m� 1g. Therefore,

we let f follow Dirichlet(1,1,. . .,1). Then, we use the Uniform

max m�1
k=1f�fk=ð1� fkÞg; 1

� �
distribution to model d given f.
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Statistical inference based on posterior distributions

Markov chain Monte Carlo (MCMC) methods are used to draw samples

of the parameters from the posterior distributions. We use the

Metropolis–Hastings algorithm to update the � parameters with a

double exponential proposal distribution whose mean is the current

estimate and whose variance is proportional to the absolute value of

the current estimate to facilitate shrinkage. The Metropolis–Hastings

algorithm is also used to update the inbreeding parameter d using a

uniform proposal distribution observing the constraints as described in

the above Subsection. For the rest of the parameters (i.e. �;Z and f), we

update them using the Gibbs sampler, as the posterior distributions are of

conjugate forms and can be sampled conveniently. Based on the MCMC

samples after convergence has been achieved, we draw inference regard-

ing association by testing for the significance of each � coefficient.

Specifically, we carry out a hypothesis test of H0 : j�j � 


versus Ha : j�j4
, where " is set to a small number, using Bayes

Factor (BF) (Raftery and Lewis, 1995), the ratio of posterior odds to

prior odds. If the BF exceeds a certain threshold, we conclude that the

corresponding � is significant, i.e. the haplotype is associated with the

disease. Based on the work of Biswas and Lin (2012) after extensive

simulation, setting "=0.1 and the BF threshold of 2 appear to be satis-

factory and leads to a type I error rate at or below 5%, so these tuning

parameters are adopted in the current study for most of the analyses. The

R package (with dynamic loading of C program) implementing this

method, famLBL, is publicly available.

3 RESULTS

We carried out extensive simulation to thoroughly evaluate the
performance of famLBL and compared it with LBL and FBAT.

A total of three sets of simulation are considered to evaluate

power, type I error, sensitivity to population substructure and
comparisons with LBL and FBAT. We describe the three

simulation settings, data generation process and results in the
following. In the last Subsection, we present an application of

famLBL to the FHS data.

3.1 Simulation settings and data generation

3.1.1 Simulation 1 The setting for the first simulation study
portraits data from a homogeneous population. This setting is

used to demonstrate that famLBL, utilizing triad family data,

controls type I error adequately, and to compare its power
with that of LBL based on case-control data. Three haplotype

distributions, HS1, HS2 and HS3, consisting of 6, 9 or 12 haplo-

types, respectively, are considered. For each distribution, three
scenarios are considered: only a common haplotype (fre-

quency� 0.05) is causal (C); a common and a rare haplotypes
(frequency50.05) are causal (RC); and two rare haplotypes are

causal (RR). The disease model is taken to be additive, in that

two copies of the risk haplotype double the log odds of being
affected. These haplotype distributions (column Pop1) and ORs

for the disease models are given in Table 1. Two phenocopy rates
at 5% and 10% are considered for this and the other two simu-

lations, with the corresponding population prevalence for each

combination of disease model and haplotype distribution given
in the Supplementary Table S3. To simulate trio data, haplotypes

for parents are generated first, and one haplotype from each

parent is chosen at random to pass down to the descendant.
Disease status of the descendant is simply based on the

binomial probability inferred from the models described above.

A total of 500 case-parent triads are obtained based on this simu-

lation procedure. Phase information is removed and only triad
genotype data are used in famLBL. Because LBL is only applic-

able to case-control data, we only retained the genotype data for

the affected children, leading to 500 affected cases. We then

randomly sample 500 unaffected individuals as controls.

3.1.2 Simulation 2 In the second simulation study, the setting
simulates a stratified population. The purpose of this setting is to

show that famLBL is not sensitive, whereas the original LBL
based on case-control data is sensitive, to population stratifica-

tion. We hypothesize a stratified population with two

subpopulations. The haplotype distributions under these two

subpopulations (columns Pop1 and Pop2) are given in Table 1.
The RR, RC and C disease models are the same for both

populations. For trio data, parents are assumed to come from

a 50–50% mixture of populations 1 and 2. The descendants’

haplotypes are retained as cases for the case-control data. The
controls are generated randomly from a 80–20% mixture of

populations 1 and 2. Again, phase information is deleted (i.e.,

only genotypes are retained) before the famLBL and LBL

analyses.

3.1.3 Simulation 3 The last simulation study is casted under
the same homogeneous population, haplotype settings and dis-

ease models as in the first simulation study. This set of simulation

Table 1. Haplotype settings and association scenarios for the simulation

Haplotype Frequency OR

Setting Hap Pop1 Pop 2 RR RC C

HS1 01100 0.3 0.3 1 1 1

10100 0.005 0.005 3 3 1

11011 0.01 0.01 2 1 1

11100 0.155 0.155 1 1 1

11111 0.11 0.42 1 2 2

10011 0.42 0.11 1 1 1

HS2 01010 0.06 0.06 1 1 1

01100 0.25 0.25 1 1 1

10000 0.08 0.005 1 2 2

10100 0.005 0.08 3 3 1

11011 0.01 0.01 2 1 1

11100 0.09 0.09 1 1 1

11101 0.085 0.085 1 1 1

11111 0.1 0.1 1 1 1

10011 0.32 0.32 1 1 1

HS3 00111 0.07 0.07 1 1 1

01000 0.02 0.02 1 1 1

01011 0.05 0.05 1 1 1

01101 0.06 0.06 1 1 1

01110 0.14 0.14 1 1 1

10010 0.08 0.005 1 2 2

10100 0.005 0.08 3 3 1

11011 0.01 0.01 2 1 1

11101 0.09 0.09 1 1 1

11110 0.13 0.13 1 1 1

11111 0.1 0.1 1 1 1

10001 0.245 0.245 1 1 1
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is aimed to compare the performance of two family-based

methods for detecting haplotype association: famLBL versus

FBAT.

3.2 Results and comparisons

For each analysis, 40 000 MCMC iterations were run, which

appears to be sufficiently large for obtaining meaningful results

based on convergence diagnostics developed by Raftery and

Lewis (1992). Results for both famLBL and LBL from the first

set of simulation assuming a homogeneous population with 10%

phenocopy rate are presented in Figure 1. Recall that famLBL

uses 500 trios (which may be thought of as 500 affected children

and 500 matched ‘pseudo controls’), whereas LBL uses 500

affected children and 500 independent controls. We can see

that both famLBL and LBL are able to control the type I

error rates; they are all at or below 5%, marked by the gray

dashed line. The exact numbers are given in Supplementary

Table S4. We also considered a larger BF threshold to control

the type I error rate at the 1% level (Supplementary Table S5).

Both methods are powerful for detecting common variants, but

the power is much lower when the variants are rare, even though

the effect size is larger for the rare variant in the RC scenario.

On the other hand, when both associated haplotypes are rare, the

effect size plays a larger role, leading to greater power for detect-

ing the rarer haplotype with larger OR. As expected, the power

of famLBL is universally smaller than LBL due to dependency in

data, although the differences are all quite small. Results for

the 5% phenocopy rate convey the same information

(Supplementary Figure S2). Because the results are very similar

for the three sets of a and b parameter values that we considered

(a= b=15, 20, 25), we choose to only use a= b=20 for the

next two sets of simulation.

For the second set of simulation under population substruc-

ture, the type I error rates and the power are presented in

Figure 2. Each plot depicts both type I error (for non-causal

variant; left side) and power (for causal variants; right side)

that are separated by a vertical line. In the presence of popula-

tion substructure, we can see that LBL can have wildly inflated

type I error rates, affirming the lack of robustness for popula-

tion-based designs. For example, haplotype 10011 and 11111

under haplotype setting 1 (HS1) and the RR disease model

(top-left plot) have quite different frequencies in the two subpo-

pulations and thus greatly inflated type I error rates. On the

other hand, because the internal matched ‘pseudo control’ in

the trio design comes from the same population as the affected

Fig. 1. Comparison of power and type I error rate between famLBL (using trio data) and LBL (using case-control data) under population homogeneity.

Lines with ‘o’ and ‘"’ represent power, whereas those with ‘x’ denote type I error; solid: LBL, dashed: famLBL
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child, the results are not affected by population stratification,

and thus, the type I error remains well controlled, as in the

first set of simulation.
We saw in our first set of simulation with a homogeneous

population that the power of LBL is always higher than that

for famLBL when the number of cases and ‘controls’ (true

controls in LBL and ‘pseudo controls’ in famLBL) are the

same. However, this is no longer the case when there is popula-

tion substructure. The power of famLBL can exceed that of

LBL. For example, the power for detecting the causal haplotype

h11111 is higher for famLBL under the HS1 RC disease model

scenario (right side of top-middle plot). As such, under

population substructure, famLBL not only can control the

type I error as expected, but it may potentially also have

higher power for detecting causal variants compared with

its population counterpart. Results for the 5% phenocopy

rate are the same qualitatively and are given as Supplementary

Figure S3.
Results for comparing famLBL with FBAT in terms of both

type I error and power are summarized as receiver operating

characteristic (ROC) curves in Figure 3 for 10% phenocopy

rate and Supplementary Figure S4 for the 5% phenocopy rate,

where the x-axis plots the type I error while the y-axis plots the
power for each corresponding type I error rate. The power for
detecting common causal variants is high and comparable

between famLBL and FBAT, with one slightly outperforming
the other in a subset of the settings. However, for rare variants,

famLBL dominates FBAT, as expected, as FBAT is not designed
for detecting rare variant association. The power gain with

famLBL can be very significant. For example, the famLBL’s
power for detecting the rare associated haplotype (h10100) in
the RC scenario for all three haplotype settings (dashed lines

in all three plots in the middle column of Figure 3 and
Supplementary Figure S4) is much higher, especially when

type I error rate is in the small, acceptable, range (insets in the
plots).

3.3 Application to the FHS data

To illustrate the utility of famLBL, we applied it to the FHS
data, available at dbGaP through the Genetic Analysis
Workshop 16. One of the objectives of FHS is to identify genetic

risk factors for cardiovascular diseases. Following Han et al.

Fig. 2. Comparison of type I error rate and power between famLBL (using trio data) and LBL (using case-control data) in the presence of population

stratification. Type I error for non-causal haplotypes is plotted on the left, and power for causal haplotypes is plotted on the right; ‘x’: LBL, ‘o’: famLBL
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(2013), we focus on a dichotomous hypertensive trait, in which

hypertension is defined to be systolic blood pressure �140mm

Hg or diastolic blood pressure �90mm Hg. Further, as the

primary utility of famLBL is to follow up on regions with initial

association signals to understand the causal mechanism, we focus

on nine top associated SNPs (referred to as target SNPs) identi-

fied in Han et al. (2013) (Supplementary Table S6). For each of

the nine target SNPs, we considered haplotypes spanning

seven-SNP regions including the target SNP. Table 2 presents

part of the results, with the full results given in Supplementary

Tables S7 and S8. Six of the nine target SNPs return

significantly associated haplotypes, with many of them being

rare (frequency� 0.05), signaling their potential roles of tagging

rare SNVs.

4 DISCUSSION AND FUTURE WORK

In this article, we propose famLBL, a family-based method

for detecting haplotype association with common diseases,

specifically gearing toward rare haplotypes yet retaining

sufficient power for detecting common haplotype

associations. Such a method is timely in that there is a

continuing recognition that rare haplotype constructed

based on GWAS common SNPs may tag multiple rare causal

SNVs not genotyped in GWAS. It is even more attractive

considering the fact that the use of common SNPs from the

GWAS era is much more economical (in fact, ‘free’, as no further

genotyping is needed) than using new SNVs obtained fromNGS.

In addition, the use of a haplotype-based method can provide

greater statistical power for detecting association compared with

a collapsing-based method. Most importantly, by detecting

specific associated haplotypes instead of simply a regional

significant result from a collapsing-based test, a haplotype-

based method can uncover crucial information useful for

designing follow-up experiment to identify/validate causal

variants.
Based on an extensive simulation study, we thoroughly

investigated the properties of famLBL and documented its

success in detecting haplotype associations, both rare and

common. This is a significant step forward in two fronts.

Fig. 3. ROC curves comparing the performance of famLBL (black curves) with FBAT (dark gray (or red when in color) curves). Inset in each plot

zooms in on the portion where type I error is at most 5%. A diagonal line is also added for reference
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First, compared with population-based methods for detect-

ing rare associated haplotypes, famLBL is not sensitive to

population stratification, and thus, its type I error is well

under control with good power. This finding is important

because of recent surge of interests in returning to family

data to find rare causal variants (Bowden, 2011; De et al.,

2013; Zhu et al., 2010). Second, our results show that famLBL

can be much more powerful than popular traditional

family-based association methods for detecting rare associated

haplotypes. Even though the underlying methodology of

famLBL is geared toward the detection of associations that

involve rare haplotypes by shrinking the estimated effect sizes

of the unassociated ones, the power of famLBL for detecting

associations of common haplotypes is still comparable with a

method that has much smaller power for detecting rare

associated haplotypes. Application of famLBL to the FHS illus-

trates its practical utility.
From a methodological perspective, the statistical approach

adopted in famLBL is Bayesian LASSO, a method proven to

be effective for detecting rare associated haplotypes by shrinking

the coefficients (representing effect sizes) of unassociated haplo-

types toward zero (signifying no association) (Biswas and Lin,

2012). By doing so, the effect sizes of the truly associated ones

can be more precisely estimated. This leads to increased statis-

tical power for detecting rare associated haplotypes without

increasing type I error nor sacrificing power for detecting

common associated ones.
Implementation of famLBL requires the use of MCMC

methodology for parameter estimation and statistical inference.

This versatile statistical technique, however, is computationally

intensive. For each dataset simulated under the homoge-

neous population model, the computational time for famLBL

with 40000 MCMC iterations running on an Intel i3

2520 (2.5G) CPU with 8 GB memory took about 12, 20

and 50 s for haplotype settings 1 (6 haplotypes), 2 (9 haplotypes)

and 3 (12 haplotypes), respectively. The amount of time

taken to analyze a dataset simulated under the population

stratification model is similar. As such, famLBL is not

intended to be used as a genome-wide initial screening

method. Rather, famLBL is likely to be most profitable as a

follow-up tool on regions showing signals in initial screening,

especially in regions under linkage peaks uncovered in family
studies.

In the current article, we focus on detecting rare haplotype
association with a binary trait. Nevertheless, famLBL can be

extended to other phenotypes, including general qualitative or

quantitative traits. Extension to extended pedigrees, on the other
hand, is much more complicated. The most difficult issue stems

from the potential of missing data with larger pedigrees and the

no-recombination constraints, making an efficient MCMC

algorithm much more difficult to devise. However, given the
greater information contained in larger pedigrees and the

availability of such data already in existence, research into this

extension is warranted.
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