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ABSTRACT

Summary: Aptamers are ‘synthetic antibodies’ that can bind to target

molecules with high affinity and specificity. Aptamers are chemically

synthesized and their discovery can be performed completely in vitro,

rather than relying on in vivo biological processes, making them well-

suited for high-throughput discovery. However, a large fraction of the

most enriched aptamers in Systematic Evolution of Ligands by

EXponential enrichment (SELEX) rounds display poor binding activity.

Here, we present MPBind, a Meta-motif-based statistical framework

and pipeline to Predict the Binding potential of SELEX-derived apta-

mers. Using human embryonic stem cell SELEX-Seq data, MPBind

achieved high prediction accuracy for binding potential. Further ana-

lysis showed that MPBind is robust to both polymerase chain reaction

amplification bias and incomplete sequencing of aptamer pools.

These two biases usually confound aptamer analysis.

Availability and implementation: MPBind software and documents

are available at http://www.morgridge.net/MPBind.html. The human

embryonic stem cells whole-cell SELEX-Seq data are available at

http://www.morgridge.net/Aptamer/.

Contact: RStewart@morgridge.org

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Aptamers are short, single-stranted DNA or RNA, which have

the ability to specifically bind to a variety of targets including

proteins (Ng et al., 2006) and the surface of cells (Daniels et al.,

2003). Aptamers have gained significant interest as a promising

alternative to antibodies because they are chemically synthesized,

thermostable and can be readily produced using standard labora-

tory techniques. Importantly, aptamers can be distributed as se-

quence information rather than as a physical entity.

The generation of high-affinity aptamers typically starts with a

random oligonucleotide pool. These oligonucleotides are then

subjected to multiple rounds of in vitro target-based selection

with polymerase chain reaction (PCR) amplification. This

procedure is termed SELEX (Systematic Evolution of Ligands

by EXponential enrichment). Several studies observed that the

number of unique sequences decreases after target selection, sug-

gesting that the decrease of sequence complexity is caused by the

increase of sequence enrichment (Thiel et al., 2012). Also, ‘true-

selected’ sequences were more likely to appear in multiple rounds

if compared with non-selected sequences (Thiel et al., 2012).

Thus, enrichment ratio-related methods are the most common

approach to initially identify high-affinity aptamers. However,

those methods suffer from a relatively high false-positive rate,

where sequences are enriched but do not exhibit binding (Cho

et al., 2010). This is likely because of PCR amplification bias.
To design aptamers that can bind to human embryonic stem

cells (hESCs), we generated five rounds of hESC whole-cell

SELEX sequencing data. We found that the validation rate is

low (550%) if we used the enrichment ratio-based method (data

not shown). Prior work showed that PCR bias is a substantial

confounding factor in aptamer analysis (Thiel et al., 2011).

Therefore, there is a pressing need to have a computational ap-

proach that can accurately predict the binding potential of

SELEX-derived aptamers without relying on aptamer read

counts.
To this end, we developed MPBind, a novel statistical frame-

work and pipeline to predict the binding potential of SELEX-

derived aptamers. Our approach is based on the assumption that

the binding potential of an aptamer can be broken down to the

combination of binding of all n-mers (e.g. 6-mer) within a se-

quence. MPBind assesses all possible n-mers for metrics such as

the relative frequency change and the relative abundance in the

final round. Based on those observations, each n-mer is assigned

a combined score. The binding potential of an aptamer is further

inferred from the combination of all n-mers within the sequence.

This approach integrates multiple moderately informative

sources of data to generate high-confidence predictions, which

is particularly important for Cell-SELEX where non-specific

binding is prevalent.

2 METHOD

MPBind calculates four one-sided P-values for each motif, representing

four different statistical tests for motif enrichment as described in

Supplementary Methods. The P-values are then transformed to Z-*To whom correspondence should be addressed.
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scores (Z1, Z2, Z3 and Z4) via Z=�–1(1 –P), where � is the standard

normal cumulative distribution function. For each motif, we used

Stouffer’s method to combine the four Z-scores into one combined

motif-level Z-score (Stouffer et al., 1949). We used an n-mer window to

scan each aptamer for motifs to arrive at a Meta-Z-Score for the entire

aptamer based on the aggregate Z-Score of all motifs within the aptamer

(Supplementary Figure S1).

MPBind is implemented in Python/R and can be run in any Linux/

Unix environment. As shown in Figure 1A, MPBind generates an

MPBind training file from the high-throughput sequencing data from

each round of SELEX. Then, statistical measures are calculated and

MPBind computes the aptamer-level Meta-Z-Score, which is used to pre-

dict binding.

3 RESULTS

We generated five rounds of whole-cell SELEX sequencing data

using hESCs (Thomson et al., 1998). The initial library (R0)

contains 21M reads with �99% unique reads. PCR amplifica-
tion by its nature generates redundant sequences. Therefore, if

the sequencing depth is deep enough to cover all copies of reads
in a pool, we should observe a drop in read complexity even

without any selection or PCR bias. The read complexity in this
scenario indicates the overall redundancy in a pool

[Supplementary Figure S2 (A)]. However, if read depth is far

less than all reads in a pool, as is typically the case for SELEX
experiments, then the PCR cycles will not affect read complexity

[Supplementary Figure S2 (B)]. This is because if there is no
target selection and no PCR bias, PCR cycles will not change

the relative abundance of each read species, and also because the
sequencing depth is low compared with the number of available

species; most species are sampled just once or not at all. Low

read complexity then is likely indicative of some species being
preferentially sampled. If a pool contains a fraction of favored

sequences (by target selection or via PCR bias), with limited
sampling depth, those favored sequences are repeatedly sampled

and make the read complexity lower [Supplementary Figure S2
(C)]. To investigate the extent of incomplete sequencing in our

pool, we compared the reads that overlap between sequencing
runs in initial pool (R0) and Control-Seq (R1). The overlapping

is minimal and only six reads are present in both sequencing

runs [Supplementary Figure S2 (D)]. It indicates that our

sequencing read depth is far from enough to cover all the
reads in a pool. Incomplete sequencing of oligonucleotide
pools is common in SELEX-Seq. This is because for a typical

SELEX-Seq, the initial library pool requires at least �1010 to
�1011 complexity to achieve the necessary diversity (Sassanfar
and Szostak, 1993; Thiel et al., 2011). Our hESCs SELEX

aptamers are 29 nt in length, and thus, the number of all pos-
sible sequences in the initial library pool is 429 (�1017) in
theory. Although the real number of sequences in the pool is

likely to be much less than that, it is still far beyond the sequen-
cing depth.
After one round of selection, the percentage of unique reads

dropped to �51%. To investigate whether this drop in read
complexity is a result of enrichment through true binding or
PCR bias, we sequenced pools without target selection but

with the same number of PCR cycles (Control-Seq). Our sequen-
cing depth for our libraries was typically �107 sequences
(Supplementary Table S1). As shown in Supplementary Table

S1, the percentage of non-redundant reads in Control-Seq (R1)
dropped to �47%. This drop in read complexity in the Control-
Seq is likely due to PCR bias and likely indicates PCR bias in the

SELEX-seq as well. For example, as shown in Supplementary
Table S2, the top three enriched reads in the Control-Seq are
ranked number 2–4 in terms of enrichment in the SELEX-Seq. It

indicates that those enriched reads in SELEX-Seq are more likely
due to being ‘selected by PCR’. PCR bias in SELEX-Seq has
been previously observed (Thiel et al., 2011). To avoid PCR bias,

we removed redundant reads from each round to train MPBind
with parameter (n-mer=6). The training set includes initial li-
brary (R0), SELEX-Seq (R1, R2, R3, R4 and R5) and Control-

Seq (R5).
To evaluate the performance of MPBind, we selected 19 apta-

mers with a large dynamic range in their Meta-Z-Score (–45 to

+47). We further defined binding as a notable shift of fluores-
cence intensity of cells bound by fluorescently labeled aptamer
compared with controls (see Supplementary Figure S3 for de-

tails). The area under curve (AUC) of the receiver operating
characteristic (ROC) curve of MPBind is 0.97. As expected, if
we included redundant reads from each round to train MPBind,

the AUC drops to 0.74, as shown in Figure 1B. The Spearman’s
Rank correlation (Rho) between the predicted Meta-Z-Score
(MPBind) and the binding potential (binding assay) is 0.79

[Supplementary Figure S3 (B)].
Aptamer 002 (Supplementary Table S3) is ranked as the top

enriched aptamer in the final SELEX round (583447 reads). The

binding assay showed that this aptamer did not bind to hESCs.
MPBind successfully predicts this to be a non-binding aptamer
(Meta-Z-Score=–9.37). It is likely that the enrichment of

Aptamer 002 is caused by PCR bias. This aptamer is also en-
riched in Control-Seq (R5) with 122 copies. However, the enrich-
ment of this aptamer in Control-Seq is not as high as in

SELEX-Seq, indicating that the extent of PCR bias can also be
stochastic. This type of bias was also suggested by Dittmar et al.
(2012), with the evidence that increasing copy number in

SELEX-Seq did not necessarily display increasing binding
affinity.
Aptamer 019 does not have sufficient read counts to support

it as a high-affinity aptamer (no reads from R0 to R4 and
only four reads in R5). However, MPBind predicted this to be

Fig. 1. (A) Input, processing steps and output of MPBind. (B) ROC

curves show MPBind trained on unique reads (AUC=0.97) outper-

formed than that trained on redundant reads (AUC=0.74). The motif

length is set to 6 nt
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a high-affinity aptamer (Meta-Z-Score=9.01). The binding
assay confirmed that this aptamer strongly binds to H1 cells
[Supplementary Figure S3 (A) and Supplementary Table S3].
Interestingly, this indicates that MPBind can correctly predict

aptamer affinity, even in the lack of read counts information
(e.g. incomplete sequencing of oligonucleotide pools). In other
words, MPbind is capable of achieving de novo predictions after

sufficient training.
To examine how each individual statistic contributes to the

prediction performance, we used Z1, Z2, Z3 and Z4 separately

to predict aptamer binding potential. As shown in
Supplementary Table S4, the AUCs of Z1, Z2, Z3 and Z4
ranged from 0.93 to 0.95, lower than when four Z scores are

combined (AUC=0.97). Thus, integrating multiple sources of
information generates more confident predictions. To further
investigate the impact of motif length on the prediction perform-
ance, we varied the motif length from 5 to 8nt. As shown in

Supplementary Figure S4, 6-mers achieved the best prediction
performance.
To further evaluate the performance of MPBind, we tested it

on another SELEX-Seq dataset (ESRP1) (Dittmar et al., 2012).
Dittmar et al. generated five rounds of SELEX-Seq (ESRP1)
data (R0, R2, R3, R6 and R7). For each round, we merged

reads to unique reads (removed redundant reads) and trained
MPBind with parameter n-mer=6. Four aptamers (WT A,
WT B, WT C and WT D) are selected by Dittmar et al. for
binding validation using Electrophoretic Mobility Shift Assay

(EMSA) analysis with increasing amounts of recombinant glu-
tathione S-transferase (GST)-ESRP1 fusion protein (0–250 ng).
Those four aptamers showed significant binding to ESRP1. As

shown in Supplementary Table S5, our MPBind prediction
showed that those four aptamers have Meta-Z-Scores: 32.8,
29.46, 37.3 and 35.59, respectively. To further confirm the bind-

ing, Dittmar et al., made 3–4 point mutations to each aptamer
(as controls). The EMSA did not show significant binding for
these mutant aptamers. The predicted Meta-Z-Scores for these

mutant aptamers are –23.17, –11.54, –31.04 and 1.83, respect-
ively (Supplementary Table S5). This indicates that MPBind can
correctly predict aptamers that bind to ESRP1.
In summary, we show that MPBind is a useful tool for pre-

dicting binding aptamers from SELEX-Seq data and is robust to
biases caused by PCR or by incomplete sequencing of aptamer

pools. However, we should also note that the premise of MPBind

is that the binding potential of an aptamer is dictated by the

combination of n-mers. This assumption is valid for the two

datasets we tested (hESCs whole-cell SELEX-Seq and ESRP1

protein SELEX-Seq). However, this might not be true for all

SELEX-Seq data. In the future, we will further evaluate

MPBind and continue to update it to be effective with a variety

of SELEX-Seq datasets.
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