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ABSTRACT

Motivation: Exome sequencing (exome-seq) data, which are typically

used for calling exonic mutations, have also been utilized in detecting

DNA copy number variations (CNVs). Despite the existence of several

CNV detection tools, there is still a great need for a sensitive and an

accurate CNV-calling algorithm with built-in QC steps, and does not

require a paired reference for each sample.

Results: We developed a novel method named PatternCNV, which (i)

accounts for the read coverage variations between exons while lever-

aging the consistencies of this variability across different samples; (ii)

reduces alignment BAM files to WIG format and therefore greatly

accelerates computation; (iii) incorporates multiple QC measures

designed to identify outlier samples and batch effects; and (iv) pro-

vides a variety of visualization options including chromosome, gene

and exon-level views of CNVs, along with a tabular summarization of

the exon-level CNVs. Compared with other CNV-calling algorithms

using data from a lymphoma exome-seq study, PatternCNV has

higher sensitivity and specificity.

Availability and implementation: The software for PatternCNV is im-

plemented using Perl and R, and can be used in Mac or Linux envir-

onments. Software and user manual are available at http://

bioinformaticstools.mayo.edu/research/patterncnv/, and R package

at https://github.com/topsoil/patternCNV/.

Contact: Asmann.Yan@mayo.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

DNA copy number variations (CNVs) are genomic structural

changes that result in regional or chromosomal loss or gain of

DNA copies (Hastings et al., 2009). Owing to the significant roles

in human diseases, various laboratory techniques have been

developed to detect CNVs, including recently advanced massive

parallel sequencing of whole genomes and coding exomes. For

exome-seq, it is commonly observed that coverage depths of

short reads across regions vary, caused by different target cap-

ture efficiencies (Parla et al., 2011), as well as the differences in

mappability of exons. Such coverage variations impose substan-

tial challenges for reliable CNV detection. Most existing methods

use a paired-sample approach, based on the intuitive assumption

that somatic sample and its paired reference share similar cover-

age bias that can be cancelled out through pairing (Koboldt

et al., 2012; Sathirapongsasuti et al., 2011). Although this as-

sumption approximately holds, it oversimplifies the problem

with two limitations unaddressed: (i) The region-specific noise

(coverage variability) of a local region is not accounted for, lead-

ing to amplified noise in log-ratio values of coverage between

sample and the paired reference. (ii) In the case of a missing or

low-quality reference sample, CNV detection based on paired

reference will be infeasible or have degraded accuracy/sensitivity.

A recent published method, FishingCNV, tried to address the

second limitation by using the average of multiple reference sam-

ples as the denominators in log-ratio calculation, but did not

address the regional noises in individual samples (the numer-

ator), which led to false CNV calls (details in Supplementary

Section S2.3). Considering these issues, we proposed a novel

method called PatternCNV, which summarizes overall consistent

patterns of both depths and variability of exonic region coverage

across samples, where ‘patterns’ of coverage and variability are

summarized using multiple ‘normal’ or reference samples. We

observed that the same patterns only exist between samples pre-

pared using the same version of exome capture kit. During CNV

detection, we compute the differences of observed coverage ver-

sus the common pattern, while penalizing regions associated with

larger variability using a weighting scheme. Further, whole-

genome CNV can be interpolated from exon-level CNV using

any third-party segmentation method, e.g. circular binary seg-

mentation (Olshen et al., 2004).
The PatternCNV was implemented in two different versions: a

Mac and Linux/Unix version, and an R package version. We

also developed a conversion tool to transform Binary version
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of sequence Alignment/Map (BAM) format files to much smaller

wiggle (WIG) format files (51% of BAM file size), which greatly

speeds up pattern learning and CNV calculation. When com-

pared with other state-of-the-art CNV algorithms in a lymphoma

case study, PatternCNV displayed higher resolution and greater

sensitivity/specificity.

2 FEATURES

2.1 Input, output and major functions

PatternCNV is divided into three major functional components:

(i) BAM-to-WIG conversion for improved computational per-

formance: a BAM2WIG converter using SAMtools (Li et al.,

2009) and BEDtools (Quinlan and Hall 2010), which takes as

input a BAM file, a file of Browser Extensible Data (BED)

format defining exon regions and a second BED file for capture

targets defined by the exome capture kit. The outputs are WIG

files with greatly reduced file sizes compared with BAM files; (ii)

CNV detection: starting with WIG files, PatternCNV estimates

the coverage and variability patterns from multiple reference

samples and calculates CNVs relative to the pattern for all sam-

ples including the references; and (iii) CNV summary and visu-

alization: this module outputs a detailed exon-level CNV

summary file per sample, and provides several visualization op-

tions for viewing CNVs at the whole-genome level or chromo-

some level. In addition, there are built-in QA/QC steps to detect

sample outliers and batch effects. Figure 1 displays the overall
workflow of PatternCNV along with illustrative examples of

program output.

2.2 Description of the PatternCNV algorithm

Each exon is first divided into consecutive bins of user-defined
size (e.g. 10 base pairs). To make the exon coverage of different

samples comparable, log2-transformed RPKM (reads per kilo-
base per million total reads) is used to standardize the bin cover-

age. Denoting xl as log2-transformed RPKM coverage of l-th
bin in a given exon, the standard coverage of a bin without CNV

is assumed to approximately follow a normal distribution
Nð�l; �lÞ. The �̂= �̂l½ �l=1;...;L and �̂=½�̂ l�l=1;...;L are estimated

from a pool of reference samples as the coverage and variability
patterns. For a bin with a copy number of C, the bin signal is

calculated as r=log2ðC=2Þ, xl�Nðr+�l; �lÞ. Hence, a bin-level
CNV can be estimated as r̂ l=xl � �̂l. Considering variability of

bin coverage depending on its relative position in an exon or with
respect to capture probe, we further smooth multiple bins within

k-th exon (we denote related bin indices as l 2 Ek), leading to a
maximum likelihood estimation: r̂k=

P
l2Ek

wlðxl � �̂lÞ, where wl

is designed to take variability of each bin into consideration (de-
tails of the statistical formulation are described in Supplementary

Section S1).

2.3 Lymphoma case study

We applied PatternCNV to a set of 15 germ line–tumor pairs of

diffuse large B-cell lymphoma exome-seq data (Lohr et al., 2012).
When comparing CNV results derived from exome-seq using

PatternCNV with those calculated from SNP microarray data
profiled on the same samples, the two sets of results largely cor-

relate for large CNVs. As expected, PatternCNV identified many
small CNV regions at the single exon and/or multiple exon level

(Supplementary Section S2.3) that the SNP array failed to detect
owing to lack of probe coverage/density at the region. In add-

tion, thanks to the digitalized dynamic range of read coverages,
PatternCNV can differentiate high versus low amplifications,

while microarrays are limited by the saturation of probe hybrid-
ization signal. We compared PatternCNV with three other

exome-seq-based CNV detection methods, ExomeCNV
(Sathirapongsasuti et al., 2011), Varscan2 (Koboldt et al.,

2012) and FishingCNV (Shi and Majewski 2013) using CNV
detected by SNP microarrays as the ground truth. PatternCNV

displayed superior visual resolution and achieved better specifity
and sensitivity when compared with the paired approaches used

by ExomeCNV and Varscan2 (Supplementary Section S2.2), and
had much less false positives compared with FishingCNV

(Supplementary Section S2.3). In several focused comparisons,
we also saw an increased resolution of PatternCNV-based esti-

mations compared with these two methods (Supplementary
Section S2.1). In situations where a reference sample had less

reliable quality than its paired counterpart, we often observed
dramatically reduced performance of both Varscan2 and

ExomeCNV for CNV detection, but not PatternCNV
(Supplementary Section S2.1). This highlights the robustness of

the pattern-based approach over conventional paried
approaches. FishingCNV uses a method of taking the average

across normal samples, which is more similar to PatternCNV

Fig. 1. PatternCNV workflow is demonstrated in the upper panel.

Examples of whole-genome and chromosome-level visulization are dis-

played in the bottom panel, along with Exon-level CNV summary table
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than the paired methods used by the other two tools. However, a
detailed comparison shows that FishingCNV has different data
processing and CNV detection methods (Supplementary Section
S2.3). FishingCNV’s principle component analysis (PCA) step

over corrects batch effects and consequently removes CNV sig-
nals, resulting in false negative calls. We recommend that the
users do not perform the default PCA step of FishingCNV.

Moreover, it also oversimplifies average read-depth approach,
producing an alarmingly high number of false-positive CNV
calls (Supplementary Section S2.3). In contrast, PatternCNV’s

novel use of both the weighted average read depth and coverage
variability produces results that are superior and simpler to use
by improving true positives and greatly reducing false-positive

CNV calls.

3 DISCUSIONS AND CONCLUSIONS

We introduce PatternCNV, a software package designed to focus

on exon-level CNV detection from exome-seq data. CNV esti-
mate is based on coverage and variability patterns summarized
from multiple reference samples. The implemented algorithm
uses WIG file format, which improves the runtime and space

efficiency. Several post-processing functions are included to fa-
cilitate interpretation, through visualization, segmentation and
tabular summarization. As demonstrated by the case study, we

believe it is a useful utility for exome-seq studies where robust
detection of germ line and/or somatic CNVs is of interest.

Funding: Support for this work was provided by Center for
Individualized Medicine at Mayo Clinic and the NIH (P50

CA97274). We thank Dr Todd R. Golub and colleagues at the

Broad Institute, where the genomic data were generated.

Conflict of interest: none declared.

REFERENCES

Hastings,P.J. et al. (2009) Mechanisms of change in gene copy number. Nat. Rev.

Genet., 10, 551–564.

Koboldt,D.C. et al. (2012) VarScan 2: somatic mutation and copy num-

ber alteration discovery in cancer by exome sequencing. Genome Res., 22,

568–576.

Li,H. et al. (2009) The sequence alignment-map format and SAMtools.

Bioinformatics, 25, 2078–2079.

Lohr,J.G. et al. (2012) Discovery and prioritization of somatic mutations in diffuse

large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc. Natl Acad.

Sci. USA, 109, 3879–3884.

Olshen,A.B. et al. (2004) Circular binary segmentation for the analysis of array-

based DNA copy number data. Biostatistics, 5, 557–572.

Parla,J.S. et al. (2011) A comparative analysis of exome capture. Genome Biol., 12,

R97.

Quinlan,A.R. and Hall,I.M. (2010) BEDTools: a flexible suite of utilities for com-

paring genomic features. Bioinformatics, 26, 841–842.

Sathirapongsasuti,J.F. et al. (2011) Exome sequencing-based copy-number vari-

ation and loss of heterozygosity detection: exomeCNV. Bioinformatics, 27,

2648–2654.

Shi,Y. and Majewski,J. (2013) FishingCNV: a graphical software package for de-

tecting rare copy number variations in exome-sequencing data. Bioinformatics,

29, 1461–1462.

2680

C.Wang et al.

very 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu363/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu363/-/DC1
-
ly-
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btu363/-/DC1
-

