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Abstract
AIM: To evaluate the effects of osthol on intrahepatic 
fat synthesis, β-oxidation, inflammation, and insulin 
resistance by multifaceted analysis.

METHODS: Sprague-Dawley rats (n  = 30) were ran-
domly divided into control, non-alcoholic fatty liver 
disease (NAFLD), and osthol groups. NAFLD and osthol 
groups were fed with a high-fat diet for 14 wk. After 8 
wk of the high-fat diet, the osthol group also received 
osthol 20 mg/kg orally 5 times/wk. To assess the in-
sulin resistance, oral glucose tolerance was performed 
at the end of 14 wk. Immunohistochemical (4-HNE, 
F4/80) and hematoxylin and eosin (HE) staining were 

performed on liver tissue extracts after animal sacri-
fice at 14 wk. SREBP1c, FAS, SCD-1, PPAR-α, CROT, 
MCP-1, IRS-1, and IRS-2 mRNA expressions were as-
sessed with reverse transcription-polymerase chain 
reaction.

RESULTS: HE staining revealed that, compared with 
the NAFLD group, the osthol group showed signifi-
cantly decreased intrahepatic fat content (39.4% vs  
21.0%; P  = 0.021). SREBP1c expression in the NAFLD 
group increased compared to controls (P  = 0.0001), 
while osthol treatment decreased SREBP1c expres-
sion compared with the NAFLD group (P  = 0.0059). In 
the osthol group, intrahepatic FAS and SCD-1, which 
act downstream of SREBP1c, decreased significantly 
compared with the NAFLD group. Moreover, PPAR-α 
expression in the osthol group was also significantly 
higher than in the NAFLD group (P  = 0.0147).

CONCLUSION: Osthol treatment attenuated liver ste-
atosis by decreasing de novo  liver triglyceride synthesis 
and had nominal effects on insulin resistance and liver 
inflammation.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Nonalcoholic fatty liver disease is considered 
as a consequence of “multi-hit” processes. Osthol, a 
coumarin compound, has anti-inflammatory effects on 
various diseases. However, there is no multi-faceted 
and comprehensive evaluation of its effects. The cur-
rent study evaluated effects of osthol on intrahepatic 
fat synthesis, β-oxidation, inflammation, and insulin 
resistance by multifaceted analysis.
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INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) has a world-
wide prevalence of  about 20%-30% and is among the 
most common causes of  chronic liver disease[1,2]. Ap-
proximately 50%-60% of  non-alcoholic steatohepatitis 
(NASH) patients have accompanying complications 
such as diabetes mellitus, cardiovascular disease, and 
hyperlipidemia[1]. NAFLD and NASH are also strongly 
associated with insulin resistance and obesity[3]. In hepa-
tocytes, increased fatty acid oxidation increases oxidative 
stress and leads to apoptosis, which is also thought to 
be involved in NASH pathophysiology. However, until 
recently, it is thought that a cell’s response to oxidative 
stress is more critical in determining its fate than the 
amount of  oxidative stress. Furthermore, NAFLD is 
also regarded as a “multi-hit” disease[4,5] and could be the 
consequence of  multiple highly entwined mechanisms 
such as insulin resistance, oxidative stress, mitochondrial 
insufficiency, endoplasmic reticulum stress, and apopto-
sis. Understanding these intricate mechanisms leading to 
NAFLD progression could provide a useful insight to 
understand NAFLD.

Insulin resistance together with oxidative stress has 
an important role in NAFLD pathophysiology[6-8]. An 
improvement in insulin resistance could decrease the 
incidence of  NAFLD and NASH; however, hepatic 
insulin sensitizers have not provided significantly ben-
eficial results in clinical trials[9-11]. Moreover, although 
antioxidant treatment improved NAFLD histology in 
clinical trials[6], the long-term effects of  antioxidant 
treatments need further evaluation[12]. Cnidium monnieri 
fruits are used in traditional Chinese medicine. Osthol, 
the active constituent of  Cnidium monnieri extracts, has 
anti-inflammatory and hepatic fat oxidizing properties. 
For instance, in a rat model of  fatty liver, osthol not 
only decreased the fasting blood glucose and hepatic fat 
content, but also improved insulin resistance[13]. Zhang 
et al[14] also reported that osthol treatment decreased he-
patic fat content by increasing the expression of  hepatic 
peroxisome proliferator-activated receptor (PPAR)-α/γ. 
In the alcoholic fatty liver model, osthol treatment led 
to increased superoxide dismutase (SOD) activation and 
decreased oxidative stress[15]. These results suggest that 
osthol treatment not only reduces hepatic fat content 
and oxidative stress but also improves insulin resistance; 
however, the histological improvement in inflammation 
and fibrosis still requires further evaluation. Although 
the fat oxidizing effects of  osthol have already been 
well studied, none of  the previous studies evaluated the 
effects of  osthol on liver inflammation and fibrosis si-

multaneously with the fat oxidizing effects. As multiple 
cellular mechanisms, such as hepatic fat synthesis, oxida-
tive stress, inflammation, insulin resistance, and cellular 
adaptation, could all be involved in NAFLD pathophysi-
ology, a comprehensive evaluation of  osthol efficacy in 
NAFLD pathophysiology is needed. Therefore, the aim 
of  the current study was to evaluate the precise mecha-
nism and effects of  osthol treatment on these multiple 
mechanism simultaneously.

MATERIALS AND METHODS
Experimental design
A total of  30 Sprague-Dawley (SD) rats (4-wk-old) were 
purchased from Orient Animal Laboratory, Seoul, South 
Korea and were randomly divided into 3 groups: control, 
NAFLD and osthol. The control group was fed normal 
chow while a combination of  60% high-fat (HF) diet 
and 20% fructose was provided to NAFLD and osthol 
groups. The fructose was provided in drinking water to 
NAFLD and osthol groups. From the 9th to 14th wk the 
NAFLD and osthol groups were treated orally 5 times/
wk with normal saline (200 μL) and osthol 20 mg/kg, re-
spectively[14,16,17] (dissolved in sodium carboxymethyl cel-
lulose and later in normal saline to make 200 μL volume). 
After 14 wk, anesthetized animals were euthanized by 
thoracotomy and blood samples were withdrawn by car-
diac puncture. The liver tissues were extracted for poly-
merase chain reaction (PCR), hematoxylin and eosin (HE) 
staining and immunohistostaining analysis. The experi-
mental protocol was approved by Hanyang Institutional 
Animal Care and Use Committee (HY-IACUC-11-064).

Body weight assessment
The body weight of  the animals was measured weekly 
from the start of  the experiment to just before sacrifice 
to evaluate the changes in body weight.

Oral glucose tolerance test and serum aspartate 
transaminase/alanine transaminase
An oral glucose tolerance test (OGTT) was performed 
as follows[18]: briefly, after overnight fasting, the blood 
glucose level was measured through the tail vein at 0, 30, 
60, 90, and 120 min after an oral glucose load of  2 g/kg 
body weight. After 14 wk, serum aspartate transaminase 
(AST) and alanine transaminase (ALT) were measured 
from the blood of  sacrificed animals using a biochemical 
analytical system (Hitachi-747; Hitachi, Tokyo, Japan).

Histology and immunohistochemistry
Formalin-fixed paraffin embedded sections of  liver tis-
sue samples were stained with HE for microscopic anal-
ysis. To assess hepatic steatosis, the tissue sections were 
scored for activity (degree of  inflammation) and stage 
(degree of  fibrosis) of  disease according to the histologi-
cal grading and staging systems, respectively. Hepatic ste-
atosis was graded as follows: < 5% (score, 0); 5%-33% 
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(score, 1), > 33%-66% (score, 2) and > 66% (score, 3); 
steatosis, 0-3; lobular inflammation, 0-4; portoperiportal 

activity, 0-4; and fibrosis, 0-4. For immunohistochem-
istry, the sections were stained with 4-hydroxynonenal 
(4-HNE) antibodies (Abcam, Cambridge, MA, USA) to 
assess lipid peroxidation. The macrophages were stained 
using F4/80 antibodies (Santa Cruz, CA, USA).

PCR expression of SREBP1c, FAS, SCD-1, PPAR-α, 
CROT, IRS-1 and -2, and MCP-1
The total liver tissue RNA of  each group was acquired 
using the Trizol Reagent (Invitrogen, United States). 
The RNA purity (1.9-2.0) was measured based on ra-
tion A260-280 with the Nano drop ND-2000 spectro-
photometer (Thermo Fisher Scientific Inc., USA). The 
PCR had an incubation time of  10 min at 95 ℃ then 
35 cycles (10 s at 95 ℃, 59 ℃, and 72 ℃ each) and 15 s 
at 65 ℃ for the final step. Image density was measured 
with Image J (http://rsb.info.nih.gov/ij/index.html). 
The primer sets used were as follows: GAPDH (Gene 
Bank ID: 24383) forward, 5’-TGC CAC TCA GAA 
GAC TGT GG-3’; reverse, 5’-TTC AGC TCT GGG 
ATG ACC TT-3’; SREBP1c (Gene Bank ID: 78968) 
forward, 5’-CGT TGT ACT GCA GCC ACA CT-3’; re-
verse, 5’-TGT GCT GTA AGA AGC GGA TG-3’; FAS 
(Gene Bank ID: 50671) forward, 5’-GAG TCT GTC 
TCC CGC TTG AC-3’; reverse, 5’-CCC TCC AGC 
ATG TAG ACC TT-3’; SCD-1 (Gene Bank ID: 246074) 
forward, 5’-ACC TTG CTC TGG GGG ATA TT-3’; 
reverse, 5’-GAT GAA GCA CAT GAG CAG GA-3’; 
PPAR-α (Gene Bank ID: 25747) forward, 5’-GAC AAG 
GCC TCA GGA TAC CA-3’; reverse, 5’-GTC TTC 
TCA GCC ATG CAC AA-3’; IRS-1 (Gene Bank ID: 
25467) forward, 5’-ACA CAG CTG CAC AGA CCA 
AC-3’; reverse, 5’-CCC AAC TCA ACT CCA CCA 
CT-3’; IRS-2 (Gene Bank ID: 29376) forward, 5’-CAT 
CCA TGG CCT TCT CTC TC-3’; reverse, 5’-CCA 
TGA GAC TTA GCC GCT TC-3’; CROT (Gene Bank 
ID: 83842) forward, 5’-TCC GGA TGC TGT TTT 
CTA CC-3’; reverse 5’-GTT GCA TGT GGA CTG 
GTG TC-3’; ATF6 (Gene Bank ID: 304962) forward, 5’
-CCC ACC AAA GGT CAG ACT GT-3’; reverse, 5’- 
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Figure 1  Changes in body weight of control, non-alcoholic fatty liver dis-
ease and osthol groups. NAFLD: Non-alcoholic fatty liver disease.

Figure 2  Effect of osthol on serum aspartate transaminase/alanine trans-
aminase and glucose levels. Changes in serum ASLT/ALT of control, non-
alcoholic fatty liver disease (NAFLD) and osthol groups (A and B). Osthol treat-
ment decreased serum glucose levels (C). AST: Aspartate aminotransferase; 
ALT: Alanine aminotransferase. aP < 0.05.
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Figure 3  Changes in serum glucose levels following the oral glucose tol-
erance test. NAFLD: Non-alcoholic fatty liver disease.
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CTT GGG ACT TTG AGC CTC TG-3’; MCP1 (Gene 
Bank ID: 24770) forward, 5’-TAG CAT CCA CGT 
GCT GTC TC-3’; reverse, 5’-GCT TGA GGT GGT 
TGT GGA AA-3’.

Statistical analysis
All experiments were independently repeated 3 times. The 
values are expressed as mean ± standard deviation. Sta-
tistical analysis was performed using SPSS for Windows 
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Figure 4  Effect of osthol on liver histology. Hematoxylin and eosin staining showing the difference in periportal inflammation and fat content between control, 
NAFLD and osthol groups (A-E). aP < 0.05.
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Figure 5  4-hydroxynonenal immunohistostaining comparing control, non-alcoholic fatty liver disease, and osthol groups (A-D). The NAFLD group shows 
increased 4-hydroxynonenal (4-HNE) immunohistostaining compared with the osthol group. NAFLD: Non-alcoholic fatty liver disease.
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version 18.0 (SPSS Inc., Chicago, IL, USA). One-way 
analysis of  variance was performed to compare the means 
of  different values, and a P-value < 0.05 was considered 
significant.

RESULTS
Physical and biochemical parameters
The average body weight of  both NAFLD and osthol 
groups were higher than in the control group. However, 
there was no statistically significant difference in body 
weights of  NAFLD and osthol groups (695.4 ± 61.2 g 
vs 685.7 ± 86.62 g, P = 0.78) (Figure 1). Moreover, the 
serum AST and ALT levels among the 3 groups also did 
not show any statistically significant difference (Figure 
2A and B). The fasting blood glucose levels of  both 
NAFLD and osthol groups were higher than controls. 
However, compared with the NAFLD group, fasting 
blood glucose was lower in the osthol group (258.3 
mg/dL vs 175.8 mg/dL, P < 0.04) (Figure 2C). Glucose 
intolerance was assessed using the OGTT. In NAFLD 
and osthol treatment groups, the area under the receiver 
operating characteristic curve for the osthol group was 
lower than that for the NAFLD group, but this differ-
ence was not statistically significant (Figure 3).

Hepatic fat content, intrahepatic inflammation, and 
fibrosis
On HE staining the osthol group showed a statistically 
significant (P = 0.021) decrease in hepatic fat content 

compared with the NAFLD (21% and 39.44% respec-
tively). However, there was no difference in periportal 
inflammation and degree of  intrahepatic fibrosis between 
the NAFLD and osthol groups (Figure 4A-E). 4-HNE 
immunohistochemistry was performed to evaluate the 
extent of  lipid peroxidation. 4-HNE staining revealed 
that the osthol group had a decrease in lipid peroxidation 
compared with the NAFLD group, but the difference 
was not statistically significant (Figures 5 and 6).

SREBP1c, FAS, SCD-1, PPAR-α, and CROT expression
The transcription factor sterol regulatory element bind-
ing protein-1c (SREBP1c) regulates several lipogenic 
enzymes including acetyl-CoA carboxylase, pyruvate ki-
nase, fatty acid synthase (FAS), and stearyl-CoA desatu-
rase (SCD-1)[19-23]. SREBP1c, FAS and SCD-1 expression 
is increased in NAFLD[24,25]. We assessed the mRNA 
expressions of  SREBP1c, FAS and SCD-1 to evaluate de 
novo intrahepatic fatty acid synthesis. SREBP1c expres-
sion increased in both NAFLD (P < 0.0001) and osthol 
groups compared with the control group. However, the 
expression of  SREBP1c was lower in the osthol group 
compared with the NAFLD group (P = 0.0059) (Figure 
7A). Similarly, the expression of  both FAS and SCD-1 
also increased in the osthol and NAFLD groups, but the 
expression was lower in the osthol compared with the 
NAFLD group (P = 0.001 and P = 0.059 respectively) 
(Figure 7B and C).

The mRNA expression of  PPAR-α and carnitine oc-
tanoyltransferase (CROT) was assessed to evaluate intra-
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Figure 6  F4/80 immunohistostaining comparing control, non-alcoholic fatty liver disease, and osthol groups showing no significant difference between 
the groups (A-C). NAFLD: Non-alcoholic fatty liver disease.
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hepatic lipids metabolism. The PPARs transcriptionally 
regulate certain genes including PPAR-α and PPAR-γ, 
which in turn regulate lipid metabolizing enzymes[14]. 
In the osthol group, PPAR-α expression significantly 
increased compared with that in the NAFLD group (P 
= 0.0147) (Figure 7D). Similarly, mRNA expression of  
CROT, which controls the transfer of  fatty acids to mi-
tochondria for β-oxidation, also increased in the osthol 
group, although it was not significantly different from 
the NAFLD group (Figure 7E).

IRS-1, IRS-2, ATF6 and MCP-1 expressions
There was no statistically significant change in insulin re-
ceptor substrate-1 (IRS-1) and IRS-2 expressions (Figure 
8A-B). Moreover, there was also no significant difference 
in expression of  monocyte chemo-attractant protein-1 
and activating transcription factor-6 (ATF6), an endo-
plasmic stress marker, between the osthol and NAFLD 
groups (Figure 8C and D).

DISCUSSION
NAFLD usually has a benign clinical course[26]; however, 
its inflammatory counterpart, the NASH can progress to 
chronic liver disease and fibrosis. Therefore, a reduction 
in hepatic inflammation and fibrosis is considered more 
important than a reduction in hepatic fat content. NASH 
is a “multi-hit” disease process which results from in-
trahepatic fat accumulation, increased oxidative stress, 
and abnormal hepatocyte adaptation[4]. The increased 
oxidative stress is an important risk factor leading to the 
progression of  simple steatosis to steatohepatitis. In the 
current study, osthol treatment decreased the hepatic 
fat content mainly by decreasing de novo hepatic fat syn-
thesis. Previous studies also reported that osthol treat-
ment decreased hepatic fat content in NAFLD[15,27]. The 
decreased hepatic fat content is mainly due to improved 
insulin resistance and increased fat oxidation by PPAR-α 
activation.
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Qi et al[13] reported that osthol treatment decreased 
HOMA-IR in NAFLD. In our study, osthol treatment 
lowered fasting blood glucose levels; however, there was 
no significant difference in OGTT between osthol and 
NAFLD groups, suggesting that osthol treatment did 
not affect the hepatic transcription factors involved in 
the insulin signaling pathway. SREBP1c is a key mol-
ecule in triglyceride synthesis. SCD-1 acts downstream 
of  SREBP1 and FAS in the triglyceride synthesis path-
way. In the current study, osthol treatment significantly 
decreased SREBP1c, FAS and SCD-1 expression. More-
over, compared with the NAFLD group, osthol treat-
ment also increased PPAR-α and CROT expression, 
suggesting that osthol increases fatty acid oxidation. 
ATF6, an ER stress marker, was also decreased in the 
osthol group, but this was not statistically significant.

Zhang et al[16] reported a decrease in tumor necrosis 
factor-α, SOD and malondialdehyde following osthol 
administration. Moreover, previous studies also reported 
the possibility of  decreased intrahepatic inflammation 
because of  a reduction in surrogate markers of  inflamma-
tion. However, none of  the previous studies showed that 
osthol could attenuate intrahepatic inflammation as well 
as hepatic apoptosis. In our study, osthol administration 
did not decrease hepatic inflammation, fibrosis, and ami-
notransferases. Moreover, the MCP-1 and Kupffer cells, 
which have a crucial role in NASH development, were 
also not changed (Figures 6 and 8D, respectively). Fur-
thermore, only Sun et al[27] showed that osthol decreased 
intrahepatic oxidative stress using an alcoholic fatty liver 
model. However, the oxidative stress has a different role 

in NAFLD and alcoholic fatty liver disease; therefore, 
these results cannot be compared directly.

Our study had the following limitations: First due to 
small size of  the study, we used blood glucose, OGTT 
test, and total IRS to assess insulin resistance; however, 
the euglycemic clamp test is the gold standard for mea-
suring insulin resistance[28]. Second, to induce liver in-
flammation and fibrosis, an HF diet was applied for 14 
wk. However, to further evaluate the efficacy of  osthol 
on liver inflammation and fibrosis, the duration of  the 
HF diet should be extended, or genetically modified 
animals along with diet model should be used. Third, 
we did not evaluate the decrease in hepatic fat synthesis 
caused by decreased SREBP1c due to hepatocyte adapta-
tion or apoptosis. Further studies are needed to evaluate 
the efficacy of  osthol in improving liver inflammation 
and mitochondrial β-oxidation.

In conclusion, osthol administration for 6 wk de-
creased de novo hepatic fat synthesis and improved fatty 
liver by decreasing SREBP1c and increasing PPAR acti-
vation; however, the osthol treatment did not attenuate 
intrahepatic inflammation and fibrosis. Osthol may be 
used as a potential therapeutic agent to prevent NAFLD 
progression as a result of  its ability to decrease de novo 
hepatic fat synthesis and to increase fatty acid oxidation.

COMMENTS
Background
The “two hit’’ theory is the widely accepted theory to explain non-alcoholic fatty 
liver disease pathophysiology. The first hit comprises accelerated lipidsaccumula-
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Figure 8  Polymerase chain reaction expressions of IRS-1, IRS-2, ATF6 and MCP-1 (A-D) showing no statistically significant differences between the groups.
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tion, while the second hit comprises increased lipid oxidation in the liver. Osthol, 
a coumarin compound, possesses anti-inflammatory and fat oxidizing properties. 
The authors aimed to evaluate the effects of osthol on hepatic fat content.
Research frontiers
Osthol has anti-inflammatory and fat oxidization effects. In this study, the au-
thors to simultaneously evaluated the effects of osthol on fat oxidation, inflam-
mation, fibrosis and insulin resistance pathways.
Innovations and breakthroughs
The fat oxidizing effects of osthol have already been well documented. Howev-
er, interestingly, none of previous studies evaluated the effect of osthol on liver 
inflammation and fibrosis in addition to the fat oxidizing effects. This is the first 
study to evaluate simultaneously the effects of osthol on inflammation, fibrosis, 
fat oxidation, and insulin resistance.
Applications
By understanding the mechanism of osthol effects on various pathways in-
volved in NAFLD pathology, this study provides useful information for future 
studies and also highlights the potential use of osthol to slow progression of 
NAFLD.
Terminology
Cnidium monnieri fruits are used in traditional Chinese medicine. Osthol is the 
active ingredient of Cnidium monnieri extracts.
Peer review
In this study Ho Hyun Nam et al investigated the effects of osthol on intra-
hepatic fat synthesis, β-oxidation, inflammation and insulin resistance by 
multifaceted-analysis in a group of 30 rats randomly divided into control, NASH 
and osthol groups.
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