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ABSTRACT

Motivation: Tyrosine sulfation is a type of post-translational modifica-

tion (PTM) catalyzed by tyrosylprotein sulfotransferases (TPST).

The modification plays a crucial role in mediating protein–protein

interactions in many biologically important processes. There is no

well-defined sequence motif for TPST sulfation, and the underlying

determinants of TPST sulfation specificity remains elusive. Here, we

perform molecular modeling to uncover the structural and energetic

determinants of TPST sulfation specificity.

Results: We estimate the binding affinities between TPST and

peptides around tyrosines of both sulfated and non-sulfated proteins

to differentiate them. We find that better differentiation is achieved

after including energy costs associated with local unfolding of the

tyrosine-containing peptide in a host protein, which depends on

both the peptide’s secondary structures and solvent accessibility.

Local unfolding renders buried peptide—with ordered structures—

thermodynamically available for TPST binding. Our results suggest

that both thermodynamic availability of the peptide and its binding

affinity to the enzyme are important for TPST sulfation specificity,

and their interplay results into great variations in sequences and

structures of sulfated peptides. We expect our method to be useful

in predicting potential sulfation sites and transferable to other TPST

variants. Our study may also shed light on other PTM systems without

well-defined sequence and structural specificities.
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1 INTRODUCTION

After their synthesis in the ribosome, many proteins undergo

post-translational modifications (PTM) such as glycosylation,

phosphorylation and peptide hydrolysis before reaching their

fully functional forms. Tyrosine sulfation is a common PTM
occurring on many proteins that transit through the Golgi

apparatus, such as extracellular matrix proteins, serine protease

inhibitors and G-protein coupled receptors (Stone et al., 2009).

So far hundreds of tyrosine-sulfated proteins have been identi-

fied, and more are likely to be discovered. A list of sulfated

proteins can be obtained from the UniProt database (Bairoch

et al., 2005). A major functional role of tyrosine sulfation is to

mediate protein–protein interactions (Kehoe and Bertozzi, 2000).
Sulfation is vital for many biological functions as indicated in

studies showing that postnatal viability, vision, fertility and
growth are affected in mice in the absence of sulfation

(Ouyang et al., 2002; Borghei et al., 2006). The functioning of

many proteins, including P-selectin glycoprotein ligand-1
(Pouyani and Seed, 1995; Wilkins et al., 1995), chemokine recep-

tors (Simpson et al., 2009), platelet glycoprotein Ib (Uff et al.,
2002; Zarpellon et al., 2011), depends on tyrosine sulfation. For

example, the sulfation of tyrosine in the chemokine receptor

CCR5 is necessary for HIV-1 gp120 mediated entry of HIV
into CD4+ T-lymphocytes (Choe et al., 2003). A detailed under-

standing of the molecular mechanism of tyrosine sulfation is
therefore important for manipulating such modifications, regu-

lating cell signaling and drug development.
Sulfation is catalyzed by the tyrosylprotein sulfotransferase

(TPST) enzymes, which reside inside the Golgi apparatus.
The process involves the transfer of a sulfo-group from a

bound 30-phosphoadenosine-50-phosphosulfate (PAPS) to the

phenol group of tyrosine. In humans, two isoforms, TPST-1
and TPST-2, are found with 64% sequence identity between

them (Teramoto et al., 2013). The functional differences between
the isoforms or the necessity of two such isoforms are not

well-established. Sulfation occurs only on specific tyrosines in

proteins. Even though up to 1% of tyrosines in a cell’s proteome
can be sulfated ( €Onnerfjord et al., 2004), the location of sulfated

tyrosines are not known for many proteins. Hence, neither the
exact role of sulfated tyrosines in these proteins nor the mechan-

ism by which the tyrosines are selected for sulfation is fully

understood. Analysis of the amino acid sequences flanking
sulfated tyrosines suggested some general features such as the

presence of acidic and small residues, absence of disulfide
bonds or glycosylated residues and a reduced number of hydro-

phobic residues in the vicinity of sulfated tyrosines (Rosenquist

and Nicholas, 1993). However, there are also many exceptions
to these general characteristics of sequence specificity. For

example, mutational studies reported an enhanced sulfation
efficiency when tyrosines were flanked by basic residues

(Bundgaard et al., 1997). Therefore, in contrast to other PTMs

such as N-glycosylation, which recognizes structurally available
NX(T/S) triplets (Marshall, 1974), a well-defined sequence spe-

cificity for tyrosine sulfation cannot be established.
Owing to the lack of obvious sequence patterns, sophisticated

statistical tools have been developed to predict potential*To whom correspondence should be addressed.
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locations of sulfation sites in a given protein. Sulfinator

(Monigatti et al., 2002) constructed four different hidden

Markov models to recognize sulfated tyrosine residues depending

on their locations in the sequence: near N-terminal, near

C-terminal, in the center of a window of at least 25 amino

acids and in windows containing multiple tyrosines. In

PredSulSite (Huang et al., 2012), physicochemical properties of

amino acids along with predicted secondary structures and

amino acid sequence order are considered in a supported

vector machine (SVM). The SVM algorithm has also been

applied in another predictor based on predicted secondary struc-

tures and solvent accessible surface area (Chang et al., 2009).

These statistics-based tools work satisfactorily in their test

cases and have been useful in experimental studies of protein

sulfation (Goff et al., 2003; Keykhosravani et al., 2005).

However, these training-based statistical methods depend heavily

on the quality of the training set, such as the coverage and com-

pleteness, which is not the case for the increasing list of sulfated

proteins identified experimentally. As a result, many exceptions

were observed in cases beyond the training sets (Monigatti et al.,

2006; €Onnerfjord et al., 2004), and these methods are also not

transferable to other TPST variants, such as recently discovered

bacterial TPSTs (Han et al., 2012). Most importantly, many of

these methods are sequence-based and the constructed predictors

lack structural or physicochemical insights to the molecular

mechanism of tyrosine selection by TPST enzyme.

Recently, a high-resolution structure of human TPST-2

(Fig. 1A) has been solved at 1.9 Å resolution in complex with a

high-affinity peptide using X-ray crystallography (Teramoto

et al., 2013), making it possible to study the structural and ener-

getic determinants of TPST sulfation specificity. In this work, we

adapt Eris (Yin et al., 2007a), a method developed to compute

protein stability changes on mutations, to estimate the binding

affinities between TPST-2 and various peptide substrates to dif-

ferentiate sulfated and non-sulfated sequences that have been

experimentally verified. We find that the peptide–TPST binding

affinities cannot separate the sulfated and non-sulfated sequences

satisfactorily. Better differentiation is achieved after including

energy costs associated with local unfolding of the tyrosine-

containing peptides in the host protein, which depends on both

the peptide’s secondary structures and solvent accessibility. The

thermodynamic population of the locally unfolded peptides

determines the availability of the peptide for TPST binding

and subsequent catalysis. Therefore, our study suggests that

both the thermodynamics accessibility of a peptide and its

binding affinity to TPST are important for sulfation. The

interplay of these two factors allows a great variety in sequences

and structures of sulfated peptides, where a buried peptide with

well-defined secondary structure might be sulfated if the peptide

undergoes local unfolding, making itself available for enzyme

binding.

2 MATERIALS AND METHODS

2.1 Electrostatic analysis

To determine how the electrostatic interactions guide the peptides to the

protein, the electrostatic potential and force surrounding the protein were

calculated using Delphi (Li et al., 2012) after removing the peptide from

the binding site. The following parameters were used for the calculation:

scale=2.0 grids/Å; grid size 280� 280� 280; and dielectric constants of

2.0 and 80.0 for protein and water environment, respectively. The force

field used for the calculations was AMBER (Lindorff-Larsen et al., 2010).

VMD graphics tool (Humphrey et al., 1996) was used to visualize the

electrostatic surface and field lines.

2.2 Protein–peptide binding affinity

The relative binding affinity of a given peptide with respect to the refer-

ence peptide can be quantified as

""Gbind= Gcomplex � Gprot � Gpep
� �

mut
� Gcomplex � Gprot � Gpep
� �

ref

where the superscript complex denotes the enzyme–peptide complex; prot

and pep refer to the protein and peptide in their unbound states, respect-

ively; the subscript mut denotes mutations of a given peptide with respect

to the reference peptide indicated by the subscript ref. Because the abso-

lute free energy is difficult to measure, the free energy difference between

the folded and unfolded states, i.e. the stability "G, is most commonly

used. The unfolded state of the complex corresponds to the unfolded

protein and peptide, and thus ""Gbind=("Gcomplex–"Gprot–

"Gpep)mut– ("G
complex–"Gprot–"Gpep)ref. Because the protein sequence

is not changing,

""Gbind=""Gcomplex � ""Gpep ð1Þ

Fig. 1. The structure of TPST-2 dimer. (A) The TPST-2 dimer (Teramoto

et al., 2013) with bound substrate peptide (yellow) and PAPS analog.

(B) Electrostatic potential and (C) field lines of the enzyme after removing

the substrate peptide. The binding pocket has a high positive electrostatic

potential, and hence, the peptides with net negative charge can be driven

into the pocket by electrostatic interactions
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where ""Gcomplex and ""Gpep refer to the mutation-induced stability

changes for the complex and peptide, respectively.

2.3 Estimation of stability change on mutations

We used Eris to estimate the stability changes on mutations (Yin et al.,

2007a). Eris uses the backbone-dependent rotamer library to model

protein side-chain conformations (Dunbrack and Cohen, 1997). Given

the vast side-chain rotameric space, the optimal packing was searched via

a Monte Carlo-based simulated annealing algorithm, where the rotameric

space of side chains was sampled according to the Metropolis criteria and

the simulation temperature is gradually reduced till the acceptance rate is

below a pre-defined threshold. The stability of a given sequence and

corresponding structural conformation was evaluated with the Medusa

force field (Ding and Dokholyan, 2006), which includes van der Waals,

solvation, hydrogen bonds, electrostatics, statistical potential for back-

bone-dependent amino acid identity and rotamer and reference energy for

the unfolded states. The atom types and corresponding van der Waals

interaction parameters were taken from CHARMM (Brooks et al., 1983).

The solvation energy was approximated by the Lazaridis–Karplus impli-

cit solvent model (Lazaridis and Karplus, 1999). The distance- and angle-

dependent hydrogen bond interaction parameters were adapted from

Kortemme and Baker (2002). We used the Debye–H €uckel approximation

to model the screened charge–charge interactions at the physiological

condition, namely pH� 7 and salt concentration �0.1M, and the

corresponding Debye length was �10 Å. The weights for different

energy terms and the reference energy of unfolded state were determined

by recapitulating the native amino acid sequence of a set of high-

resolution protein structures (Yin et al., 2008).

Owing to the stochastic nature of the simulated annealing algorithm,

multiple simulations were often performed to compute the average

stability of a given sequence. We used the PDB structure of 3AP1

(Teramoto et al., 2013) to model the bound complexes (Fig. 2A).

We chose a nine-residue window with the sulfated tyrosine as the sixth

residue similar to the reference peptide in the crystallography structure. It

has been experimentally shown that these flanking residues are important

for both TPST binding and catalysis (Lin et al., 1992). For a given

mutation, 100 independent simulations were performed for both the

native and mutant protein (or protein–peptide complex). The stability

was estimated as the average value over all simulations, and the

mutation-induced stability change was then obtained as the difference

between mutant and wild type.

2.4 Positive and negative datasets

To test whether a parameter can be used to differentiate the sulfated and

non-sulfated proteins, we compiled a list of experimentally verified

sulfated peptide/proteins (positive dataset) and a list of non-sulfated

peptide/proteins (negative dataset). For the positive dataset, we collected

a list of 160 non-redundant tyrosine-sulfated peptide/proteins by combin-

ing both Sulfinator (Monigatti et al., 2002) and dbPTM (Lu et al., 2012)

datasets, which were extracted from the UniProt database (Bairoch et al.,

2005). Many proteins had more than one sulfated tyrosine. Similarly,

based on Sulfinator, a list of 159 peptide–proteins was constructed for

the secreted proteins that do not undergo sulfation.

2.5 Secondary structures and relative solvent accessibility

predictions

We used the NetSurfP (Petersen et al., 2009), a protein surface accessi-

bility and secondary structure prediction web-server, to estimate a

peptide’s structural propensity in terms of relative solvent accessibility,

Prsa, and various secondary strucutres, P�, P� and Pcoil. A benchmark

study by the developers (Petersen et al., 2009) indicated that the

prediction accuracy of NetSurfP is comparable with other best publicly

available methods. With the input of the sequence of a host protein, the

profiles of relative solvent accessibility and secondary structures—�-helix,

�-sheet and random coil—were obtained for all residues. We computed

the average propensities, P�, P�, Pcoil and Prsa, over the nine-residue

window around a given tyrosine of interest.

2.6 Z-score and Z-score minimization

For a given parameter �, derived for both the sulfated and non-sulfated

sequences, we defined the Z-score:

Z=
h�isulfated � h�inonsulfated
� �ð Þsulfated+� �ð Þnonsulfated

ð2Þ

where �� is the standard deviation. The averaging was done separately for

all peptides belonging to sulfated and non-sulfated datasets. The Z-score

quantifies the separation between the �-value distributions of the two

datasets.

Fig. 2. The estimation of protein–peptide binding affinity. (A) The struc-

ture of the reference nine-residue peptide in the TPST-2 binding pocket as

obtained from X-ray crystallography structure, with the sulfated tyrosine

positioned as the sixth residue (Y0). The neighboring residues and their

positions (superscript) relative to the tyrosine are also marked. (B) The

probability density of peptide–enzyme binding scores (""Gbind) for the

peptides both sulfated and non-sulfated peptides
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To determine the coefficients E�, E� and Ersa in the effective energy

Eeff, we minimized the Z-score of Eeff using a Monte Carlo-based simu-

lated annealing. We gradually decreased the Monte Carlo temperature,

and at each temperature multiple rounds of perturbations of the coeffi-

cients were applied. The acceptance or rejection of perturbations was

determined according to the Metropolis criteria. As the Monte Carlo

temperature approaches zero, the Z-score was minimized stochastically.

Multiple independent simulations with different random seeds were per-

formed to ensure the convergence.

3 RESULTS

The TPSP-2 enzyme has an N-terminal cytoplasmic domain, a
transmembrane domain anchoring the protein in the Golgi mem-
brane, a putative stem region and a luminal domain that cata-

lyzes the tyrosine sulfation (Teramoto et al., 2013). The protein
exists as a homodimer and the structure of the catalytic domain
has been solved recently in its dimeric form (Teramoto et al.,

2013) (PDB ID: 3AP1, Fig. 1A). The peptide binds to a well-
defined deep pocket, a part of which is at the inter-monomer
interface (Fig. 1A).

3.1 The role of electrostatics in peptide binding

The peptide-binding pocket of the enzyme is rich in positively

charged residues. Electrostatics analysis using Delphi (Li et al.,
2012) (see Section 2) indicates that the electrostatic potential near
the binding pocket is highly positive (Fig. 1B). Even more, the

electrostatic field lines form an electrostatic funnel, which
can drive a negatively charged substrate toward the pocket
(Fig. 1C). Many sulfated peptides have a net negative charge,

typically originating from acidic groups positioned near the tyro-
sine. For example, in many cases the sulfated tyrosines are
flanked by two acidic residues, providing local net charge of

–2e. This feature was believed to be a necessary requirement
for all sulfated tyrosines (Hortin et al., 1986). The more recent
discovery of sulfated tyrosines not flanked by acidic residues has

called into question this requirement (Bundgaard et al., 1997).
However, the net negative charge may still be present because of
more distant acidic residues. The observation that TPSP dimer

forms such a prominent positive electrostatic patch at the dimer
interface suggests that electrostatic interactions between the
TPSP and the peptide are an important feature for the binding
and perhaps for the specificity of the recognition. To reveal the

interplay between binding affinity and specificity, we use the
protein–peptide complex structure to estimate the binding affi-
nities of both sulfated and non-sulfated peptides to investigate

the specificity of TPST recognition.

3.2 Protein–peptide binding energy

In the complex structure, the peptide conformation is stabilized
by several hydrogen bonds with the enzyme, including both

backbones and side chains (Fig. 1A) (Teramoto et al., 2013).
To be catalyzed by the enzyme, a substrate peptide has to
assume an appropriate conformation in the pocket such that
specific TPST–peptide interactions can be established.

Therefore, it is expected that the corresponding binding affinity
would vary significantly with the amino acid sequences, which in
turn would be crucial for the selectivity of peptide sequences for

TPST sulfation. Because it is difficult to estimate the absolute

value of binding affinity "G, we computed the change in

binding affinity, ""Gbind, due to mutations with respect to the

reference peptide in the X-ray crystallography structure of the

TPST–peptide complex (see Section 2). We use Eris (Yin et al.,

2007a) to estimate the stability changes on mutations, where the

inter-atomic interactions is modeled with the Medusa force field

(Ding and Dokholyan, 2006). The Medusa force field includes

major physical interactions that govern the binding between

peptide and receptor, including van der Waals, solvation, hydro-

gen bonds and electrostatics (see Section 2). The Eris/Medusa

method has been shown efficient in recapitulating protein stabil-

ity changes on mutations with a high correlation between pre-

dictions and experimental measurements (Yin et al., 2007a, b).

For the peptides, a window of nine residues is used with the

tyrosine of our interest at the sixth position as for the reference

peptide in the complex structure (Fig. 2A).
We first test whether the peptide-binding affinity is the driving

force for tyrosine sulfation by TPST. We constructed a list of

sulfated and non-sulfated proteins that are experimentally vali-

dated (see Section 2). If the peptide-binding energy is the deter-

minant for the TPST sulfation specificity, the sulfated sequences

should have stronger affinities or lower binding energies than the

non-sulfated sequences. We compute the probability densities of

the Eris-derived relative binding affinity ""Gbind for sulfated and

non-sulfated sequences (Fig. 2B). As expected, the sulfated

sequences, in general, have lower ""Gbind values compared

with the non-sulfated sequences. Thus, the peptide-binding affin-

ity plays a crucial role in the sulfation selection process.

However, it is also clear from Figure 2B that a significant

separation of the two sets of sequences is not achieved on the

basis of ""Gbind values alone. To quantify the separation of two

datasets, the standard score (i.e. Z-score, see Section 2) is

calculated to determine if the separation of two Gaussian-like

distributions is statistically significant. Z-score quantifies the

separation with respect to the standard deviations. A larger

absolute Z-score value indicates a more significant separation

of the two distributions. The Z-score for the two distributions

is –0.83, indicating that the separation is within one standard

deviation and thus two datasets are not well-separated according

the peptide-binding affinity alone. Thus, even though the binding

affinity plays an important role in the selection process, there are

additional factors that contribute to the selection of tyrosines by

TPST.

3.3 Local unfolding of the tyrosine-containing peptide

It has been reported that many of the tyrosines that undergo

sulfation are positioned in unstructured regions of the host

protein, although some sulfated peptides contain ordered second-

ary structures (Chang et al., 2009; Huang et al., 2012). In their

native structures, peptides that fold into �-helix or �-sheet
structures in the host protein would not be able to fit into the

TPST binding pocket (Figs 1 and 2A). In other words, these

peptides with well-defined secondary structures would need to

locally unfold to bind to the enzyme. The unfolding of secondary

structures requires energy, making the binding less favorable.

Additionally, to bind to the enzyme, the peptide segment also

needs to break tertiary contacts, if any, with respect to the rest of

the host protein. The energy cost associated with losing these
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tertiary contacts also makes the recognition by the enzyme

unfavorable. The number of tertiary contacts is inversely

proportionally to the solvent-accessible surface area (Ding

et al., 2012). Next, we examine the secondary structures and

solvent accessibility of the sulfated and non-sulfated peptides in

the corresponding host proteins.
The majority of proteins in the UniProt datasets do not have

experimentally determined 3D structures available. As a result,

the secondary structures and solvent accessibilities of the

peptides in our sulfated and non-sulfated datasets cannot be

derived directly from the structure of their host proteins. On

the other hand, bioinformatics tools have been developed to

predict protein secondary structures and solvent accessibility

from sequences with significant accuracy. We use the web-server

NetSurfP (Petersen et al., 2009) to estimate the propensity of a

peptide in terms of relative solvent accessibility, Prsa, and second-

ary structure elements, P�, P� and Pcoil (See Section 2). We find

that compared with the non-sulfated sequences the sulfated ones

tend to have weaker propensities for ordered secondary struc-

tures (Fig. 3A and B), and consequently higher propensity for

random coils (Fig. 3C), although the differences are relatively

small with major overlaps of the distributions. Similarly, as

expected, the sulfated sequences also have slightly higher prob-

ability to be solvent-exposed than those non-sulfated sequences

(Fig. 3D). Therefore, local unfolding of the peptide in the host

protein—including both unfolding of the ordered secondary

structures and losing tertiary contacts with respect to the rest

of the protein, the energy cost of which is inversely proportional

to the solvent accessibility—is also important for the recognition

of the tyrosine-containing peptide by TPST. The thermodynamic

population of the locally unfolded peptides, determined by the

energy cost, is available to bind the enzyme. Similar partial

unfolding of protein substrates has also been observed for

proteolytic cleavage of proteins (Hubbard et al., 1994) as well

as for both N- (Marshall, 1974) and O-glycosylation (Hansen

et al., 1998) sites.

3.4 An effective energy for sulfation

Our analysis above suggests that the thermodynamic availability

of the peptide—i.e. the probability of the peptide to be locally

unfolded and thus accessible for enzyme binding—is also import-

ant for TPST sulfation (Fig. 4A). We propose a simple energy

cost function for local unfolding of the peptide,

E�P�+E�P� –ErsaPrsa, where the coefficients E� and E�
are the energy costs for the unfolding of �-helix and

�-sheet, respectively. The coefficient Ersa corresponds to the

energy cost for losing tertiary contacts. Thus, the total

effective energy for TPST sulfation can be approximated as

Eeff=E�P�+E�P� –ErsaPrsa+""Gbind+C, where C is an ar-

bitrary reference coefficient.
We parameterize the coefficients E�, E� and Ersa by minimiz-

ing the Z-score of Eeff values between the sulfated and non-

sulfated datasets (see Section 2), E�=19.1kcal/mol,

E�=24.7kcal/mol and Ersa=7.5kcal/mol. We notice that

these energy coefficients are physically sound. For instance, if

all the nine residues of the peptide are forming a helix, the

average energy cost for breaking a backbone hydrogen bond

on unfolding would be �2kcal/mol, which is close to the esti-

mated energy of a single hydrogen bond (Deechongkit et al.,

2004). The distributions of Eeff for sulfated and non-sulfated

datasets are shown in Figure 4B. Compared with ""Gbind, the

separation between the two datasets with the effective sulfation

Fig. 4. Effective sulfation energy. (A) A schematic of tyrosine sulfation

where the tyrosine-containing peptide is structured and/or buried. For the

sulfation to occur, substrate protein undergoes a local unfolding around

the sulfated tyrosine. (B) The probability density of the effective binding

energy Eeff for sulfated and non-sulfated sequences. Eeff separates the two

sets of sequences more effectively, compared with ""Gbind (Fig. 3B). The

reference coefficient C of Eeff is chosen as –14.6 kcal/mol so that the two

distributions intersect around zero. The Z-score between the two distri-

butions is –1.03

Fig. 3. Secondary structures and solvent accessibility of peptides in host

proteins. The normalized probability density of peptides in the dataset

used, with respect to their propensities to form �-helix, �-strand and

random coil secondary structures, and their relative solvent accessibility
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energy is significantly improved with the Z-score decreased from

–0.83 to –1.03. Therefore, with the effective sulfation energy Eeff

the distributions of the sulfated and non-sulfated sequences are

now separated by approximately one standard deviation.
Our results suggest that the substrate peptide’s structural prop-

erties in the host protein and its binding affinity to the enzyme

are both important for the recognition by TPST. One interesting

question is which term in the effective energy contributes the

most in differentiating the two datasets. To answer this, we com-

pute the Z-score for each term separately. The values for the

peptide-binding energy ""Gbind, propensities of �-helix P�,

�-sheet P� and relative solvent accessibility Prsa in the host

proteins, are –0.83, –0.23, –0.29 and 0.42, respectively.

Therefore, the peptide-binding affinity plays a major role for

TPST specificity while the thermodynamic availability of the

peptide in its host protein also plays a significant role. These

two factors together determine the TPST sulfation specificity,

resulting into great variations in both sequences and structures

of the sulfated proteins.
A better separation between sulfated and non-sulfated

sequences with Eeff than other parameters allows us to use Eeff

as the predictor to estimate whether a peptide is potentially

sulfated. The Eeff distributions of sulfated and non-sulfated

proteins are both Gaussian-like (Fig. 4B). We choose a cutoff

value Ec corresponding to the intersection of these two distribu-

tions such that a protein has a high probability of being sulfated

than non-sulfated if Eeff5Ec. We set the reference coefficient C

of Eeff as –14.6 kcal/mol so that Ec=0. As a result, the error

rates for both sulfated (i.e. sulfated proteins with Eeff40) and

nonsulfated (i.e. non-sulfated proteins with Eeff50) equal to

�15%. Using the same datasets, we compare the performance

of our method with respect to two existing sulfation prediction

servers, Sulfinator (Monigatti et al., 2002) and PredSulSite

(Huang et al., 2012). Sulfinator successfully predicts 126 of 160

sulfated and 155 of 159 non-sulfated sites, resulting in error rates

of �21 and �2.5%, respectively. PredSulSite succeeds in predict-

ing 94 of 160 sulfated and 158 of 159 non-sulfated sites, and thus,

the corresponding error rates are �41 and �0.6%. Interestingly,

both Sulfinator and PredSulSite have a high success rate for non-

sulfated sequences but with a sacrifice of the success rate for

sulfated sequences. On average, our structure-based method

has similar prediction accuracy as these statistics-based tools

with a better prediction of the sulfated sequences. Next, we

examine the applications of effective sulfation energy Eeff in

two case studies that are not included in the datasets.

3.5 Sulfated tyrosines in HIV-1 antibodies

Two human monoclonal HIV antibodies, 412d and 47e, have

been identified and purified from patients. The antibodies con-

tain sulfated tyrosines in their variable loops (i.e. CDR3) that

compete with the sulfated CCR5 receptor for the glycoprotein

gp120 of HIV-1. It has been shown that tyrosine sulfation is

critical for both antibody binding and the efficiency of the

viral infection (Choe et al., 2003; Farzan et al., 1999).

Antibody 412d has four tyrosines (Y96, Y100, Y100c and

Y100l, Table 1) in the CDR3 loop, and antibody 47e has three

tyrosines (Y100a, Y100g and Y100h) in the loop. The question is

which tyrosine or tyrosines are sulfated by TPST.

We compute for each tyrosine the corresponding nine-residue
peptide’s relative binding affinities, ""Gbind, and also the effect-
ive sulfation energy Eeff (Table 1). Because all tyrosines are pos-
itioned in the variable loop, the correction of Eeff compared with

""Gbind is relatively small. For antibody 47e, Y100a has the
lowest ""Gbind among the three tyrosines and corresponds to
the only one with Eeff 50, suggesting Y100a has been sulfated

by TPST. The corresponding values are also consistent with
other sulfated sequences, suggesting that Y100a is sulfated
(Figs 2B and 4B). The result is consistent with mutagenesis ex-

periments (Choe et al., 2003). For antibody 412d, we find that
Y100c has significantly lower values of ""Gbind and Eeff than
other three tyrosines, and the corresponding negative Eeff value

suggests that it is sulfated. However, mutagenesis experiment
found that Y100 is also sulfated in addition to Y100c. The
unfavorable ""Gbind and Eeff values of Y100 in our calculations

are caused by its upstream proline residue P97, which has strong
preference for the backbone dihedral angles. The particular
proline residue is not compatible with the backbone conform-

ation of the TPST–ligand complex, resulting in an unfavorable
conformation. The artifact can be resolved by modeling the
backbone conformational flexibility, whose accurate and rapid
characterization is still computationally challenging and is the

subject for the future studies. Taking together, our method can
be used to predict the potential sulfation sites although there is
room for improvement.

3.6 Sulfation efficiency

Incomplete sulfation is often observed for many sulfated
proteins. For example, gastrin, a regulator of gastric acid secre-
tion for digestion, is partially sulfated (Bundgaard et al., 1997).

Systematic mutagenesis studies have been applied to understand
the sequence dependence of the sulfation efficiency, where the
extent of sulfation was measured for many mutants with muta-
tions around the sulfated tyrosine (Bundgaard et al., 1997). The

extent of sulfation measurement is more quantitative than
the all-or-none descriptions of the sulfated and non-sulfated

Table 1. The relative binding energy ""Gbind and the effective sulfation

energy Eeff are computed for different tyrosines of interest for HIV anti-

bodies, 412d and 47e

Antibody Index ""Gbind E�P� E�P� –ErsaPrsa Eeff

47e Y100a –1.51 0 0 –2.94 –19.05

Y100g 24.54 0 0 –2.61 7.33

Y100h 22.21 0 0 –2.39 5.22

412d Y96 31.60 0 10.99 –1.76 26.23

Y100 25.59 0 0 –2.83 8.16

Y100c 7.03 0 0 –3.01 –10.58

Y100l 28.62 0 2.75 –1.65 15.12

Note: The unit is kcal/mol. The contributions of secondary structure unfolding and

solvent exposure are also shown. The sequence of the variable loop, CDR3, in the

antibody 47e is GGEDGDYLSDPFYYNHGMDVW, where the examined tyro-

sines are 100a, 100g and 100h, shown in boldface and underlined. The CDR3

sequence of the antibody 412d is YCASPYPNDYNDYAPEEGMSWYFDL,

where the examined tyrosines are 96, 100, 100C and 100L. The experimentally

validated tyrosines that undergo sulfation are highlighted using boldface font.
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datasets. In addition to the descriptive insight of the sequence

dependence of sulfation efficiency derived from the previous

mutational studies, a more quantitative analysis is necessary.

We hypothesize that the extent of sulfation should depend on

both the thermodynamic availability of the peptide and the

peptide-binding affinity, which are described by the effective

sulfation energy, Eeff. We postulate that the sulfation efficiency

should monotonically decrease with respect to the sulfation

energy. For wild type and mutant gastrin (see Supplementary

Table S1 for the list of mutations), we compute the ""Gbind

and Eeff and presented the scatterplot with respect to the

sulfation efficiency in Figure 5. Although many mutations are

single-amino acid substitutions, some mutations induce changes

in secondary structure propensities, and thus significantly affect

the energy cost for local unfolding with respect to the host

protein. As a result, we observe a significant difference between

""Gbind and Eeff in terms of correlation with respect to sulfation

efficiency. As expected, we find a better correlation between the

sulfation efficiency and Eeff than that of ""Gbind. Using a linear

regression, we find that absolute value of the correlation

coefficient is improved from 0.31 for ""Gbind to 0.53 for Eeff.

Owing to inaccuracies in both experimental measurements and

computational estimation of the effective energy, we do not

expect a perfect correlation. Moreover, we also do not expect a

linear correlation between the extent of sulfation and the sulfa-

tion energy for a wide range of energies, although the linear

approximation can exist within a certain energy window.

Therefore, the independent test suggests that the simple effective

energy of sulfation can be used to predict the sulfation efficiency

in incomplete sulfation.

3.7 TPST-1 isoform

Our estimation of relative peptide-binding affinity is based on

the structure of TPST-2. The question is whether TPST-1 and

TPST-2 have different binding affinities with respect to a given

peptide. Because the sequence identity between two isoforms is

64% (sequence similarity is �78%), we expect their structures

are highly similar to each other. We align the two sequences and

build the homology model for TPST-1 using TPST-2 as the

template (Fig. S1). We find that the peptide-binding pocket is

almost identical for both isoforms with only two mutations near

the N-terminal of the peptide (Supplementary Fig. S1B). One of

the mutations is arginine to lysine, which maintains the charge.

Therefore, we postulate that a peptide would have similar bind-

ing affinities with respect to TPST-1 and TPST-2. To test this

hypothesis, we calculated the relative binding affinities ""Gbind

of HIV-1 antibodies and gastrin mutants to TPST-1 using the

homology model. The ""Gbind values of TPST-1 and TPST-2

highly correlate with each other with the Pearson correlation

coefficient r=0.98 (see the scatterplot in Supplementary Fig.

S2). The slope of a linear fit is 1.07 with an offset of 0.28,

suggesting that peptides have similar binding affinities to the

two isoforms. Because other terms in the effective sulfation

energy depend only on the structure of a substrate protein

instead of the receptor, we expect that the effective sulfation

energies Eeff with respect to the two isoforms are also similar,

and thus no significant differences in terms of binding specificity

and the sulfation specificity are observed.
In summary, using structure-based molecular modeling

approaches, we have identified both structural and energetic

determinants for TPST sulfation specificity. Our results suggest

that both the thermodynamic availability of the peptide in a host

protein and its binding affinity to the enzyme are important for

TPST sulfation specificity. The thermodynamic availability of a

peptide is determined by the energy cost of peptide local unfold-

ing, where the peptide loses both tertiary and secondary

interactions that stabilize its native structure in the host protein.

The binding of the peptide by TPST is determined by its inter-

actions with the residues in the binding pockets. The interplay of

both peptide thermodynamic availability and enzyme-binding

affinity in determining the TPST sulfation specificity leads to

great variety in sulfated sequences and structures. We have

developed an effective sulfation energy function that combines

both the energy cost for peptide local unfolding and the binding

affinity. Case studies suggest that the simple sulfation energy

function can be used to predict the potential sulfation sites and

the sulfation efficiency for incomplete sulfation. The benchmark

study indicates that the predictive power of our structure-based
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Fig. 5. Correlation between sulfation efficiency and sulfation energy.

(A) The scatterplot of the experimentally determined sulfation efficiency

and computed relative peptide-binding affinity ""Gbind for gastrin and its

13 mutants. Two quantities show weak correlation, with a Pearson cor-

relation coefficient of –0.31. (B) Better correlation is achieved by using

effective sulfation energy Eeff in which energy costs for unfolding and

desolvation are incorporated. The correlation coefficient is improved

to –0.53
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sulfation predictor is comparable with other statistics-based tools
with a better positive sulfation-predication rate. Besides the
dependence of structural availability, the major differences
between structure-based and statistics-based methods include

computational efficiency and transferability. Owing to a large
number of calculations of inter-atomic interactions in our
structure-based method, the statistics-based methods are often

computationally more efficient. However, as our method is
based on physical interaction, we expect it to be transferable
to other applications, such as estimating the effect of mutations

in the TPST enzyme on sulfation specificity and sulfation pre-
diction for other TPST variants, including the recently discov-
ered bacterial TPSTs. (Han et al., 2012). We also expect that the

proposed sulfation mechanism is also applicable to other post-
translational modification systems where the sequence or struc-
tural specificities are not well-defined.
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