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Background: Tomosyn-2 is an inhibitor of insulin secretion.
Results: Glucose induces phosphorylation, ubiquitination, and degradation of tomosyn-2. Hrd-1 is an E3-ligase responsible for
tomosyn-2 degradation.
Conclusion: We identified a novel mechanism whereby pancreatic �-cells degrade an inhibitor of insulin secretion.
Significance: Inability of �-cells to degrade tomosyn-2 upon activation will lead to reduced insulin secretion and contribute to
the pathogenesis of type 2 diabetes.

The abundance and functional activity of proteins involved in
the formation of the SNARE complex are tightly regulated for
efficient exocytosis. Tomosyn proteins are negative regulators
of exocytosis. Tomosyn causes an attenuation of insulin secre-
tion by limiting the formation of the SNARE complex. We
hypothesized that glucose-dependent stimulation of insulin
secretion from �-cells must involve reversing the inhibitory
action of tomosyn. Here, we show that glucose increases
tomosyn protein turnover. Within 1 h of exposure to 15 mM

glucose, �50% of tomosyn was degraded. The degradation of
tomosyn in response to high glucose was blocked by inhibitors
of the proteasomal pathway. Using 32P labeling and mass spec-
trometry, we showed that tomosyn-2 is phosphorylated in
response to high glucose, phorbol esters, and analogs of cAMP,
all key insulin secretagogues. We identified 11 phosphorylation
sites in tomosyn-2. Site-directed mutagenesis was used to gen-
erate phosphomimetic (Ser3Asp) and loss-of-function (Ser3
Ala) mutants. The Ser 3 Asp mutant had enhanced protein
turnover compared with the Ser 3 Ala mutant and wild type
tomosyn-2. Additionally, the Ser3Asp tomosyn-2 mutant was
ineffective at inhibiting insulin secretion. Using a proteomic
screen for tomosyn-2-binding proteins, we identified Hrd-1, an
E3-ubiquitin ligase. We showed that tomosyn-2 ubiquitination
is increased by Hrd-1, and knockdown of Hrd-1 by short hairpin
RNA resulted in increased abundance in tomosyn-2 protein lev-
els. Taken together, our results reveal a mechanism by which
enhanced phosphorylation of a negative regulator of secretion,
tomosyn-2, in response to insulin secretagogues targets it to
degradation by the Hrd-1 E3-ubiquitin ligase.

Plasma glucose is the major determinant of insulin secretion
from pancreatic �-cells. The secretion of insulin in response to
glucose is biphasic (1–3). Glucose enters �-cells via the glucose

transporter type 2. Once inside the cell, glucose is metabolized
to yield an increase in the ATP:ADP ratio, which leads to clos-
ing of K-ATP channels, membrane depolarization, and opening
of the voltage-dependent calcium channels. The subsequent
increase in cytosolic free calcium causes insulin granules to fuse
to the plasma membrane in a soluble N-ethylmaleimide-sensi-
tive attachment protein receptor (SNARE)-dependent manner
and release insulin into the bloodstream. This K-ATP channel-
dependent first phase of secretion occurs from a relatively small
pool of readily releasable granules. Glucose stimulates the sec-
ond phase of insulin secretion by activating K-ATP channel-
independent amplifying pathways (4).

The insulin granule is mobilized from a reserve pool of gran-
ules and ultimately fuses with the plasma membrane through
the formation of the SNARE complex. The SNARE complex is
formed between the plasma membrane proteins, syntaxin and
SNAP-25, and the insulin granule protein, VAMP-2/synapto-
brevin. Another vesicle-bound protein, synaptotagmin, upon
Ca2� binding, accelerates the last step in the fusion of two
membranes by promoting SNARE complex formation (5). Each
step in exocytosis is spatially and temporally regulated by sev-
eral accessory proteins that undergo protein-protein interac-
tions to affect the rate of formation of the SNARE complex and
exocytosis. Phosphorylation/dephosphorylation of the SNARE
and SNARE-interacting proteins regulates protein-protein
interactions and modulates SNARE assembly during exocytosis
(6).

Tomosyn-1 and tomosyn-2 are important regulators of the
SNARE complex and predominantly function to inhibit exocy-
tosis (7, 8). Overexpression of either tomosyn-1 or tomosyn-2
inhibits insulin secretion from pancreatic �-cells (9 –11). Addi-
tionally, tomosyn-1 inhibits regulated secretion from other cell
types such as neurons and chromaffin cells (11, 12). Knock-
down of tomosyn-1 in mouse neurons (13) and Caenorhabditis
elegans enhances synaptic transmission (14). In bovine chro-
maffin cells, tomosyn-1 inhibits exocytosis by decreasing the
degree of depletion and replenishment of dense core vesicles
(15).
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Tomosyn-1 and tomosyn-2 are syntaxin-1A-binding pro-
teins. Their inhibitory effect on exocytosis was attributed to the
C-terminal R-SNARE domain. However, this model has under-
gone several revisions. The N-terminal domain of tomosyn-1,
which makes up 90% of the protein, is required for the inhibi-
tory effects of tomosyn-1 on exocytosis (8, 11). An N-terminal
region deletion mutant of tomosyn-1 was able to bind syn-
taxin-1A but lacked the ability to inhibit exocytosis (16). Addi-
tionally, a tomosyn-1 fragment lacking the R-SNARE domain
was able to attenuate exocytosis (16). The N-terminal domain
of tomosyn-1 binds and inhibits synaptotagmin-1-mediated
neurotransmitter release (17). Recently, Williams et al. (18)
demonstrated that fragments containing loop 1 (537–578
amino acids) or loop 3 (933–955 amino acids) deletions in the
N-terminal region of tomosyn-1 were able to bind syntaxin-1A
by the R-SNARE domain but failed to inhibit exocytosis. Together,
this suggests that the N-terminal domain in tomosyn-1 and, by
extension, tomosyn-2 plays a critical role for imparting the inhib-
itory effects on exocytosis.

The N-terminal domain of tomosyn-1 contains a hypervari-
able region (HVR),2 between amino acids 702 and 822. This is
the least conserved region between isoforms of tomosyn-1 and
tomosyn-2 (19). A protein kinase A (PKA) phosphorylation site
at serine 724, was identified in the HVR of tomosyn-1 (20).
Phosphorylation of this residue decreases the inhibitory func-
tion of tomosyn-1, leading to an increase in exocytosis (20).
Additionally, tomosyn-1 is SUMOylated at lysine 730 in the
HVR (18). SUMOylation of tomosyn-1 also reduces its abil-
ity to inhibit exocytosis. Post-translational modifications in
the HVR of tomosyn-1 suggest an important regulatory role
of this region.

We previously positionally cloned tomosyn-2 as a gene
underlying a diabetes susceptibility locus in an F2 intercross of
the C57BL/6 and BTBR mouse strains (10). Islets from con-
genic mice carrying the BTBR allele of tomosyn-2 (harboring an
S912L mutation) had an attenuated response to stimulation of
insulin secretion compared with islets carrying the C57BL/6
allele. This reduction in secretion was observed in the pres-
ence of normal levels of tomosyn-1, suggesting a nonover-
lapping role of tomosyn-1 and tomosyn-2 in inhibiting insu-
lin secretion.

Here, we describe a novel mechanism whereby insulin
secretagogues enhance turnover of tomosyn-2 as part of a
mechanism to stimulate insulin secretion. We identify phos-
phorylation sites in tomosyn-2 that respond to insulin secre-
tagogues and an E3-ubiquitin ligase that targets tomosyn-2
for degradation.

EXPERIMENTAL PROCEDURES

Antibodies and Chemicals—Insulin was measured with an
in-house ELISA using an anti-insulin antibody from Fitzgerald
Industries. Antibodies used to perform experiments were as
follows: mouse anti-Myc antibody from Millipore; mouse

anti-V5 antibody from Invitrogen; rabbit anti-tomosyn from
Synaptic Systems; rabbit anti-ubiquitin from Cell Signaling
Technology; and rabbit anti-Hrd-1 from ProteaTech. Mouse
and rabbit secondary antibodies were purchased from Cell Sig-
naling Technology. MG132 and cycloheximide were purchased
from TOCRIS. Glutathione 4B-Sepharose beads were pur-
chased from GE Healthcare.

Expression Constructs—Moloney murine leukemia virus-
based retroviral vector (RVV, 3051) (gift from Dr. Bill Sugden,
University of Wisconsin, Madison) containing a multiple clon-
ing site-internal ribosomal entry site-GFP was used to generate
b-tomosyn-2-V5-RVV construct for expression studies. The
pCR-Script-xb, -b, -m, and s-tomosyn-2 constructs were gen-
erously provided by Dr. Alexander Groffen, Virije Universitet,
Netherlands. The tomosyn-2 cDNA from these vectors was
used for subsequent subcloning. The WT-b-tomosyn-2-V5-
RVV was generated by using Gibson cloning methodology.
Subsequently, Ser 3 Ala-11mut-b-tomosyn-2-V5-RVV and
Ser3 Asp-11mut-tomosyn-2-V5-RVV constructs, referred to as
Ser 3 Ala and Ser 3 Asp, respectively, were generated form
WT-b-tomosyn-2-V5-RVV by performing standard site-directed
mutagenesis. For phospho-proteomics studies and tomosyn-2
binding studies, the tomosyn-2-pcDNA/TO/myc-His was gener-
ated by subcloning a PCR-amplified tomosyn-2 cDNA into
5�-BamHI and 3�-XhoI sites of the pcDNA4/TO/myc-His C
vector (Invitrogen). The following primers were used to amplify
tomosyn-2 cDNA with the restriction sites for cloning, a partial
KOZAK, and a 3�-precision protease cleavage site: forward (5�-
TTAAAGGATCCGCCACCATGAAGAAGTTTAATTT-
CCG) and reverse (5�-ATATCTCGAGGGGCCCCTGGAAC-
AGAACTTCCAGGAACTGGTACCACTTCTTATCCT).
Wild type and dominant negative Hrd-1 plasmids were gift
from Dr. Deyu Fang. Ubiquitin, sh-Hrd-1, and control sh-
Hrd-1 plasmids were gifts from Dr. Alan Weisman.

Cell Culture, Transfection, and Insulin Secretion—The glu-
cose-responsive rat �-cell line, INS1 (832/13), a gift from Dr.
Chris Newgard, Duke University, was cultured in RPMI 1640
medium containing 11 mM glucose supplemented with 10%
heat-inactivated fetal bovine serum, 2 mM L-glutamine, 1 mM

sodium pyruvate, 10 mM HEPES, 100 units/ml antibiotic/anti-
mycotic, and 50 �M �-mercaptoethanol. Approximately
100,000 cells/well were plated in a 96-well plate. The following
day, cells at 80 –90% confluency were transfected with 0.4 �g of
plasmid DNA using Lipofectamine 2000 (Invitrogen). After
36 h of incubation, cells were washed once with 200 �l and
incubated for 2 h in 100 �l of modified Krebs-Ringer bicarbon-
ate buffer (KRB: 118.41 mM NaCl, 4.69 mM KCl, 1.18 mM

MgSO4, 1.18 mM KH2PO4, 25 mM NaHCO3, 20 mM HEPES,
2.52 mM CaCl2, pH 7.4, and 0.2% BSA) containing 1.5 mM glu-
cose. After 2 h, cells were stimulated for 2 h in 100 �l of KRB
buffer containing 3 mM glucose � 3 mM 8-bromo (Br)-cAMP.
The incubation buffer was collected to determine the amount
of insulin secreted under varying conditions. The cells were
lysed (lysis buffer: 1 M Tris-HCl, pH 8.0, 1 M NaCl, 0.5 M NaF,
200 mM Na3VO4, 2% Nonidet P-40, and protease inhibitor mix-
ture tablet (Roche Applied Science)) to determine insulin con-
tent. The percent fractional insulin secretion was calculated as

2 The abbreviations used are: HVR, hypervariable region; RVV, retroviral vec-
tor; TPA, phorbol ester; CaMKII, calcium/calmodulin-dependent protein
kinase II; UPP, ubiquitination-proteasome pathway; 8-Br-cAMP, 8-bromo-
cyclic AMP.
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the amount of insulin secreted divided by the total insulin of the
cell. Insulin concentration was determined via ELISA.

The human embryonic kidney 293FT cells (HEK293FT) were
cultured in Dulbecco’s modified Eagle’s medium (DMEM) con-
taining 25 mM glucose supplemented with 10% fetal bovine
serum, 0.1 mM nonessential amino acid, 6 mM L-glutamine, 1
mM sodium pyruvate, 100 units/ml penicillin, 100 units/ml
streptomycin, and 500 �g/ml geneticin. HEK293FT cells at
70 – 80% in 100-mm tissue culture dishes were transfected with
plasmid DNA constructs using 40 �l of 1 mg/ml polyethylenei-
mine. The following day, cells were lysed (lysis buffer: 20 mM

Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA,
1% Triton X-100, 2.5 mM sodium pyrophosphate, 1 mM �-glyc-
erophosphate, 1 mM Na3VO4, 1 mM PMSF, and protease inhib-
itor mixture tablet (Roche Applied Science)), and total protein
lysates were prepared, and the immunoblot was performed as
described (21).

Protein Turnover Measurement—INS1 (832/13) cells were
plated in 35-mm tissue culture dishes and cultured in RPMI
1640 media for 36 h. After 36 h, media were aspirated and
replaced with the media containing 3 mM glucose. After over-
night incubation, 50 �M cycloheximide was added to the cells
for 2 h. Following a 2-h incubation, cells were stimulated with 3
or 15 mM glucose prior to sample collection for Western blot.

Phosphorylation of Tomosyn-2—INS1 (832/13) cells were either
transfected with tomosyn-2-V5 or control plasmid for 36 h. The
cells were washed once and incubated with phosphate-free KRB
for 2 h containing 0.2 mCi/ml of [32P]orthophosphoric acid. After
2 h, cells were stimulated with glucose for 30 min and harvested,
and tomosyn-2 was immunoprecipitated via anti-V5 antibody, fol-
lowed by SDS-PAGE and autoradiography.

Mass Spectrometry—Immunoprecipitated samples were
incubated for 15 min in 0.1% TFA followed by 15 min in 8 M

urea at ambient temperature and filtered after each incubation
step. The filtrate was neutralized with Tris buffer, pH 8.0,
reduced, alkylated, digested, desalted, and dried using previ-
ously described methods (22). Peptides from each sample were
independently resuspended in 100 mM tetraethylammonium
bicarbonate and combined with isobaric labels iTRAQ
(ABSciex) or TMT (Thermo) labels dissolved in isopropyl alco-
hol or acetonitrile, respectively. Alternatively, some phosphor-
ylation samples were examined without labeling and quantified
by comparing area under the curve. All samples were prepared
in at least biological duplicates. The mixture was incubated at
ambient temperature for 2 h followed by pooling the samples
together and drying in a speed vac. At this point, samples were
enriched for phosphorylation using Fe(III) immobilized metal
affinity chromatography according to previously described
protocols (23). Unbound material was retained for binding
partner interaction analyses.

Peptide samples were injected onto a nano-LC reversed
phased column in 0.2% formic acid and eluted with increasing
acetonitrile. Eluted peptides were analyzed with a Velos
Orbitrap (Thermo) or Orbitrap Elite (Thermo). In brief, MS1
survey scans were performed at 30,000 or 60,000 resolving
power at 400 m/z in the Orbitrap. Peptides with charge state 2
or higher, selected for MS/MS, were fragmented by HCD (beam

type collision), and the fragments were analyzed in the Orbitrap
at 7,500 to 15,000 resolving power.

Spectra were converted to text files, searched against a tar-
get-decoy Rattus norvegicus database, downloaded from Uni-
prot, with the sequence of the clones appended, using the
OMSSA search algorithm (24). The COMPASS software suite
was used to filter peptide search results to 1% false discovery
rate based on E-value and mass error, to quantify isobaric tag
reporter ion intensities and group proteins, and to further filter
protein results to 1% false discovery rate (25, 26). Phosphoryla-
tion sites were localized using a modified A-score algorithm
with a 95% confidence cutoff (27).

Isolation and Quantitation of Total RNA—RNA from INS1
(832/13) and HEK293FT cells were extracted using Qiagen
RNeasy plus kit. Following extraction, RNA was used for cDNA
synthesis (Applied Biosystems). The mRNA abundance was
determined by quantitative PCR using FastStart SYBR Green
(Roche Applied Science), and gene expression was calculated
by comparative �CT method.

Immunoprecipitation—INS1 (832/13) and HEK293FT cells
were lysed in 20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM

Na2EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM sodium pyro-
phosphate, 1 mM �-glycerophosphate, 1 mM Na3VO4, 1 mM

PMSF, and protease inhibitor mixture tablet (Roche Applied
Science). Total cell lysate (1 mg) was precleared with 25 �l of
equilibrated protein A/G beads for 30 min in lysis buffer with
0.2% BSA, followed by incubation with �2 �g of primary anti-
body for 16 h at 4 °C. After 16 h, 50 �l of equilibrated beads were
added to the lysate to mix for 2 h at 4 °C. The beads were spun at
2,000 � g for 3 min and were washed three times with 1� lysis
buffer. Immunoprecipitated protein was eluted in 2.5� West-
ern Loading buffer containing 1 mM DTT. The samples were
subjected to immunoblot for analysis.

Ubiquitination Experiments—Hrd-1 (WT)-pCMV or Hrd-
1(C296A, C294A)-pCMV plasmids were co-transfected with
the tomosyn-2-V5-RVV plasmid in INS1 (832/13) cells. After
36 h of transfection, 50 �M MG132 was added to the cells for
2 h, followed by lysis: 20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1
mM Na2EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM sodium
pyrophosphate, 1 mM �-glycerophosphate, 1 mM Na3VO4, 1 mM

PMSF, and protease inhibitor mixture tablet (Roche Applied Sci-
ence)), 2.5 mM iodoacetamide, 1 mM N-ethylmaleimide. Immuno-
precipitation and immunoblot were performed.

Statistical Analysis—Data were expressed as means � S.E.
The statistical comparisons were made using Student’s t test at
p � 0.05.

RESULTS

Glucose Increases Tomosyn Protein Turnover—We tested the
ability of tomosyn-2 to inhibit insulin secretion from human
islets. Adenovirus encoding either mouse tomosyn-2 or LacZ
control was transduced in human islets for 48 h at 8 mM glucose.
After viral infection, glucose-stimulated insulin secretion was
performed in islets expressing tomosyn-2 or LacZ control at
varying glucose concentrations. Tomosyn-2 inhibited frac-
tional insulin secretion by �70%, at 11, 16.7, and 20 mM glucose
but had no effect on basal insulin secretion (Fig. 1A).
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Because tomosyn-2 inhibits insulin secretion, we hypoth-
esized that cellular signals that activate insulin secretion
should block the inhibitory action of tomosyn-2. Thus, we
asked whether glucose stimulates degradation of endogenous
tomosyn. We treated INS1 (832/13) cells with 15 mM glucose
and assessed the abundance of tomosyn protein after treatment
with cycloheximide (50 �M). Within 1 h of treatment with
cycloheximide, the abundance of tomosyn protein was reduced
by 50% (Fig. 1B). No further reduction in tomosyn protein
abundance was observed after 1 h of high glucose treatment. In
contrast to cells treated with 15 mM glucose, the turnover of
tomosyn protein was very slow in cells treated with 3 mM

glucose.
We determined whether high glucose increases tomosyn

protein turnover by the proteasomal pathway. INS1 (832/13)
cells were treated with 15 mM glucose in the presence of either 50
�M proteasome inhibitor MG132 or DMSO for 4 h. Treatment
with MG132 reduced tomosyn degradation by �40%, suggesting
that tomosyn is degraded by the proteasomal pathway.

Identification of Phosphorylation Sites in Tomosyn-2 Pro-
tein—Phosphorylation is an established post-translational
modification signal for enhancing the turnover of proteins (28).
We asked whether tomosyn-2 is phosphorylated in response to
the activation of signaling pathways known to promote insulin
secretion. We first examined the effect of glucose on the phos-

phorylation of tomosyn-2 in intact INS1 (832/13) cells. INS1
(832/13) cells overexpressing tomosyn-2-V5 and control plas-
mid were pre-labeled with 0.2 mCi/ml [32P]orthophosphate for
2 h. After 2 h, the cells were treated with 3, 5, 7, 11, or 15 mM

glucose for 30 min. Whole cell lysates were prepared, and the
phosphorylation of tomosyn-2-V5 was assessed by quantifying
incorporation of 32P by autoradiography. Glucose caused a
dose-dependent increase in the phosphorylation of tomosyn-2
(Fig. 2A).

In pancreatic islets, activation of protein kinase A (PKA) and
protein kinase C (PKC) was involved in the signaling pathways
that link nutrient sensing to insulin secretion. We hypothesized
that the activation of PKA and PKC by analogs of cyclic aden-
osine monophosphate (8-Br-cAMP) and phorbol esters (TPA),
respectively, results in the phosphorylation of tomosyn-2. We
quantitated the extent of tomosyn-2 phosphorylation and iden-
tified specific sites phosphorylated in response to TPA, 8-Br-
cAMP, and glucose.

Tomosyn-2-myc was transiently transfected in INS1 (832/
13) cells for 36 h. After 36 h, cells were treated with either 1 �M

TPA at 1.5 mM glucose, 3 mM 8-Br-cAMP at 7 mM glucose, or 15
mM glucose for 30 min. We identified 11 amino acid residues
that were phosphorylated in response to TPA, 8-Br-cAMP, or
glucose (Fig. 2C). Serine-746, Ser-747, Ser-787, Ser-795, and
Ser-592 were phosphorylated in response to 8-Br-cAMP. Ser-
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738, Ser-747, Ser-775, Ser-795, Ser-797, Ser-798, and Ser-592
were phosphorylated in response to TPA. Ser-795 and Ser-746
were phosphorylated in response to glucose. We also detected
several nonquantifiable phosphorylation sites in tomosyn-2 in
response to glucose. These sites were present in segments span-
ning amino acids 588 – 612, 719 –743, and 793– 804. The effects
of each treatment on specific phosphorylation sites compared
with the control are summarized in Fig. 2C and in supplemental
files S1–S3. A representative high resolution annotated spec-
trum localizing a phosphorylation moiety to Ser-795 on the
peptide spanning the 793– 804 region is displayed in Fig. 2B.

Our studies show that tomosyn-2 is phosphorylated by the acti-
vation of major signaling pathways that play an important role in
stimulating insulin secretion. Tomosyn-2 is hyper-phosphory-
lated predominantly in the HVR with multiple signaling pathways
phosphorylating tomosyn-2 at residues Ser-795, Ser-562, and Ser-
746 (Fig. 2D). Together, this indicates that phosphorylation of
tomosyn-2 is potentially critical for its regulation.

Serine 3 Aspartate Mutant of Tomosyn-2 Is Unable to
Repress Insulin Secretion—Several of the serine residues we
identified to be phosphorylated are clustered in the HVR of
tomosyn-2. We mutated all 11 serine residues in tomosyn-2 to
either alanine or aspartate. Alanine blocks phosphorylation,
and aspartate acts as a mimic of phosphoserine. We tested the
effect of these mutations on the abundance of tomosyn-2 protein.
Tomosyn-2 wild type (WT), Ser3 Ala-tomosyn-2, and Ser3
Asp-tomosyn-2 were transiently expressed in HEK293FT cells.
After 36 h, the cells were harvested, and the abundance of the
protein was determined by immunoblot. The tomosyn-2 WT
and the mutant forms were expressed at similar levels (Fig.
3D).

To investigate the functional role of the phosphorylation
sites that we identified, we assessed the effect of tomosyn-2
mutants on protein expression and insulin secretion. Sixteen or
40 h after transfection with the WT or mutant tomosyn-2
cDNAs, the relative protein abundance of the gain-of-function
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Ser 3 Asp mutant was 50% lower compared with WT-to-
mosyn-2. The relative protein abundance of the Ser 3 Ala
mutant was significantly higher than WT-tomosyn-2 (Fig. 3A)
at 16 h time. The differences in the expression of tomosyn-2
mutants were not due to differences in mRNA abundance (Fig.
3B), transfection efficiency (data not shown), or translation (Fig.
3D) of the overexpressed mutants. This suggests that Ser3 Asp
mutation increases the turnover of tomosyn-2.

We examined the effect of Ser3 Ala and Ser3 Asp muta-
tions on the ability of tomosyn-2 to inhibit insulin secretion
from INS1 (832/13) cells. GFP, WT-tomosyn-2, Ser3Ala, and
Ser 3 Asp tomosyn-2 mutants were transiently expressed in
INS1 (832/13) cells. After 36 h, the cells were treated with 3 mM

8-Br-cAMP with 3 mM glucose to stimulate insulin secretion. WT-
tomosyn-2 and the Ser3Ala mutant decreased fractional insulin
secretion by �40% compared with GFP-expressing cells. In
contrast, the Ser3 Asp tomosyn-2 mutant had no significant
inhibitory effect on insulin secretion (Fig. 3C). This loss of
inhibitory effect by the Ser 3 Asp mutant was not due to a
reduction in mRNA expression (data not shown, experimental
design similar to (Fig. 3B)). These studies support our hypoth-

esis that secretagogue-induced phosphorylation of tomosyn-2
attenuates its ability to inhibit insulin secretion.

Hrd-1 Is an E3-Ubiquitin Ligase That Targets Tomosyn-2 to
Proteasomal Degradation—To determine the mechanism by
which tomosyn-2 is targeted to proteasomal degradation, we
first examined whether tomosyn-2 is subjected to ubiquitina-
tion. HEK293FT cells were co-transfected with tomosyn-2-myc
and HA-Ub-expressing plasmids in the presence of 50 �M

MG132. Tomosyn-2 was immunoprecipitated, and ubiquitina-
tion was detected using an anti-Ub antibody. Ubiquitination of
tomosyn-2 was significantly increased in cells treated with
MG132 (Fig. 4A) compared with DMSO control.

Next, we tested the effects of high glucose on the ubiquitina-
tion of tomosyn-2. A significant increase in the ubiquitination
of tomosyn-2 was observed in cells treated with 15 mM glucose
versus 3 mM glucose (Fig. 4B). Together, these results show that
tomosyn-2 is subject to ubiquitination, and ubiquitination of
tomosyn-2 is progressively increased by high glucose, leading to
enhanced turnover of tomosyn-2 protein.

To identify tomosyn-2 binding partners, we performed quanti-
tative mass spectrometry on immunoprecipitated tomosyn-2
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from lysates of INS1 (832/13) cells. We detected a significant
increase in the binding of Hrd-1, along with its key regulators
OS9, Sel1l, and Sel1l2 (Fig. 5A and supplemental files S4 –S6).
To confirm these results, HEK293FT cells were co-transfected
with a plasmid expressing tomosyn-2-V5 and Hrd-1. Co-immu-
noprecipitation revealed an interaction between tomosyn-2 and
Hrd-1. Nonimmune IgG and GFP were used as negative controls
and showed that the observed interaction between tomosyn-2 and
Hrd-1 is specific (Fig. 5B).

To determine whether Hrd-1 can ubiquitinate tomosyn-2,
INS1 (832/13) cells were co-transfected with tomosyn-2-V5,
along with GFP, Hrd-1, or Hrd-1 (C291A and C294A) (Fig. 6A).
Hrd-1 (C291A and C294A) acts as a dominant negative where
cysteine at positions 291 and 294 (in the ring domain) were
mutated to alanine. Tomosyn-2 was ubiquitinated in cells
expressing Hrd-1 compared with the GFP control. No signifi-
cant ubiquitination was observed in cells expressing a domi-
nant negative form of Hrd-1 (C291A and C294A) above GFP-
expressing cells. We then investigated whether the loss of
enzymatic activity of Hrd-1 (Cys-291 and Cys-294) affects its
ability to bind tomosyn-2. We co-expressed Hrd-1 (Cys-291
and Cys-294) or wild type Hrd-1 along with tomosyn-2 in
HEK293FT cells. The dominant negative and wild type Hrd-1
showed comparable binding to tomosyn-2 (Fig. 6A). These
results show that tomosyn-2 directly binds and is a substrate of
Hrd-1.

To determine whether Hrd-1 affects the abundance of
tomosyn-2, we co-transfected tomosyn-2 along with shHrd-1
or Sh-scramble in HEK293FT cells. We observed an �35%
reduction in the mRNA abundance of Hrd-1 in cells transfected
with shHrd-1 compared with the sh-scrambled control (data
not shown). We also observed an �40% increase in abundance
of tomosyn-2 protein in cells transfected with sh-Hrd-1 versus
sh-Scramble (Fig. 6B). These results confirm that Hrd-1 regu-
lates the abundance of tomosyn-2.

DISCUSSION

The role of tomosyn-1/2 as an inhibitor of secretion is well
established (8). However, the cellular mechanisms regulating

the inhibitory function of tomosyn proteins are not completely
understood. The presence of an inhibitor of insulin secretion in
�-cells requires a mechanism for insulin secretagogues to block
this inhibitory action. We have shown that in response to high
glucose, tomosyn protein is degraded. We describe a mechanism
by which phosphorylation-mediated degradation of tomosyn-2
de-represses insulin secretion in response to insulin secreta-
gogues. Additionally, we have identified a specific role for
Hrd-1, an E3 ubiquitin ligase in the ubiquitin-proteasome path-
way that degrades tomosyn-2.

The disappearance of tomosyn upon exposure to glucose fol-
lowed biphasic kinetics. One possible explanation is that
tomosyn exists in two different cellular compartments or pools
and that proteasomal degradation accesses just one of these
pools. In islets and other cell types, tomosyn fractionates with
plasma membrane, cytosol, and dense core granules (8, 11, 29).
Tomosyn in the plasma membrane pool likely regulates the
formation of the SNARE complex. However, the function of
tomosyn in other cellular pools is unknown. Another possibility
is that the turnover of tomosyn-1 and tomosyn-2 isoforms is
differentially regulated by high glucose. The antibody used in
these experiments cannot differentiate between tomosyn-1 and
tomosyn-2; therefore, it is possible that one of the two proteins
is more rapidly degraded when exposed to high glucose.

The half-life of synaptic proteins ranges between several days
and hours (30 –33). The half-life of tomosyn-1 in neurons was
estimated to be �4 days (30). This relatively long half-life could
explain why we did not observe a significant change in tomosyn
protein abundance after a cycloheximide treatment with low
glucose. However, it is possible that the turnover rate of synap-
tic proteins in �-cells and neurons could be different. In neu-
rons, the site of exocytosis in the pre-synapse, at the distal tip of
the axon, is often located far from the site of protein synthesis.
This may necessitate the need for increased protein stability.

In pancreatic �-cells, activation of cell signaling pathways
through PKA, PKCs, and calcium/calmodulin-dependent pro-
tein kinase II (CaMKII) augments insulin secretion by phos-
phorylating proteins that are involved in the formation of the
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SNARE complex (34 –36). We activated PKA-, PKC-, and
CaMK II-mediated signaling pathways by treating INS1 (832/
13) cells with 8-Br-cAMP, phorbol esters (TPA), and glucose,
respectively.

We identified eleven phosphorylation sites in the N-terminal
domain of tomosyn-2. Mutating all phosphoserine sites to
aspartate (Ser3Asp) decreased tomosyn-2 protein abundance
relative to WT and alanine tomosyn-2 mutant (Ser3Ala). This
result suggests an important role of HVR in regulating the
abundance of tomosyn-2 protein; 10 of the 11 phosphorylation
sites are present in the HVR. The phosphorylated serine resi-
dues that we identified in response to glucose, 8-Br-cAMP, and
TPA are part of the consensus motif for phosphorylation by

kinases such as PKA (Ser-746, Ser-787, and Ser-795), PKC (Ser-
738, Ser-741, Ser-775, Ser-795, Ser-798, and Ser-592), CaMKII
(Ser-747 and Ser-795), AKT/PKB (Ser-795), AMP-activated
kinase (Ser-768), and casein kinase-1 (Ser-797). The kinases
listed here represent a diverse network of signaling pathways,
and each kinase has been shown to play an important role in
regulating SNARE complex formation, SNARE localization,
and organelle morphology. Understanding the role of each of
the phosphorylation site will provide insight to the mechanism
by which tomosyn-2 regulates secretion.

An important facet of protein phosphorylation is the regula-
tion of protein-protein interactions. Here, we focused on the
role of phosphorylation sites in regulating the stability of
tomosyn-2 protein. Phosphorylation of Ser-724 in the HVR
allosterically regulates tomosyn-1’s ability to interact with syn-
taxin-1A in a SNARE complex (20). The N-terminal domain of
tomosyn-1 regulates synaptotagmin-1-mediated exocytosis in
a Ca2�-dependent manner (17). Therefore, it is possible that
one or more phosphorylation sites in the HVR of tomosyn-2 is
responsible for allosterically regulating tomosyn-2’s ability to
interact with its binding partners.

Phosphorylation of Ser-795 in tomosyn-2 was increased in
response to glucose, TPA, and 8-Br-cAMP, indicating a potential
role of CaMKII, PKCs, and PKA, respectively. This site is also a
consensus Akt/PKB kinase phosphorylation site (RXRXXS) and is
the only Akt/PKB kinase motif present in tomosyn-2, thus mak-
ing Ser-795 a top candidate for regulation of the inhibitory
activity of tomosyn-2. The Akt/PKB signaling pathway in
�-cells is involved in insulin secretion and affects susceptibility
to type 2 diabetes (37). There is some evidence that insulin
regulates its own secretion (38). Thus, tomosyn-2 might medi-
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ate autoregulation of insulin via the Akt/PKB signaling
pathway.

The allosteric effects of phosphorylation within the HVR in
regulating tomosyn-2 inhibitory function are not known. It is
possible that the modes of regulation exerted by the HVR are
potentially different between tomosyn-2 and tomosyn-1. Phos-
phorylation and SUMOylation at Ser-724 and Ser-730, respec-
tively, in the HVR of tomosyn-1 alters its functional activity by
allosterically regulating protein-protein interactions (18, 20).
Our data show that the phosphorylation in the HVR of
tomosyn-2 affects it protein stability. This suggests that even
though tomosyn-1 and tomosyn-2 are both inhibitors of secre-
tion, the mechanisms by which cells regulate the functional
activity of these two proteins are different.

The ubiquitination-proteasome pathway (UPP) is known to
regulate proteins involved in synapse growth and development,
synaptic function, and plasticity (39 – 43), including several of
the SNARE proteins, such as syntaxin-1 (44), Munc-13 (45),
and RIM-1 (46). In �-cells, the precise role of the UPP is not
fully defined. However, it is known to target proteins of the
secretory pathway, such as K-ATP channels (47), voltage-de-
pendent calcium channels (48), glucose-dependent insulino-
tropic polypeptide receptors (GIP-R), and proinsulin (49), and
plays a major role in regulating insulin secretion (50 –52).

Phosphorylation of proteins sometimes serves as an initiat-
ing step for ubiquitination. Protein phosphorylation of K-ATP
channels by PKA or SGK1 (serum- and glucocorticoid-sensitive
kinase) (53), p35 by SIK2 (AMP-activated protein kinase-re-
lated kinase) (54), and GIP-R by PKA (55) promotes degrada-
tion by the UPP to regulate insulin secretion. Our results show
that high glucose increases ubiquitination and degradation of
tomosyn-2 via the UPP. The ubiquitination of a substrate is
influenced by proximity of one or multiple phosphorylation
sites (28). The ubiquitination sites responsible for regulating
tomosyn-2 protein abundance are not known. Sequence analy-
sis of tomosyn-2 by the UbPred program (56) identified four
potential ubiquitination sites as follows: Lys-720, Lys-801, Lys-
804, and Lys-1131. Of these, Lys-801 and Lys-804 are proximal
to several phosphorylation sites that we identified (e.g. Ser-798,
Ser-797, and Ser-795). We hypothesize that ubiquitination at
sites Lys-801 and Lys-804 in response to phosphorylation is
most likely responsible for the degradation of tomosyn-2.

Hrd-1 is an endoplasmic reticulum E3-ligase (57). It is a mul-
tispanning membrane protein with a RING domain extending
into the cytoplasm (58). Hrd-1 substrates include proteins of
the endoplasmic reticulum-associated degradation pathway (58)
and several cytoplasmic proteins (59). We show that Hrd-1 binds,
ubiquitinates, and regulates the abundance of tomosyn-2, suggest-
ing that Hrd-1 is an E3-ligase for tomosyn-2. Several proteins
are involved in the formation of the Hrd-1 E3 ubiquitin com-
plex. Notably, Sel1l is critical for the stability of Hrd-1 protein,
and OS9 plays an important role in substrate recognition (60).
Sel1l has been shown to play a role in the pathogenesis of type 2
diabetes. Mice expressing just one allele of Sel1l were severely
glucose-intolerant and had reduced glucose-stimulated insulin
secretion (61). This reduction in insulin secretion was attrib-
uted to a defect in the trafficking of insulin granules due to the
loss of the �1-integrin (62).

In summary, we show that the induction of phosphorylation
of tomosyn-2 by several insulin secretagogues increases turnover
of tomosyn-2 protein and thus de-represses insulin secretion. The
degradation and/or inactivation of tomosyn-2 appears to be nec-
essary for glucose to fully stimulate insulin secretion. Mutations
in tomosyn-2 or in this regulatory pathway contribute to the
risk of developing type 2 diabetes (10).
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