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Background: Pyrin, ASC, and procaspase-1 associate to form an inflammasome that mediates inflammatory responses.
Results: Multiple binding sites on the pyrin domains of ASC and pyrin mediate their interaction.
Conclusion: Interaction between pyrin and ASC via multiple sites drives ASC clustering to form an inflammasome.
Significance: These findings provide insight into the interaction modes of pyrin domains and inflammasome assembly.

Inflammasomes are macromolecular complexes that mediate
inflammatory and cell death responses to pathogens and cellular
stress signals. Dysregulated inflammasome activation is associ-
ated with autoinflammatory syndromes and several common
diseases. During inflammasome assembly, oligomerized cytosol-
ic pattern recognition receptors recruit procaspase-1 and pro-
caspase-8 via the adaptor protein ASC. Inflammasome assembly
is mediated by pyrin domains (PYDs) and caspase recruitment
domains, which are protein interaction domains of the death
fold superfamily. However, the molecular details of their inter-
actions are poorly understood. We have studied the interaction
between ASC and pyrin PYDs that mediates ASC recruitment to
the pyrin inflammasome, which is implicated in the pathogene-
sis of familial Mediterranean fever. We demonstrate that both
the ASC and pyrin PYDs have multifaceted binding modes,
involving three sites on pyrin PYD and two sites on ASC PYD.
Molecular docking of pyrin-ASC PYD complexes showed that
pyrin PYD can simultaneously interact with up to three ASC
PYDs. Furthermore, ASC PYD can self-associate and interact
with pyrin, consistent with previous reports that pyrin promotes
ASC clustering to form a proinflammatory complex. Finally, the
effects of familial Mediterranean fever-associated mutations,
R42W and A89T, on structural and functional properties of
pyrin PYD were investigated. The R42W mutation had a signif-
icant effect on structure and increased stability. Although the
R42W mutant exhibited reduced interaction with ASC, it also
bound less to the pyrin B-box domain responsible for autoinhi-
bition and hence may be constitutively active. Our data give new

insights into the binding modes of PYDs and inflammasome
architecture.

Autoinflammatory diseases characterized by unprovoked
bouts of fever and systemic inflammation are primarily caused
by genetic mutations in proteins that mediate an inflammatory
response (1–3). The proinflammatory cytokine IL-1� plays a
key role in the pathogenesis of these diseases and is generated
by the assembly of caspase-1-activating inflammasome com-
plexes that process proIL-1� into its active form (4, 5). Familial
Mediterranean fever (FMF)3 is an autoinflammatory disease
caused by mutations in the MEFV gene, which encodes pyrin (6,
7). Pyrin interacts with ASC (apoptosis-associated speck-like
protein containing a caspase recruitment domain (CARD)) to
recruit procaspase-1 and form an inflammasome complex (8,
9). The complex formed is analogous to inflammasomes assem-
bled by cytoplasmic pattern recognition receptors, including
the NOD-like receptor (NLR) and PYHIN (pyrin and HIN
domain-containing) protein families, in response to pathogens
and cellular stress signals (10). Furthermore, the pyrin inflam-
masome is activated in response to challenge by Francisella novi-
cida and Burkholderia cenocepacia (11, 12) and in response to p38
MAP kinase activation upon ribotoxic stress (13). However, there
is evidence of an anti-inflammatory role for pyrin (14–16), sug-
gesting that pyrin can have either a proinflammatory or anti-in-
flammatory role under different conditions.

Human pyrin is a multidomain protein comprised of 781
amino acids that is expressed in neutrophils, eosinophils, and
monocytes (17, 18). Pyrin contains an N-terminal pyrin domain
(PYD), a member of the death fold superfamily of protein inter-
action domains (19, 20), through which it interacts with ASC. In
addition to an N-terminal PYD, pyrin contains a bZIP domain,
a B-box zinc finger domain, a coiled-coil domain, and a B30.2/
SPRY domain (6, 7, 21) (see Fig. 1A). The coiled-coil domain
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mediates oligomerization of pyrin into a trimer, thus forming a
platform for oligomerization and activation of procaspase-1
upon recruitment to the complex (22). The B-box domain has
been shown to interact intramolecularly with the PYD to main-
tain pyrin in a repressed state (22). One protein that can dere-
press pyrin is PSTPIP1 (proline-serine-threonine phosphatase-
interacting protein 1), a cytoskeleton-associated protein that
causes the autoinflammatory PAPA syndrome when mutated
(23). Binding of PSTPIP1 to the pyrin B-box releases pyrin PYD
and allows interaction with ASC (22). The role of the pyrin
B30.2 domain is unclear; however, the majority of FMF-associ-
ated mutations map to this domain (24). Other FMF-associated
mutations are spread throughout the protein with two muta-
tions, R42W and A89T, located in pyrin PYD (24, 25). However,
it is unclear whether these mutations are disease-causative.

The adaptor protein ASC plays a central role in assembly of
the pyrin inflammasome, as well as the inflammasomes formed
by several NLR and PYHIN family proteins (10). ASC consists
of an N-terminal PYD and a C-terminal CARD, which is also a
death fold domain (21, 26). A homotypic interaction between
ASC PYD and the N-terminal PYDs of pyrin, NLRP1, NLRP3,
NLRP7, and AIM2 recruits ASC to inflammasomes, whereas
ASC CARD recruits procaspase-1 via a homotypic CARD inter-
action (10). ASC PYD can also recruit procaspase-8 to inflam-
masomes to induce apoptotic cell death (27, 28). In addition to
bridging the interaction between cytosolic receptors and
caspases, ASC self-associates via its PYD and CARD domains to
mediate further clustering of the inflammasome to form a com-
pact speck (29 –31).

Despite the critical role of PYD-mediated interactions in
inflammasome assembly, the molecular details of these inter-
actions are poorly characterized. Structures of several PYDs
have been determined (32– 40), indicating a six-helix bundle
structure similar to other members of the death fold superfam-
ily. However, PYDs typically have a short third helix (�3) and a
long preceding loop (32, 33, 35). There is no structure available
for a PYD complex, although recent biochemical analysis of
ASC PYD self-association has given some insights into the
interaction mode in the ASC PYD homodimer (30). Distinct
positively and negatively charged surfaces of ASC PYD each
contain a binding site, which interacts in the homodimer. How-
ever, it is unclear whether other PYD complexes will share a
similar mode of interaction. Interestingly, the interface of the
ASC PYD homodimer involves helix �3, which has been pro-
posed to transition between a folded and unfolded state to reg-
ulate PYD function (34, 41).

In this study, we examined the interaction between the PYDs
of pyrin and ASC, which is required for ASC recruitment to the
pyrin inflammasome. We have identified multiple binding sites
on both PYDs that are important for their interaction and show
that the sites for ASC self-association overlap with the sites for
pyrin PYD interaction. However, we also demonstrate that ASC
can self-associate and interact with pyrin, which is consistent
with a proinflammatory role for pyrin. In addition, the effect of
the two FMF-associated mutations, R42W and A89T, on the
structure and function of pyrin PYD was investigated. The
R42W mutation in helix �3 stabilized the pyrin PYD, whereas
the A89T mutation at the end of helix �6 had minimal effects

on protein structure and stability. Neither mutation enhanced
the interaction between pyrin and ASC, as might be expected to
promote autoinflammation, but R42W was defective in the
autoinhibitory interaction with the B-box domain and thus
may be more easily activated. Finally, using our data, we
rationalize models for the PYD interaction network at the
pyrin inflammasome.

EXPERIMENTAL PROCEDURES

Plasmids—Plasmids expressing GST-ASC PYD (wild-type or
mutant), His6-ASC PYD, and pyrin PYD-His6 have been
described previously (30). Pyrin without the N-terminal PYD
(pyrin�PYD, residues 93–781) was cloned into pET-21a (Nova-
gen) for in vitro translation. Full-length ASC (residues 1–195)
was cloned into pGEX-4T-1 (GE Healthcare) for expression in
Escherichia coli with an N-terminal GST tag. For expression in
mammalian cells, full-length pyrin with a C-terminal Myc tag
was cloned into pcDNA 3.1 (Invitrogen). Full-length PSTPIP1
with an N-terminal FLAG tag was cloned into pcDNA 3.1. Full-
length ASC was expressed in mammalian cells from pcDNA3-
ASC. Specific point mutations were introduced into pyrin PYD
using the QuikChange site-directed mutagenesis approach
(Stratagene). The sequences of all constructs were verified by
automated DNA sequencing (Australian Genome Research
Facility).

Protein Expression and Purification—His6- and GST-tagged
proteins were expressed in E. coli and purified as previously
described (30). For NMR studies, uniformly 15N- and 13C/15N-
labeled proteins were expressed in minimal medium containing
15NH4Cl (1 g/liter) and 13C-glucose (2 g/liter) as the sole nitro-
gen and carbon sources (42). For in vitro binding studies, solu-
ble His6-tagged pyrin PYD mutants (K3A, L10A, Q29A, K35A,
H37A, R42A, Q46A, R49A, L71A, R80A, E84A, and R88A) were
eluted with 50 mM Tris, pH 8, 1 M NaCl, and 250 mM imidazole,
whereas the less soluble mutants (E14A, E22A, K25A, V58A,
E63A, and R75A) were eluted with buffer also containing 0.5%
Nonidet P-40 to improve solubility. Aliquots of wild-type pyrin
PYD were eluted from Ni2� affinity resin with or without 0.5%
Nonidet P-40 to compare binding properties under similar
buffer conditions. All proteins were then diluted 100-fold into
binding buffer (50 mM HEPES, pH 7.4, 50 mM NaCl, 5 mM

EDTA, 0.1% Nonidet P-40, 10% glycerol).
In Vitro Protein Interaction Assays—To identify residues

important for pyrin PYD interaction, 200 �l of purified wild-
type or mutant pyrin PYD was added to glutathione agarose-
bound GST-ASC PYD, GST-ASC full-length, or GST alone in
800 �l of binding buffer. Samples were incubated overnight at
4 °C, and the resin was washed three times with 1 ml of wash
buffer (50 mM Tris, pH 7.5, 200 mM NaCl, 0.5% Nonidet P-40).
Bound proteins were analyzed by Western blotting. His6-
tagged proteins were detected with a penta-His antibody (Qia-
gen), whereas GST and GST-ASC PYD were detected with
Ponceau S stain. To identify residues important for ASC PYD
interaction, purified wild-type pyrin PYD (200 �l) was incu-
bated with glutathione agarose-bound GST-ASC PYD (wild-
type or mutant) or GST alone as described above. Bound pro-
teins were detected as described above. To test the effect of
FMF-associated mutations R42W and A89T on binding of
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pyrin PYD to pyrin�PYD, pyrin�PYD was expressed using the
TNT T7 coupled reticulocyte lysate system (Promega) in the
presence of [35S]methionine and incubated with glutathione
agarose-bound GST-pyrin PYD (wild-type or mutant) or GST
alone in 150 �l of binding buffer containing 150 mM NaCl.
Samples were incubated for 2 h at 4 °C and then washed three
times with 500 �l of binding buffer. Bound proteins were
resolved by SDS-PAGE. 35S-Labeled protein was detected by
phosphorimaging, whereas GST and GST-pyrin PYD were
detected with Coomassie stain. To test whether pyrin PYD and
ASC PYD compete for binding to GST-ASC PYD, purified sol-
uble ASC PYD was incubated with glutathione-agarose-bound
GST-ASC PYD in the presence or absence of purified pyrin
PYD. Bound proteins were detected by Western blotting as
described above. To test the effect of ASC PYD self-association
on ASC PYD interaction with pyrin, [35S]methionine-labeled
pyrin was incubated with glutathione agarose-bound GST-ASC
PYD or GST alone in the presence or absence of purified
recombinant His6-tagged ASC PYD. Bound 35S-labeled pyrin
was detected by phosphorimaging, whereas GST and GST-ASC
PYD were detected with Coomassie stain.

Immunoprecipitation Assays—HEK 293T cells were main-
tained in DMEM/F-12 medium supplemented with 10% fetal
bovine serum, 100 units/ml penicillin, and 100 �g/ml strepto-
mycin. The cells were seeded in 10-cm dishes and transfected
using Lipofectamine 2000 (Invitrogen). After incubation for
24 h, cell lysates were prepared as previously described (30), and
pyrin-ASC or pyrin-ASC-PSTPIP1 complexes were immuno-
precipitated using an anti-Myc antibody (Cell Signaling Tech-
nology) and immobilized on protein G-Sepharose (Sigma).
Bead-bound proteins were eluted with SDS-PAGE sample
buffer and analyzed by Western blotting using antibodies to
pyrin (Enzo Life Sciences), ASC (Enzo Life Sciences), and the
FLAG tag (Cell Signaling Technology).

NMR Spectroscopy—Samples for NMR contained 0.3– 0.8
mM protein in 50 mM sodium phosphate, pH 4.0, and 150 mM

NaCl. NMR experiments were acquired at 25 °C on either
a Bruker Avance 750 MHz spectrometer equipped with a
z-shielded gradient triple resonance probe or a Bruker Avance
900 MHz spectrometer equipped with a z-gradient triple reso-
nance cryoprobe. NMR spectra were processed with NMRPipe
(43) and analyzed using PIPP (44) or CcpNmr (45). Two-di-
mensional 1H-15N heteronuclear single-quantum coherence
(HSQC) spectra were recorded for wild-type pyrin PYD and
point mutants that affected interactions with ASC. Backbone
resonance assignments of wild-type pyrin PYD and the R42W
mutant were made using three-dimensional HNCO, HN(CA)-
CO, CBCA(CO)NH, HNCACB, and C(CO)NH experiments
(46). Mutation-induced chemical shift changes were calculated
using weighted average values, ��av, with ��av � {[��(1HN)2 �
(0.2�� (15N))2]/2}1/2 (47). Assignments for the backbone reso-
nances of wild-type and R42W pyrin PYD have been deposited
in the BioMagResBank database with the accession numbers
19875 and 19926, respectively.

Pyrin PYD Structure—The secondary structure elements in
pyrin PYD were delineated from 13C�, 13C�, 13CO, 15N, 1H�,
and 1HN chemical shifts with the program TALOS� (48).
Residues 1–3 at the N terminus and residues 94 –100 at the C

terminus (including the His6 tag) were estimated from
TALOS� to be disordered and excluded from subsequent CS-
ROSETTA calculations (49). A total of 5000 all-atom ROSETTA
models were generated, and the all-atom ROSETTA energies of
these models were rescored based on agreement with the
experimental chemical shifts. Convergence of the calculations
was evaluated from the C� root mean square deviation values of
the 10 lowest energy models compared with the lowest energy
model. The ensemble of 10 structures was validated using the
PSVS software package (50), and the lowest energy model was
selected as a representation of the three-dimensional structure
of pyrin PYD. Images and electrostatic properties of the struc-
ture were generated using the PyMOL molecular graphics sys-
tem (Schrödinger, LLC). Coordinates of the 10 pyrin PYD
structures have been deposited in the Protein Data Bank with
the accession number 2MPC.

HADDOCK Modeling—Modeling of pyrin-ASC PYD com-
plexes was performed using the HADDOCK (High Ambiguity
Driven protein-protein DOCKing) web server (51). The ASC
PYD structure (32) (Protein Data Bank code 1UCP) and the
pyrin PYD structure were entered as starting structures, and
active residues were defined based on mutagenesis data from
this study. For the first model, Glu14 on pyrin PYD and residues
Lys21 and Arg41 on ASC PYD were defined as active. For the
second model, Lys25 and Arg42 on pyrin PYD and Asp10, Gly13,
Asp48, Asp51, and Asp54 on ASC PYD were defined as active.
Finally, in the third model, Arg75 and Arg80 on pyrin PYD and
Asp10, Glu13, Asp48, Asp51, and Asp54 on ASC PYD were
defined as active. Passive residues were defined automatically.
A total of 1000 complex structures were calculated using rigid
body docking. The best structures, which were between 139
and 167 structures for the docking runs submitted, were sub-
jected to further refinement and cluster analysis. The best
structure from the lowest energy cluster from each docking run
was chosen to represent each of the pyrin-ASC PYD complexes.

CD Spectroscopy—Purified pyrin PYD proteins were dialyzed
against CD buffer (10 mM sodium phosphate, pH 4.0, 150 mM

NaF) and diluted to a final concentration of 20 �M. Protein
concentration was determined based on A280 measurements
under denaturing conditions (52). CD spectra were acquired
using a JASCO J-710 spectropolarimeter using a quartz cell
with a 1-mm path length. Far-UV spectra were recorded at
room temperature between 185 and 260 nm using a scan speed
of 10 nm/min, 100 mdeg sensitivity, and a 4-s response time.
Three scans were averaged, and the spectra were corrected
using a buffer blank. The ellipticity is reported as mean residue
ellipticity ([�]MRW, deg cm2 dmol�1) (53). The secondary
structure content was calculated using the CDSSTR spectra
deconvolution program (54) from the DichroWeb server (55).

For chemical denaturation experiments, proteins were
diluted to a final concentration of 10 �M with different concen-
trations of urea (0 – 8 M in 0.25 M increments) prepared in CD
buffer. After overnight incubation at room temperature, the
CD signal at 222 nm was recorded at each concentration of urea
for 30 s at 100 mdeg sensitivity and 4 s of response time. Ther-
modynamic parameters were obtained by fitting the observed
ellipticity at varying concentrations of urea to the equation for a
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two-state mechanism (56). The fraction unfolded was calcu-
lated as previously described (57).

For thermal denaturation, purified proteins dialyzed against
CD buffer were diluted 7.5-fold with 10 mM sodium phosphate,
pH 7.5, and 150 mM NaF to a final protein concentration of 10
�M. The protein sample was heated within the CD spectropo-
larimeter from 25 to 95 °C using the attached water bath,
whereas the CD signal at 222 nm was recorded at 1 °C intervals
at 100 mdeg sensitivity and 2 s of response time. The fraction
unfolded at each temperature was calculated as previously
described (58).

RESULTS

Three Binding Sites on Pyrin PYD Mediate Interaction with
ASC PYD—To identify the mode of interaction between pyrin
and ASC, we mapped the interaction sites on both PYDs using
a combination of mutagenesis and in vitro binding studies. The
three-dimensional structure of pyrin PYD was calculated from
the experimental NMR data using CS-ROSETTA (49). The six-
helix bundle structure of pyrin PYD with a long �2-�3 loop (Fig.
1B) closely resembles previously determined PYD structures. In
particular, the pyrin and ASC PYD (32) structures are very sim-
ilar, with a root mean square deviation of 1.6 Å over 88 aligned
C� atoms (Fig. 1B). Surface mutations were introduced
throughout pyrin PYD by mutating two to three residues per
helix. However, only a single residue in helix �4 was mutated,
because many residues in this short helix are buried. A total of
18 alanine point mutations (K3A, L10A, E14A, E22A, K25A,
Q29A, K35A, H37A, R42A, Q46A, R49A, V58A, E63A, L71A,
R75A, R80A, E84A, and R88A) were introduced into pyrin PYD
(Fig. 1C).

Wild-type and mutant pyrin PYDs were expressed with a
His6 tag and purified for binding studies with purified bead-
bound GST-ASC PYD (Fig. 1D). Several mutants (E14A, E22A,
K25A, V58A, E63A, and R75A) exhibited decreased soluble
expression in E. coli compared with wild-type pyrin PYD; how-
ever, sufficient amounts were obtained for binding studies.
When binding of the pyrin PYD mutants to GST-ASC PYD was
tested, K25A completely abolished interaction with ASC,
whereas several other mutations (L10A, E14A, R42A, L71A,
R75A, and R80A) exhibited diminished interaction. Interest-
ingly, there was also a subset of mutations, E22A, V58A, and
E63A, which increased the interaction between pyrin and ASC
PYDs (Fig. 1D). The residues that affected interaction with ASC
PYD are distributed throughout the six helices of pyrin PYD
(Fig. 2A). However, closer examination revealed that the muta-
tions that diminished interactions are localized to three distinct
clusters, consistent with the presence of a few discrete binding
sites. Residues Leu10 and Glu14, which are located in helix �1,
form one site, whereas residues Lys25 (helix �2) and Arg42 (helix
�3) form a second site. Residues Leu71, Arg75 (helix �5), and
Arg80 (helix �6) form a third site. Of the pyrin PYD residues
that increased interaction with ASC when mutated, Glu22 is
proximal to the Lys25 and Arg42 cluster and suggests that
removal of this negatively charged residue promotes ASC inter-
action with the positively charged binding site 2. In contrast,
residues Val58 (helix �4) and Glu63 (helix �5) are distant from
the three binding sites, and thus the mechanism by which

mutation of these residues promotes interaction with ASC is
unclear. Interestingly, the residues on pyrin PYD that we have
identified to be important for interaction localize to positively
and negatively charged surface patches (Fig. 2B), consistent
with charged residues playing an important role in pyrin PYD
interactions.

To confirm that the observed effects on binding were not due
to perturbations in the pyrin PYD structure, the structural
integrity of the mutants was verified using NMR spectroscopy.
Assignment of the backbone resonances of wild-type pyrin
PYD was accomplished using standard triple resonance exper-
iments (46), and the two-dimensional 1H-15N HSQC spectra of
15N-labeled wild-type and mutant PYDs were compared. The
majority of mutants (E14A, E22A, R42A, E63A, R75A, and
R80A) displayed only minor shifts in residues that were close in
sequence or space to the mutation site, indicating that the
mutations do not perturb the structure (Fig. 3). In contrast, the
L10A and L71A mutations induced numerous chemical shift
changes throughout the protein (Fig. 4, A and B). Analysis of the
chemical shift changes has been performed with caution,
because without backbone resonance assignments for the L10A
and L71A mutants, we cannot be certain of the identity of all
peaks in their HSQC spectra. However, this analysis clearly
revealed that many hydrophobic residues experienced signifi-
cant chemical shift changes, suggesting that these mutants have
altered helix packing (Fig. 4, C–F). The point mutations were
initially designed using a homology model of pyrin PYD, but the
NMR structure subsequently revealed that residues Leu10 and
Leu71 contribute to the hydrophobic core of the protein. We
were unable to test the effect of the K25A mutation because the
protein was insoluble at the concentration required for NMR
experiments and thus cannot rule out structural effects of this
mutation on interactions of the pyrin PYD. Taken together, our
data indicate that residues Glu14, Arg42, Arg75, and Arg80 that
diminish interaction when mutated and do not perturb the
structure of pyrin PYD are directly involved in interaction with
ASC PYD. These findings are consistent with the presence of
three distinct interaction sites on pyrin PYD.

Two Binding Sites on ASC PYD Mediate Interaction with
Pyrin PYD—To identify the pyrin binding site on ASC PYD, we
compared the binding of pyrin PYD to wild-type ASC PYD or a
panel of 16 ASC PYD mutants, with individual point mutations
that span the surface of ASC PYD (30). We found that five
mutations, E13A, K21A, R41A, D48A, and D51A, abolished
interaction with pyrin PYD (Fig. 5, A–C). In addition, muta-
tions D10A, R38A, and D54A reduced binding to pyrin PYD.
All of these mutations, except for R38A, do not perturb the ASC
PYD structure as judged by NMR spectroscopy (30). However,
the R38A mutation in the �2-�3 loop exhibited structural per-
turbation in the vicinity of the mutation (30). Residues Lys1

(helix �2) and Arg41 (helix �3) cluster together to form an inter-
action site in a positively charged patch, whereas residues
Asp10, Glu13 (helix �1), Asp48 (�3-�4 loop), Asp51, and Asp54
(helix �4) cluster to form a second interaction site in a nega-
tively charged patch (Fig. 5D).

Two Interaction Sites on Pyrin PYD Are Similar to ASC PYD,
but the Third Site Is Distinct—Amino acid sequence alignment
of the pyrin and ASC PYDs showed that both PYDs have addi-

Multifaceted Binding Modes of Pyrin and ASC Pyrin Domains

AUGUST 22, 2014 • VOLUME 289 • NUMBER 34 JOURNAL OF BIOLOGICAL CHEMISTRY 23507



tional residues important for interaction that are not conserved
(Fig. 6). First, although Glu13 of ASC PYD is conserved in pyrin
PYD (Glu14) and is important for interaction, the proximal
acidic residues Asp10, Asp48, Asp51, and Asp54 of ASC PYD (Fig.
5D) are not conserved in pyrin PYD. Nonetheless, our data are
consistent with the existence of an interaction site in the vicin-
ity of Glu14 on pyrin PYD. Second, Arg41 of ASC PYD is con-

served in pyrin PYD (Arg42) and is important for interactions of
both PYDs, consistent with a binding site in the vicinity of this
residue. However, Lys21 of ASC PYD (helix �2), which clusters
with Arg41 on the ASC PYD structure (Fig. 5D), is not con-
served in pyrin PYD. There are three additional lysine residues
in the vicinity of Lys21 on ASC PYD (Lys22, Lys24, and Lys26)
that are conserved in pyrin PYD (Lys23, Lys25, and Lys27) (Fig.

B-box CCbZIP

CC

B30.2/SPRYCC

PYD

PYD

A PYD

B30.2/SPRY

B30.2/SPRY

B-box

B-boxbZIP

bZIP

GST-ASC PYD

GST

5% input 
pyrin PYD

pyrin PYD

pyrin PYD

E14
A

E22
A

K25
A
V58

A
E63

A
R75

A
W

T
W

T
K3A L1

0A
Q29

A
K35

A
H37

A
R42

A
W

T
Q46

A
R49

A
L7

1A
R80

A
E84

A
R88

AD

C

B

FIGURE 1. Identification of residues on pyrin PYD that are important for interaction with ASC PYD. A, schematic representation of a pyrin trimer indicating
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residues mutated include Lys3, Leu10, and Glu14 (helix �1); Glu22, Lys25, and Gln29 (helix �2); Lys35 and His37 (�2-�3 loop); Arg42 and Gln46 (helix �3); Arg49 (�3-�4
loop); Val58 (helix �4); Glu63, Leu71, and Arg75 (helix �5); and Arg80, Glu84, and Arg88 (helix �6). D, purified His6-tagged WT and mutant pyrin PYDs were used for
in vitro binding assays with purified bead-bound GST-ASC PYD or GST alone. Bound protein was eluted with SDS-PAGE sample buffer, subjected to SDS-PAGE,
and then transferred to a PVDF membrane. The bound His6-tagged WT and mutant pyrin PYDs detected by immunoblotting with an anti-His antibody are
shown above a Ponceau S stain from the same blot to detect GST-ASC PYD or GST alone. An amount representing 5% of the input of WT or mutant pyrin PYDs
used for binding studies is also shown.
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6), and mutation of one of these residues, Lys25, disrupted inter-
actions of pyrin PYD. Thus, the binding site on pyrin PYD that
includes arg42 may include other lysine residues in helix �2. A
third unique interaction site on pyrin PYD comprises basic res-
idues Arg75 and Arg80 (Fig. 2A). Although Arg75 is conserved in
ASC PYD (Arg74), mutation of this residue did not affect inter-
action of ASC PYD; thus this interaction site may not be critical
for ASC PYD interactions. We conclude that two of the inter-
action sites identified on pyrin PYD are similar to the two inter-
action sites of ASC PYD; however, the third interaction site
containing Arg75 and Arg80 is distinct. Notably, residues from
all three sites are conserved to varying extents in other PYDs
(Fig. 6).

ASC PYD Can Self-associate and Interact with Pyrin—
Because the residues important for interaction between ASC
PYD and pyrin PYD overlap with those reported for ASC self-
association (30), it was unclear whether ASC PYD self-associa-
tion is a prerequisite for pyrin binding. To further investigate
the role of ASC self-association in pyrin binding, we first tested
the effect of pyrin PYD on ASC PYD self-association. When
equimolar amounts of soluble pyrin PYD and soluble ASC PYD
were incubated with GST-ASC PYD, we found that pyrin PYD
inhibited ASC PYD self-association (Fig. 7A). This result sug-

gests that the binding sites for ASC PYD self-association and
pyrin PYD interaction coincide. To determine whether ASC
can self-associate at the pyrin inflammasome, we tested the
binding of full-length pyrin to GST-ASC PYD in the presence
or absence of soluble ASC PYD (Fig. 7B). In this experiment, the
interaction of full-length pyrin with GST-ASC PYD was pro-
moted in the presence of soluble ASC PYD, indicating that ASC
PYD can self-associate and interact with full-length pyrin.
These data are consistent with the ability of ASC to cluster at
the pyrin inflammasome (9).

Binding Modes of Pyrin and ASC PYDs—Models for the inter-
action between the pyrin and ASC PYDs were generated using
each of the three binding sites identified on pyrin PYD (Fig. 2A)
in the molecular docking program HADDOCK (51). Further-
more, we compared the resulting models with the three con-
served interaction modes that have been identified in com-
plexes of the structurally related death domain (DD) and CARD
subfamilies (59 – 62). For docking studies, we surmised that
clusters of oppositely charged residues on the two different
PYDs would interact, and thus we defined the active sites for
each of the interactions accordingly. When Glu14 (helix �1) in
site 1 of pyrin PYD was defined as an active residue, and resi-
dues Lys21 (helix �2) and Arg41 (helix �3) were defined as active
on ASC PYD, analysis of the resulting model (Fig. 8A) suggests
an interaction that is similar to a death fold domain type I inter-
action. The type I interaction typically involves helices �1 and
�4 of one domain interacting with helices �2 and �3 of a second
domain (20). However, the model does not support a role for
helix �4 of pyrin PYD. When Lys25 (helix �2) and Arg42 (helix
�3) in site 2 of pyrin PYD were defined as active residues, and
Asp10 and Glu13 (helix �1), Asp48 (�3-�4 loop), and Asp51 and
Asp54 (helix �4) were defined as active residues on ASC PYD,
the resulting model also resembles a type I interaction (Fig. 8B).
These first two models of a pyrin-ASC PYD complex are simi-
lar to the ASC PYD homodimer model, which is a type I interac-
tion (30). This is not surprising given the similarity between the
interaction sites. When Arg75 (helix �5) and Arg80 (helix �6) in
site 3 of pyrin PYD were defined as active residues, and Asp10,
Glu13, Asp48, Asp51, and Asp54 were again defined as active
residues on ASC PYD, the resulting model (Fig. 8C) suggests
that it is similar to a type II interaction that involves helices �5
and �6 of one domain interacting with helix �4 and the �4-�5
loop of another domain. Notably, the spatial arrangement of the
three interaction sites on pyrin PYD indicates that it can engage
in all three modes of interaction with ASC simultaneously with-
out any steric hindrance (Fig. 8D). These data indicate that each
pyrin PYD can recruit multiple ASC molecules to the inflam-
masome and subsequently drive ASC clustering and activation
of procaspase-1 and/or procaspase-8.

FMF-associated Pyrin PYD Mutants Retain Interaction with
ASC—To gain further insights into assembly and function of
the pyrin inflammasome, we tested the effect of the FMF-asso-
ciated mutations R42W and A89T on pyrin PYD interactions.
We first examined the effect of the mutations on interaction of
the pyrin PYD in isolation. The R42W mutant had a decreased
interaction with ASC PYD, whereas interaction of the A89T
mutant was comparable with that of wild-type pyrin PYD (Fig.
9A). Similar results were obtained when interaction with full-
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length ASC was tested (Fig. 9B). Interestingly, the R42W muta-
tion had a milder effect on ASC binding than R42A (Figs. 1D
and 9C).

To examine the effect of the FMF mutations on the intramo-
lecular interaction between pyrin PYD and the B-box domain,
we generated an N-terminal truncation of pyrin lacking the
PYD (pyrin�PYD). This construct has previously been used to
demonstrate interaction of pyrin PYD with the B-box (22). The
R42W mutation also diminished the interaction between PYD
and pyrin�PYD (Fig. 9D). In contrast, the A89T mutation
slightly enhanced this interaction.

Although the FMF-associated mutations had an effect on
interactions of the pyrin PYD in isolation, it was not clear what
effect these mutations would have in the context of full-length
pyrin. This is critical to understanding how these mutations
may lead to increased inflammation. The ability of full-length
pyrin to interact with ASC in vivo is governed by the relative
affinities of the intramolecular interaction between the PYD
and B-box of pyrin, and the intermolecular interaction with
ASC. To investigate the effect of FMF-associated mutations on
interaction of full-length pyrin with ASC, HEK 293T cells were
transiently transfected with wild-type or mutant pyrin and
ASC. HEK 293T cells do not normally express pyrin, ASC, or
PSTPIP1, which make them an ideal system to reconstitute
these complexes (9, 22, 63). As shown in Fig. 9 (E and F), binding
of ASC to the R42W and A89T pyrin mutants is similar to that
of wild-type, in the presence or absence of PSTPIP1. Thus,
when expressed in transfected cells, the FMF-associated muta-
tions do not appear to affect pyrin interaction with ASC.

Biophysical Properties of Pyrin PYD and Effects of FMF-asso-
ciated Mutations—Amino acid sequence alignment indicated
that the residue corresponding to Arg42 of pyrin PYD is a tryp-
tophan in several PYDs including NLRP4, NLRP6, NLRP7,
NLRP12, and NLRP14 (Fig. 6). Furthermore, it has been postu-
lated that the FMF-associated mutation, R42W, in pyrin PYD
alters the helical propensity of helix �3 and stabilizes it via
hydrophobic interactions (34, 41). This suggests that there may
be a structural advantage to having a tryptophan at this position
in the short helix �3. Moreover, although the FMF-associated
R42W mutation reduced interaction with ASC and with the
pyrin B-box domain, it was not clear whether this was due to
structural effects. Therefore we tested the effect of the two
mutations, R42W and A89T, on the structural and biophysical
properties of pyrin PYD.

To examine the effects on structure, purified wild-type and
mutant pyrin PYDs were initially analyzed using CD spectros-
copy (Fig. 10A). As expected, the far-UV CD spectrum of pyrin
PYD exhibits characteristic features of an �-helical protein,
with a double minimum at 208 and 222 nm and a strong positive
peak at 195 nm. Analysis of the CD spectrum using DichroWeb
(55) predicted 86% �-helix, consistent with the high helical con-
tent of the pyrin PYD structure. The far-UV CD spectrum of the

A89T mutant was identical to that of the wild-type pyrin PYD,
indicating that the A89T mutation does not alter the secondary
structure of the protein. A subtle but distinct difference in the
CD spectrum of the R42W mutant was a change in the ratio of
the 208/222 minima, with the 222 minimum becoming more
shallow. Although tryptophan residues can make a significant
contribution to the CD of proteins in the far-UV, they tend to
increase absorption at 222 nm (64, 65), which is contrary to the
observed effect. Thus, the change in ratio may be due to an
alteration in helix packing, which is reported to reduce the 222/
208 ratio (66).

As a second approach to assess the effect of the R42W and
A89T mutations on structural integrity, we measured the rela-
tive stability of the wild-type and mutant pyrin PYDs by moni-
toring unfolding in response to chemical and thermal denatur-
ation (Fig. 10, B and C). Both the chemical and thermal
denaturation data indicate that pyrin PYD undergoes a two-
state unfolding transition. Surprisingly, the R42W mutation
increased stability of the pyrin PYD to both chemical and ther-
mal denaturation. The �Gunfolding of the R42W mutant (21.1 kJ
mol�1) is almost twice that of wild-type pyrin PYD (12.4 kJ
mol�1). In contrast, the stability of the A89T mutant was
slightly decreased (�Gunfolding � 11.4 kJ mol�1) compared with
wild-type pyrin PYD. Consistent with the observations from
chemical denaturation, the thermal unfolding midpoint (Tm) of
the R42W mutant was increased to 62.5 °C compared with
wild-type pyrin PYD (Tm � 57 °C), whereas that of the A89T
mutant was decreased to 53 °C (Fig. 10C).

To distinguish between the two effects of the R42W muta-
tion, which are loss of the positively charged arginine side chain
and introduction of a bulky hydrophobic tryptophan residue,
we also determined the stability of the R42A mutant. Unfolding
in response to chemical and thermal denaturation showed that
the R42A mutant was only slightly more stable than wild-type
pyrin PYD with �Gunfolding of 15.0 kJ mol�1 and Tm of 59.5 °C
(Fig. 10, B and C).

Finally, to assess the extent of conformational perturbations
associated with the FMF mutations in greater detail, wild-type
and mutant pyrin PYDs were compared using NMR spectros-
copy (Fig. 10, D and E). Consistent with the CD results, the
two-dimensional 1H-15N HSQC spectrum of the A89T mutant
showed only a few altered resonances localized to adjacent res-
idues, confirming that there were no major structural changes
(Fig. 10, F and G). In contrast, the R42W mutant exhibited more
extensive spectral perturbations, affecting not only adjacent
residues in helix �3 but also affecting residues in helices �1 and
�2, some of which are far removed in the sequence and struc-
ture (Fig. 10, H and I). Although the R42W mutation has a
greater effect on structure than the R42A mutation, it stabilizes
the pyrin PYD and retains interaction with ASC PYD (Fig. 9C).
Stabilization of pyrin PYD by the presence of a tryptophan res-
idue at position 42 is likely to be due to creation of additional

FIGURE 3. The majority of pyrin PYD mutant proteins retain structural integrity. A–F, overlay of the two-dimensional 1H-15N HSQC spectra of wild-type
(black) and mutant (red) pyrin PYD proteins E14A, E22A, R42A, E63A, R75A, and R80A, respectively. All spectra were recorded in 50 mM sodium phosphate, pH
4, and 150 mM NaCl at 25 °C. Residues that show chemical shift changes are indicated with the one-letter amino acid code and sequence number. Horizontal
lines connect peaks corresponding to side chain NH2 groups of Asn and Gln residues that exhibit changes in chemical shifts. G–L, ribbon diagrams of the pyrin
PYD structure showing residues with their chemical shifts perturbed by the E14A, E22A, R42A, E63A, R75A, and R80A mutations, respectively. Mutated residues
are colored red, and residues with chemical shift changes are colored orange, and their side chains are shown.

Multifaceted Binding Modes of Pyrin and ASC Pyrin Domains

AUGUST 22, 2014 • VOLUME 289 • NUMBER 34 JOURNAL OF BIOLOGICAL CHEMISTRY 23511



hydrophobic contacts in the core of the structure. This may
induce slight changes in helix packing and also stabilize the
�2-�3 loop, which would be consistent with the changes seen in
the NMR spectrum of R42W and the change in the 208/222
ratio in the CD.

DISCUSSION
Inflammasomes are macromolecular complexes that play a

key role in mediating inflammatory or apoptotic responses to
foreign or cellular danger signals (3, 10). Dysregulated inflam-
masome activation is associated with the progression of many
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common diseases (67) in addition to several inherited autoin-
flammatory diseases (3). Consequently, inflammasome compo-
nents are targets for the development of therapeutic agents
(68). However, the molecular details of inflammasome com-
plexes are poorly understood. Inflammasome assembly is medi-
ated by PYD and CARD domains, which are members of the
death fold superfamily (19, 20). The adaptor protein ASC,
which consists of a PYD and a CARD domain, plays a pivotal
role in inflammasome assembly. One of the early events in
inflammasome assembly is the recruitment of ASC via a homo-
typic PYD interaction to activated oligomerized pattern recog-
nition receptors (10). To gain insights into recruitment of ASC
to the pyrin inflammasome and to identify the binding modes of
PYDs, we have examined the interaction between ASC PYD
and pyrin PYD. Our data reveal a complex scenario whereby
three binding sites on pyrin PYD and two binding sites on ASC
PYD are important for interaction. These findings are consis-

tent with assembly of an oligomeric complex stabilized by mul-
tiple interactions between PYDs.

Identification of the binding sites on pyrin and ASC PYDs
was achieved using mutagenesis and in vitro binding studies. A
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vation of residues that mediate interaction of pyrin and ASC PYDs.
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pyrin PYD. Bound ASC PYD was detected using an anti-ASC antibody, and
bound pyrin PYD was detected using an anti-His antibody. GST-ASC PYD was
detected using Ponceau S stain. An amount representing 20% of the input of
ASC PYD and pyrin PYD detected by Coomassie stain is shown. B, binding of in
vitro translated [35S]methionine-labeled pyrin to bead-bound GST-ASC PYD
or GST in the absence or presence of purified soluble ASC PYD. Bound
[35S]methionine-labeled pyrin was detected by phosphorimaging, whereas
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stain. An amount representing 10% of the input of 35S-labeled pyrin is shown.
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direct role for residues implicated in binding was further vali-
dated by NMR spectroscopy to demonstrate that the mutations
did not perturb protein structure. The residues important for
interaction of pyrin PYD localized to three distinct sites, which

we refer to as site 1 (including residue Glu14), site 2 (including
residues Lys25 and Arg42), and site 3 (including residues Arg75

and Arg80). The residues on ASC PYD that are important for
interaction with pyrin PYD overlap with residues that were pre-
viously implicated in ASC PYD self-association and interaction
with NLRP3 and POP1 (30). These residues include Asp10,
Glu13, Asp48, Asp51, and Asp54, which localize to an acidic sur-
face patch, and residues Lys21, Arg38, and Arg41, which localize
to a basic patch on ASC PYD. Interestingly, despite the
sequence diversity between ASC and pyrin PYDs, a residue
from each of the two interaction sites on ASC PYD, Glu13 and
Arg41, is conserved in pyrin PYD (Glu14 and Arg42, respec-
tively), and both residues are important for ASC binding. This is
consistent with conservation of these two interaction sites in
ASC and pyrin PYDs. Although a single residue of the third
binding site in pyrin PYD (comprising residues Arg75 and
Arg80) is conserved in ASC PYD (Arg74), this residue is not
critical for any ASC PYD interactions tested (this study and Ref.
30).

A short helix �3 is a characteristic feature of PYD structures,
and this region also appears to be functionally important. In
particular, Arg42 of pyrin and Arg41 of ASC were shown to be
important for their interaction (30). Our studies of the FMF-
associated R42W mutation in pyrin indicated that Arg42 could
be substituted by a tryptophan residue without disrupting ASC
interaction and also showed that this mutation stabilizes the
pyrin PYD. Although the R42W mutation decreased the inter-
action between ASC and pyrin PYD in isolation, oligomeric
full-length pyrin can overcome the effect of this single mutation
on interaction with ASC. This observation may also explain
how the arginine to tryptophan substitution in this position is
tolerated in other PYDs including NLRP6 and NLRP7, which
are known to bind ASC and assemble into higher order oligo-
mers (10). The corresponding tryptophan residue in helix �3 of
NLRP7 (Trp43) has been shown to mediate hydrophobic con-
tacts with helix �2, thus stabilizing helix �3 and the �2-�3 loop
(37). Similarly, the R42W mutation in pyrin PYD is likely to
increase stability via increased hydrophobic contacts between
helices �3 and �2. This would account for the change in helix
packing suggested by CD spectroscopy and further evidenced
by NMR data showing chemical shift changes for residues in
helices �1 and �2, as well as helix �3. As a result of an increased
hydrophobic core, the stability of the R42W mutant to chemical
and thermal denaturation was significantly increased. We infer
that the presence of an arginine residue at the corresponding
position in ASC PYD similarly allows increased dynamics of
helix �3 and the �2-�3 loop and promotes interactions of ASC
PYD. Interestingly, the R42W mutation reduced interaction of
pyrin PYD with the B-box domain, suggesting that it may
contribute to FMF by facilitating activation of the pyrin
inflammasome.

Our molecular docking studies showing that the three bind-
ing sites on pyrin PYD and the two binding sites on ASC PYD
can be engaged simultaneously without any steric hindrance
(this study and Ref. 30) are consistent with the multifaceted
binding modes that have been identified in the death fold super-
family (59 – 62). The death fold superfamily comprises the DD
and death effector domain subfamilies in addition to the PYD
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and CARD. All members of this superfamily play a key role in
assembly of apoptotic or inflammatory signaling complexes, to
which effector proteins such as caspases or kinases are
recruited to allow proximity-induced activation (19). The role
of DDs is best characterized as the structures of several oligo-
meric complexes have been determined including the PIDDo-
some (where PIDD is a p53-induced protein with a death
domain) (59); Myddosome (60); and Fas-FADD (Fas-associated
death domain protein) complex (61). These structures revealed
a multilayered helical arrangement of DDs such that each DD
can engage in up to six interactions simultaneously. However,
only three types of interactions have been observed in the com-
plexes determined to date (59, 69). In this study, the binding
modes of pyrin PYD and ASC PYD were elucidated based on
molecular docking using the interaction sites identified on both

PYDs. Sites 1 and 2 of pyrin PYD are predicted to mediate type
I interactions, whereas site 3 can engage in a type II interaction.
These data are consistent with conservation of the type I and
type II interactions in the PYD subfamily.

Notably, although our approach to identifying binding sites
has been unbiased, the spatial distribution of the three interac-
tion sites on pyrin PYD (Figs. 8D and 11A) is similar to the
distribution of corresponding type I and type II sites on a cen-
tral RAIDD (RIP-associated ICH-1 homologous protein with a
death domain) DD in the PIDDosome complex (Fig. 11B).
Additional type II and type III interaction sites are present on
RAIDD DD, raising the possibility that pyrin PYD could accom-
modate additional interactions. Furthermore, adjacent ASC
PYDs that are bound to pyrin (such as ASC PYD2 and PYD3
shown in Fig. 11A) may be able to associate via a type III inter-
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interaction of pyrin PYD with ASC PYD (A) or full-length ASC (B). C, comparative effect of the R42A and R42W pyrin PYD mutations on interaction with ASC PYD.
In A–C, purified His6-tagged WT and mutant pyrin PYDs were used for in vitro binding assays with bead-bound GST-ASC PYD, GST-ASC (full-length) or GST alone.
Bound protein was eluted with SDS-PAGE sample buffer, subjected to SDS-PAGE, and then transferred to a PVDF membrane. GST-ASC PYD, GST-ASC (full-
length), and GST alone were detected with Ponceau S stain, whereas His6-tagged WT and mutant pyrin PYDs were detected by immunoblotting with an
anti-His antibody. An amount representing 5% (A and B) or 10% (C) of the input of WT or mutant pyrin PYD used for binding studies is shown. D, effect of
FMF-associated mutations on interaction between pyrin PYD and B-box domain. A pyrin construct lacking the N-terminal PYD (pyrin�PYD) was in vitro
translated in the presence of [35S]methionine and incubated with bead-bound WT or mutant pyrin PYD fused to GST or with GST alone. Bound proteins were
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detected by phosphorimaging. An amount representing 10% of the input of 35S-labeled pyrin�PYD is also shown. E and F, effect of FMF-associated mutations
on interaction of full-length pyrin with ASC. Plasmids expressing Myc-tagged WT or mutant pyrin or empty vector (V) were co-transfected with a plasmid
expressing ASC into HEK 293T cells. Pyrin was immunoprecipitated (IP) with an anti-Myc antibody 24 h after transfection, and the immunoprecipitated
complexes were analyzed by Western blotting. In E, a plasmid expressing FLAG-tagged PSTPIP1 was also co-transfected. Blots were probed with antibodies to
ASC and pyrin and with an anti-FLAG antibody to detect PSTPIP1.
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action as observed for the corresponding adjacent DDs in the
PIDDosome (Fig. 11B). The importance of multiple binding
sites for the interaction between ASC and pyrin PYDs indicates
assembly of a complex higher order oligomer that is stabilized
by multiple interactions. We can rationalize models for ASC
recruitment to the pyrin inflammasome (Fig. 11, C–E) that take
into account the three key findings from this study: (i) each
pyrin PYD has three binding sites for ASC PYD; (ii) both ASC
PYD binding sites are required for stable interaction with pyrin
PYD; and (iii) ASC PYD can self-associate and interact with
full-length pyrin. These data suggest that three ASC PYDs can
be recruited to each PYD of a pyrin trimer. Two ASC PYDs that
are bound to pyrin by type I interactions will have a second

available binding site, allowing them to self-associate via
another type I interaction when they are in close proximity (Fig.
11, C and D). The use of multiple binding sites on ASC PYD is
likely to drive stable association and the ability of ASC to self-
associate, whereas interacting with pyrin is critical for
caspase-1 activation (9). The binding of self-associated ASC
PYDs to adjacent pyrin PYDs of a trimer also explains the
requirement for oligomerization of pattern recognition recep-
tors prior to ASC recruitment (10). Furthermore, additional
type II interactions between ASC and pyrin PYDs (Fig. 11E)
could drive the clustering of multiple ASC-pyrin trimer com-
plexes to form a single large inflammasome complex that is
visible by microscopy (9). Self-association of the CARD domain

FIGURE 10. Effects of FMF-associated mutations on the structure and stability of pyrin PYD. A, far-UV CD spectra of WT (gray line), A89T mutant (dotted
black line), and R42W mutant (solid black line) pyrin PYDs. B and C, purified WT and mutant pyrin PYDs were subjected to chemical denaturation with urea (B)
or thermal denaturation (C). Filled circles, WT; filled triangles, A89T; filled squares, R42W; open diamonds, R42A. In B, the data were fitted to a two-state unfolding
model (56), and the fraction of unfolded protein was plotted as a function of urea concentration. D and E, overlay of the two-dimensional 1H-15N HSQC spectra
of wild-type (black) and mutant (red) pyrin PYD proteins A89T and R42W, respectively. All spectra were recorded in 50 mM sodium phosphate, pH 4, and 150 mM

NaCl at 25 °C. Residues that show chemical shift changes are indicated with the one-letter amino acid code and sequence number. Horizontal lines connect
peaks corresponding to side chain NH2 groups of Asn and Gln residues that exhibit changes in chemical shifts. In E, the peaks corresponding to the Trp42

backbone NH and side chain NH (W42�) are labeled. F and H, histograms of the weighted backbone amide chemical shift changes (��av) versus residue number
for the A89T and R42W pyrin PYD mutants, respectively. The dashed line indicates one standard deviation higher than the mean ��av value (0.04 and 0.14 ppm,
respectively). G and I, ribbon diagrams of the pyrin PYD structure showing residues with chemical shifts perturbed by the A89T and R42W mutations,
respectively. Mutated residues are colored red, and residues with chemical shift changes greater than one standard deviation above the mean ��av are colored
orange, and their side chains are shown.
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of ASC (not illustrated) is also likely to drive compaction of the
inflammasome into a speck, because multiple surfaces on ASC
CARD have recently been shown to be important for the for-
mation of ASC foci (31).

In summary, this study gives new insights into the architec-
ture of the inflammasome. Conservation of interaction modes
and similarities in the spatial distribution of binding sites
between PYDs and DDs suggest parallels between the assembly
of PYD and DD complexes. Furthermore, our data reveal how
ASC can be recruited to the inflammasome and allowed to clus-
ter, which is pivotal for activation of procaspase-1 and pro-
caspase-8. Consideration of these findings and the proposed
models will allow strategic planning to produce larger com-
plexes of PYDs for future structural studies that are needed to
fully understand the mechanism of inflammasome assembly.
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