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We study a climatologically important interaction
of two of the main components of the geophysical
system by adding an energy balance model for
the averaged atmospheric temperature as dynamic
boundary condition to a diagnostic ocean model
having an additional spatial dimension. In this
work, we give deeper insight than previous papers
in the literature, mainly with respect to the 1990
pioneering model by Watts and Morantine. We
are taking into consideration the latent heat for
the two phase ocean as well as a possible delayed
term. Non-uniqueness for the initial boundary
value problem, uniqueness under a non-degeneracy
condition and the existence of multiple stationary
solutions are proved here. These multiplicity results
suggest that an S-shaped bifurcation diagram
should be expected to occur in this class of models
generalizing previous energy balance models. The
numerical method applied to the model is based

2014 The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2014.0376&domain=pdf&date_stamp=2014-08-27
mailto:diaz.racefyn@insde.es


2

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140376

...................................................

on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction
and Runge–Kutta total variation diminishing for time integration.

1. Introduction
This paper presents new contributions on the mathematical study of a climate model coupling
atmosphere and ocean under a simplified formulation. Our main goal is to exhibit the possible
multiplicity of solutions owing to presence of an abruptly distributed coalbedo, such as it was
formulated in terms of a discontinuous function by the climatologist M.I. Budyko (see [1]).
Among the new effects considered with respect to previous mathematical treatments in the
literature, we consider here a positive latent heat for the ocean and a general memory term for
the top ocean surface temperature. Moreover, we present here the numerical approximation of
solutions by means of finite volume methods. We shall also indicate many other references on
the mathematical treatment of this class of problems, in a survey style, trying to be useful in the
necessary dialogue between geophysical and mathematician experts.

Our model tries to understand the deterministic interactions between two of the main
components of the climatic system. It is well known that in detailed mathematical models of
the atmosphere, the ocean and ice sheets are available (see, for instance, the proceedings of
several meetings devoted to this topic, as it was the case of the [2–5]). Nevertheless, investigating
inherently transient phenomena with periods of 100–100 000 years is, of course, out of question
for such sophisticated models. This is one reason why simpler models form useful tools in
theoretical climatology. In addition, the mathematical treatment of such models is far to be
obvious and requires the application of finer techniques of the mathematical and numerical
analysis of nonlinear partial differential equations.

Our model takes in account, at least implicitly, the multiple spatial scales which arise in such
complex coupling. Indeed, instead of considering the atmosphere temperature we shall work,
as usual in the theory of energy balance model (EBM), with the averaged surface temperature
on suitable spacial and time local scales. It is well known that in spite of its simplicity, this
kind of averaged equations preserve a high sensitivity with respect to solar parameters. This
is very useful for the study in very large timescales. Nevertheless, because the heat capacity
of the ocean is so large, any departure from equilibrium in the ocean must have a fairly large
effect on the thermodynamic state of the atmosphere. As for the ocean, although we can also
simplify its modelling, we must maintain the fact that cold water in a few localized regions at high
latitudes sinks is distributed throughout the deep ocean by currents and slowly rises towards the
surface. So, following [6], we maintain the ocean depth scale for the deep ocean and identify the
ocean-mixed layer with the averaged atmospheric surface. This type of models allows us to find
some explanations for the Glacial–Holocene transition (see [6]). The inclusion of some stochastic
internal and external variations imperfectly known, as it is the case of solar luminosity variations,
volcanic aerosols and CO2, has already studied for the associate surface EBM [7–10].

It is clear that more realistic ocean models can be also considered in order to investigate the
interactions between time and space scales of both climate subsystems: for instance, the way in
which averaging processes in media with different characteristic scales may produce the presence
of memory terms in the averaged equations can be found in many texts [11]. This explains why
different delayed terms, or more generally speaking non-local terms, may arise in the modelling
of the EBMs owing to the own averaging method (see, e.g. the exposition made in [8] and the
mathematical treatment made in [12,13]). But, sometimes, the presence of some memory terms
can be argued from other modelling proposes (for instance, Bhattacharya et al. [14] study the
effects of a delayed term to take into consideration the important role of the clouds on the
albedo). Moreover, there are many reasons to consider the occurrence of a general delay term
in some of the differential equations. For instance, a different justification can be obtained by
regarding some others key phenomena, such as the El Niño/southern oscillation (ENSO) in the
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tropical Pacific and its implications in the climate’s interannual variability and in global warming.
Although in this case the timescale must be shorter than in other palaeoclimate models, we recall
that in many previous EBMs seasonal effects have been taken into account (for instance, the
insolation function S(t, x) is then taken as time-dependent) and so, some justification of the past
glaciations were obtained in [15]. Here, we shall only include a delayed term in the deep ocean
temperature equation following the approach initiated in the papers [16–19], among others, to
simulate seasonally varying internal parameters.

As said before, even if the model under consideration responds to simplified modelling
arguments, the presence of several nonlinear terms, some of them not always differentiable,
makes that its mathematical treatment cannot be reduced to the mere direct application of
the differential delayed equations (DDEs) theory [20,21]. In §2, we state the model under
consideration and the main structural and constitutive assumptions. The study of solutions of the
transient regime is presented in §3. Because there is no hope to obtain classical solutions of the
system, we introduce the notion of weak solution we shall deal with. We prove the existence of
such type of solutions under quite general assumptions on the data and, which is more unusual in
the study of parabolic type systems, we prove that, in general, there is no uniqueness of solutions
when the coalbedo is assumed to be discontinuous. Because we also prove that, in this case,
there is a continuum of solutions for suitable initial data, it is not possible to apply the results
of the classical bifurcation theory for transient systems. Instead of that, we prove the uniqueness
of weak non-degenerate solutions (corresponding to the case in which the atmospheric surface
temperature arrives not too flat near the boundary of the region where the coalbedo changes,
i.e. on the surface where it becomes abruptly discontinuous). Let us recall that new aspects that
have been taken into consideration in this type of coupled models are the ocean latent heat and
the presence of a memory term.

Once we know the global existence of solutions on any arbitrary time horizon T, it can be
proved (see [22,23] for a special case of the present system) that the assumptions made here on
the data exclude any other elements in the omega limit set (when t → +∞) different from the
solutions of the stationary system. Perhaps this is the moment to point out that in many other
systems the memory may lead to different qualitative properties of solutions with respect to the
same system but without memory. We shall not develop this approach here, but we refer the
reader to a series of papers where this philosophy was carried out for different types of delayed
systems (see [24–26]).

Coming back to the consideration of the associated stationary system, we show, in §4, the
multiplicity of solutions in terms of the solar constant Q. Again, our result is not an automatic
application of the general bifurcation theory but requires the construction of suitable families
of super and subsolutions well adapted to our setting. An S-shaped bifurcation curve can be
obtained in some special cases (see [27]).

The above-mentioned mathematical analysis of the model allows to start the study of the
controllability of some models connected with the climate system and, in particular with EBMs
and related problems (see [28,29] for the case of a single EBM equation and [30,31] for some
related problems). Moreover, it is possible to obtain a mathematical meaning to the proposals
already present in some late works by von Neumann (see [32,33]).

Finally, in §5, we present several numerical experiments on the coupled model by means
of a finite volume approach with weighted essentially non-oscillatory (WENO)-7 spatial
reconstruction and third-order TVD Runge–Kutta for time discretization (for the application of
the finite-element method, see [34]). We compare the numerical solution of the model with and
without the effect of the ocean latent heat, and we also present a numerical experiment carried out
by considering the effects of the memory term. Although the data in such experiments could be
made more realistic, we think that the main value of such a numerical approach is to show how
it is possible to make accessible to the quantification some sophisticated mathematical analysis
of complex nonlinear systems, involving, for instance discontinuous albedo data, for which the
solutions satisfy the requirements only in a weak sense. As Jacques-Louis Lions (1928–2001) said:
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if we accept that a model without data is a worthless predictive model, it is also true that data without a
good model produce only confusion (quoted in [35]).

2. The mathematical model
EBMs were introduced, independently by Budyko [1] and Sellers [36] (some pioneering model is
due to S. Arrhenius in 1896). Such type of climatological models has a diagnostic character and
intended to understand the evolution of the global climate on a long timescale [8,37,38]. Their
main characteristic is the high sensitivity to the variation of solar and terrestrial parameters. They
have been used in the study of the Milankovitch theory of the ice-ages [15].

The EBMs study a distribution of surface atmospheric temperature, u(t, x), which is
expressed pointwise after some averaging process in space (the spatial variable x is in a small
neighbourhood Bδ(x) in the Earth’s surface) and in time (on a small interval (t − t̃, t + t̃))

u(t, x) = 1

2t̃|Bδ(x)|
∫ t+t̃

t−t̃

∫
Bδ (x)

T(a, s) da ds.

The pointwise temperature T(a, s) is obtained from the thermodynamics equation of the atmosphere
primitive equations (see e.g. [39] for a mathematical study of those equations and [12,40] for the
application of averaging processes in this context).

More simply, the energy balance model can be formulated by using the energy balance
on the Earth’s surface: internal energy flux variation = Ra − Re + D, where Ra (respectively Re)
represents the absorbed solar (resp. the emitted terrestrial energy flux) and where D is the surface
heat diffusion. By identifying the Earth’s surface with a compact Riemannian manifold without
boundary M (for instance, the sphere S2 in R

3), the distribution of temperature, u(t, x), becomes a
function of the spatial x and t time variables. The timescale is considered relatively long. The
absorbed energy Ra depends on the planetary coalbedo β. The coalbedo function represents the
fraction of the incoming radiation flux which is absorbed by the surface. In ice-covered zones,
reflection is greater than over oceans, therefore, the coalbedo is smaller. One observes that there is
a sharp transition between zones of high and low coalbedo. In the energy balance climate models,
a main change of the coalbedo occurs in a neighbourhood of a critical temperature for which ice
become white, usually taken as u = −10◦C. The coalbedo can be modelled by different monotone
increasing functions (discontinuous in the case of Budyko model and Lipschitz continuous for
Sellers model). A more realistic albedo parametrization can be obtained by assuming that the
coalbedo function β also depends on the spatial coordinates of each point of the Earth (specially
on its latitude: see [38, §3.3]). Here, we mainly consider the Budyko model because it produces
more clear answers when one studies the evolution of the icecaps.

With respect to the surface temperature diffusion, we send the reader to the modelling
performed for instance in [8] for the case of a linear second-order differential operator.
Nevertheless, a quasi-linear diffusion operator of the type div(k(x, u, ∇u)∇u) was proposed in
Stone [41] as a better eddy diffusive approximation to account for the effect of large-scale
atmospheric circulation, where k(x, u, ∇u) is a nonlinear eddy diffusion coefficient, in particular,
k = b(x)|∇u|. In our model, we shall follow Stone’s approach to represent the eddy diffusive terms
by setting k(x, u, ∇u) = k(x)|∇u|p−2, with p ≥ 2 and k(x)>α > 0.

With respect to the simplified model on the deep ocean, we shall follow the modelling derived
in [6] but adding a positive latent heat, γ , which plays an important role in the formation of ice
sheets. With respect to the memory term, we recall that such type of terms were proposed for
the study of ENSO events. For instance, in [17], it is taken G(t, x, u, u(t − τ )) = −u + u3 + αu(t − τ ),
for some α, τ > 0. We could also include some memory terms inside the albedo and latent heat
expressions (as in [42]), but the detailed mathematical treatment is much more technical. Note
that because u will be a globally bounded function, without loss of generality, we can modify
the previous example function outside a compact of R

2 (concerning the values of u and u(t − τ ))
in order to obtain a globally Lipschitz function. Obviously, the case G(t, x, u, u(t − τ )) = G(t, x, u)
represents the case without delayed effects, such as it was considered by many previous authors.
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Note also, that if τ > 0, then the initial condition for the unknown u needs to be given on the set
[−τ , 0] × M.

Summarizing, our model will represent the interior and surface temperature of a global ocean
Ω , so that, the unknown are respectively given by U :Ω × [0, T] → R and by u : M × [−τ , T] → R,
for an arbitrary T> 0. Here, we assume

(H1) Ω is a bounded and open set of R
3 with maximum depth H and ∂Ω =M ∪ N . M and

N are C∞ two-dimensional compact connected orientated Riemannian manifold of R
3

without boundary and dist(M,N ) = H.
Let (P3D) be the problem

∂γ (U)
∂t

− div(∇U) + w
∂U
∂z

� 0 in (0, T) ×Ω ,

∂u
∂t

− div(|∇Mu|p−2∇Mu) + ∂U
∂n

+ F(x, ∇Mu) + G(t, x, u, u(t − τ ))

∈ 1
ρc

QS(t, x)β(u) + f (t, x) in (0, T) × M,

U|[0,T]×M = u,

F̂(x, ∇N U) + ∂U
∂z

= 0 in (0, T) × N ,

U(0, x, z) = U0(x, z) in Ω ,

u(s, ·) = u0(s, ·) on [−τ , 0] × M.

Here, ∇M and div are understood in the sense of the Riemannian metric on M [39,43]. The rest
of structural conditions are the following:

(H2) β is a bounded maximal monotone graph, i.e. |v| ≤ M for all v ∈ β(s), and all s ∈ D(β) = R.
(H3) γ is the graph

γ (s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k1s if s< 0,

[0, L] if s = 0,

k2s + L if s> 0,

with k1 > 0, k2 > 0 and L> 0.
(H4) G : (0, T) × M × R × R → R is a continuous function, G(t, x, σ , η) is a globally Lipschitz

function with respect to σ (i.e. u) and η (i.e. u(t − τ )), such that G(t, x, 0, 0) = 0 and
|G(t, x, σ , η)| ≥ C(|σ |r + |η|r) for some r> 0. Moreover, τ ≥ 0.

(H5) S : (0, T) × M→ R, S1 ≥ S(t, x) ≥ S0 > 0 a.e. x ∈M.
(H6) f ∈ L∞((0, T) ×Ω).
(H7) F : M × TM→ R and F̂ : N × TN → R are linear on the tangent bundle spaces TM and

TN with bounded coefficients.
(H8) w ∈ C1(Ω̄).

Remark 2.1. We point out that, for the sake of simplicity, we have assumed here isotropic (and
constant) diffusion matrices in both equations. The mathematical treatment of the case of non-
constant definite positive diffusion matrices is quite similar and we drop the details.

Remark 2.2. The case in which the solar constant Q is assumed, in fact, as a periodic or almost
periodic time function has been intensively studied in the literature (see, e.g. [8,44] and its many
references).

We can reduce the dimension of the model by assuming that the surface M is a sphere
simulating the Earth surface and that the temperature is constant over each parallel. So,
the solution of the obtained model depends only on latitude, depth and time. For different
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purposes, it is useful to particularize the above system to the simpler case of a one-dimensional
EBM (the surface temperature is defined on [0, T] × [−1, 1]: i.e. here M={(x, 0) : x ∈ [−1, 1]} :=
Γ0) coupled with a two-dimensional deep ocean (Ω = [−1, 1] × [0, −H], and so of boundaries
N = {(x, −H) : x ∈ [−1, 1]} := ΓH, Γ−1 := {(−1, z) : z ∈ [−H, 0]} and Γ1 := {(1, z) : z ∈ [−H, 0]}). The
resulting equations of the model (this time with non-isotropic diffusion coefficients and with
F(x, ∇Mu) := wxux and F̂(x, ∇N U) := wxUx and with a parameter D> 0 modelling the mixed layer
depth) now with x = sinϕ, ϕ representing the latitude, and z ∈ [−H, 0], are the following

γ (U)t −
(

KH

R2 (1 − x2)Ux

)
x

− KVUzz + wUz � 0 in Ω × (0, T),

wxUx + KVUz = 0 in ΓH × (0, T),

Dut − DKH0

R2 ((1 − x2)p/2|ux|p−2ux)x + KV
∂U
∂n

+ wxux + G(t, x, u, u(t − τ ))

∈ 1
ρc

S(t, x)Qβ(u) + f (t, x) in Γ0 × (0, T),

U|[0,T]×[−1,1] = u,

(1 − x2)Ux= 0 in (Γ−1 × (0, T)) ∪ (Γ1 × (0, T)),

U(0, x, z) = U0(x, z) in Ω ,

u(s, x, 0) = u0(s, x, 0) on [−τ , 0] × Γ0. (P2D)

Remark 2.3. We note that we can introduce the change of variable U = α(V), with α := γ−1,
and then the equation in the inner ocean can be written as

Vt −
(

KH

R2 (1 − x2)α(V)x

)
x

− KVα(V)zz + wα(V)z = 0 in Ω × (0, T),

where

α(s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

s
k1

if s< 0,

0 if 0< s< L,

1
k2

(s − L) if s> L.

(2.1)

The terms γ and α (as well as β) are maximal monotone graphs (see [45]). The main difference
between γ and α is that γ is always multivalued (once we assume L> 0) although, in the
atmosphere temperature equation, the coalbedo β becomes a multivalued graph only when it
is associated with a discontinuous coalbedo function, such as it was proposed in [1]. This is the
reason why in the previous inner ocean equation and the surface EBM it appears the symbols ∈
and � instead of the usual equality symbol.

3. On the evolution problem

(a) Existence of solutions
We define the functional space V := {u ∈ L2(M) : ∇Mu ∈ Lp(TM)}, where TM= ∪p∈MTpM is the
tangent bundle space (see [46]). Owing to the presence of possible multivalued graphs (associated
with discontinuous functions), and the possible choice p �= 2, we cannot expect to solve the system
in a classical sense but only in a weak way.

We say that the pair (U, u) with U ∈ C([0, T] : L2(Ω)), u ∈ C([−τ , T] : L2(M)) is a bounded weak
solution of (P3D) if

(i) (U, u) ∈ L∞((0, T) ×Ω) × L∞((−τ , T) × M) ∩ L2(0, T : H1(Ω)) × Lp(−τ , T : V),
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(ii) there exist Z ∈ L∞((0, T) ×Ω) and h ∈ L∞((−τ , T) × M) with Z ∈ γ (U) a.e. (t, x) ∈ (0, T) ×
M, h ∈ β(u) a.e. (t, x) ∈ (−τ , T) × M and such that

∫
Ω

Z(T, x)φ(T, x) dA −
∫T

0
〈φt(t, x), Z(t, x)〉H1(Ω)×H1(Ω)′ dt +

∫T

0

∫
Ω

∇U∇φ dA dt

+
∫T

0

∫
Ω

w
∂U
∂z
φ dA dt −

∫T

0

∫
M
∂U
∂n
φ dS dt +

∫T

0

∫
N

F̂(x, ∇N U)φ dS dt

=
∫
Ω

U0(x)φ(0, x) dA,

and
∫
M

u(T, x)ψ(T, x) dA −
∫T

0
〈ψt(t, x), u(t, x)〉V′×V dt +

∫T

0

∫
M

|∇u|p−2∇u∇ψ dS dt

+
∫T

0

∫
M

G(t, x, u, u(t − τ ))ψ dS dt +
∫T

0

∫
M
∂U
∂n
ψ dS dt +

∫T

0

∫
M

F(x, ∇Mu)ψ dS dt

=
∫T

0

∫
M

QS(t, x)h(t, x)ψ dA dt +
∫T

0

∫
M

fψ dA dt +
∫
M

u0(0, x)ψ(0, x) dS

for every test function (φ,ψ) ∈ L2(0, T : H1(Ω)) × Lp(−τ , T) : W1,p(M)) such that (φt,ψt) ∈
L2(0, T; H1(Ω)′) × Lp′

(0, T; V′). Here, 〈, 〉V′×V denotes the duality product in V′ × V.

Theorem 3.1. Let U0 ∈ L∞(Ω) and u0 ∈ C((−τ , 0] : L∞(M)). Then, there exists at least a bounded
weak global solution of (P3D).

Proof. We write the inner ocean equation as

∂V
∂t

− div(∇α(V)) + w
∂α(V)
∂z

= 0 in (0, T) ×Ω ,

with U = α(V) and α := γ−1, as mentioned in the remark 2.3 (note that now α is singlevalued
and so we do not need the symbol ∈). We approximate the maximal monotone graph α by some
smooth increasing functions αε . Then, we obtain a family of new problems, that we shall denote
by (Pε). The main idea to solve (Pε) is to apply theorem 5.3.1 of [47] related to abstract functional
equations. We shall construct an operator Tε and to find a fixed point of it leading to a solution of
(Pε). This will consist of several intermediate steps.
Step 1. For every h ∈ L∞((0, T) × M), we consider the problem (Ph,ε) by replacing the coalbedo
term in (Pε) by h. The proof of the existence of solution of (Ph,ε) is inspired in [48,49]. We define the
vectorial operator Aε by Aε(U, u) �−→ (AεU, Bu) on the domain D(Aε) = {(U, u) ∈ L2(Ω) × L2(M) :
AεU ∈ L2(Ω), Bu ∈ L2(M), αε(U)|M = u}, where

AεU = −div(∇αε(U)) + w
∂αε(U)
∂z

,

Bu = −div(|∇Mu|p−2∇Mu) + ∂αε(U)
∂n

+ F(x, ∇Mu).

We also define the operator G(t)u := G(t, x, u, u(t − τ )). Then, the existence of solution of (Ph,ε) is a
consequence of the compactness of the semigroup associated with the operator Aε(U, u) (through
theorem 5.3.1 of [47]) and the results of [48,49] leading, up very small variations, to the following
properties of Aε .

Lemma 3.2. There exists λ0 > 0 such that for every λ> λ0, we have

(i) Aε + λI is T-accretive in L1(Ω) × L2(M).
(ii) R(Aε + λI) = L1(Ω) × L2(M).
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Note that (i) allows us to prove a comparison principle for the system

λU + AεU = f in L1(Ω),

λu + Bu = g in L2(M),

αε(U)|M = u

and F̂(x, ∇N αε(U)) + ∂αε(U)
∂z

= 0 N .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

In fact, if f1 ≤ f2 and g1 ≤ g2, then the solutions of (3.1) with f = f1, g = g1 and of (3.1) with f = f2,
g = g2 satisfy U1 ≤ U2 and u1 ≤ u2.

The small variation with respect to the proof given in [49] concerns the proof of (ii) in
lemma 3.2. We note that the operator B can be expressed as B1 + B2 + B3, where B1 and B2 are
maximal monotone operators in L2(M),

B1u = −div(|∇Mu|p−2∇Mu)

and the pseudo-differential operator B2u = ∂αε(U)/∂n, where U is the solution of the problem

λU + AεU = f in L2(Ω)

αε(U)|M = u.

The operator B3 is defined by B3u = F(∇Mu). This operator is not necessarily monotone but it is
dominated (in the usual sense: see [45]) by the operators B1 and B2. Consequently, it is possible
to apply the abstract results of perturbation of maximal monotone operators (see e.g. proposition
2.10 of [45]) and we arrive at the desired conclusion.
Step 2. We closely follow the proof of theorem 5.3.1 of [47] and the one given in theorem 3 of [43]
for a related problem. We define the operator Tε : h → g, where g ∈ β(uh) and uh is the solution of
(Ph). It is easy to see that every fixed point of Tε is a solution of (Pε). Moreover, Tε satisfies the
hypotheses of Kakutani fixed point theorem [47], and so, if we denote X = Lp(0, T : L2(M)), then

(i) K = {h ∈ Lp((0, T), L∞(Ω)) : ||h(t)|| ≤ C0 a.e. t ∈ (0, T)} is a non-empty, convex and weakly
compact set of X;

(ii) Tε : K �→ 2X with non-empty, convex and closed values such that Tε(g) ⊂ K, ∀ g ∈ K and
(iii) graph(Tε) is weakly×weakly sequentially closed.

Consequently, Tε has at least one fixed point in K. Finally, arguing as in the proof of theorem
5.3.1 of [47], we prove the existence of a weak solution of (Pε).

Finally, we shall pass to the limit when ε→ 0. To do that, we shall use several a priori estimates.
First, owing to the assumptions on the initial data and the lemma 3.2, we know that there exists
M> 0, independent of ε, such that

max(‖Uε‖L∞((0,T)×Ω), ‖uε‖L∞((−τ ,T)×M)) ≤ M

and (by multiplying by Uε and uε in the respective equations)

max(‖Uε‖L2(0,T:H1(Ω)), ‖uε‖Lp(−τ ,T:V)) ≤ M.

We also have that uε is a strong solution (see [43]) in the sense that∥∥∥∥∂uε
∂t

∥∥∥∥
L2((−τ ,T)×M)

≤ M,

and that the family {Uε} is equicontinuous (see proposition 6.3 of [50]). Then, there exists a
subsequence of {Uε} and {uε} (which we still label in the same way) such that Uε → Û weakly in
L2(0, T : H1(Ω)) and strongly in C([0, T] : L1(Ω)) (respectively uε → u weakly in Lp(−τ , T : V) and
strongly in C([−τ , T] : L1(Ω))). Finally, by using that γ and β are maximal monotone graphs, and
assumption (H4) on G(t, x, σ , η), we can pass to the limit in all terms and we conclude that (U, u),
where U = α(Û), is a weak solution of the original problem (P3D). �
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Remark 3.3. Lemma 3.2 and similar arguments to those in lemma 3 of [43] allow us to prove
the existence of maximal and minimal solutions.

(b) Non-uniqueness of solutions in the presence of a discontinuous coalbedo term
The presence of the multivalued coalbedo, β, (corresponding to a discontinuous function whose
graph is completed as to generate a maximal monotone graph) allows us to prove that, for
some special initial data, there exist more than one time-dependent solution. We assume here
the following conditions.

(H∗
1) The coalbedo function is

β(u) =

⎧⎪⎪⎨
⎪⎪⎩

[m, M] if u = −10,

m if u<−10,

M if u>−10, with 0<m<M.

(3.2)

(H∗
2) G(t, x, u, u(t − τ )) = Bu + C − μu(t − τ ) and γ (u) = u.

(H∗
3) B and C are positive constants verifying

Qs1m
ρc

<−10B + C, −10B + C + μ‖u0‖L∞(−τ ,0)×L∞(−1,1) <
Qs0M
ρc

. (3.3)

(H∗
4) We also assume w(x) ≤ 0 for all x ∈ (−1, 1).

(H∗
5) The initial data (U0, u0) satisfy

U0 ∈ C∞(Ω), u0 ∈ C([−τ , 0]) × C∞(Γ0),

u0(s, x) = u0(s, −x) = u0(0, x), x ∈ [−1, 1], s ∈ [−τ , 0]

∂u0

dx
(s, 0) = ∂2u0

∂x2 (s, 0) = 0, u0(s, 0) = −10,

∂u0

dx
(s, x)< 0 if x ∈ (0, 1),

∂u0

dx
s, 1) = 0, s ∈ (−τ , 0]

∂U0

∂z
(x, 0)> 0, U0(x, 0) = u0(0, x), if x ∈ (0, 1).

Theorem 3.4. Under the above conditions, problem (P2D) has at least two bounded weak solutions.

Proof. Step 1. First, we consider the problem (Pm)

∂U
∂t

− KH

R2
∂

∂x

(
(1 − x2)

∂U
∂x

)
− Kv

∂2U
∂z2 + w

∂U
∂z

= 0 (0, T) ×Ω ,

wx
∂U
∂x

+ KV
∂U
∂z

= 0 (0, T) × ΓH

D
∂u
∂t

− DKH0

R2
∂

∂x

(
(1 − x2)p/2

∣∣∣∣∂u
∂x

∣∣∣∣p−2
∂u
∂x

)

+ KV
∂U
∂n

+ wx
∂u
∂x

+ Bu + C − μu(t − τ , x) = 1
ρc

QS(x)m on (0, T) × Γ0

(1 − x2)p/2
∣∣∣∣∂U
∂x

∣∣∣∣p−2
∂U
∂x

= 0 Γ1 ∪ Γ−1

U(0, x, z) = U0(x, z) Ω ,

U(0, x, 0) = u0(x) (−1, 1),

We note that if t< τ , then u(t − τ , x) = u0(t − τ ). Denote (Um, um) to the solution of (Pm). We note
that if um ≤ −10, then (Um, um) is also a solution of (P2D) because h(t, x) ≡ m ∈ β(um). Now, by
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changing U∗ = −10 − Um and u∗ = −10 − um, we have that u∗ verifies

Du∗
t − DKH0

R2 ((1 − x2)|u∗
x|p−2u∗

x)x + Bu∗

= −QSm
ρc

− 10B + C − KV
∂U∗

∂n
− wx

∂u∗

∂x
− μu0(t − τ , x).

From hypotheses (H∗
3) and (H∗

5), there exists T0 > 0 s.t. if t< T0 then the right-hand side term
is positive. Consequently, u∗ = −10 − um is positive and um <−10. Note that KV(∂U/∂n) +
wx(∂U/∂x) ≤ 0 in (0, T0) × Γ0).
Step 2. Now, we prove that there exists a solution that takes values bigger than −10 in a subset of
Γ0 for t< τ . To see the existence of this second solution, we shall construct a family of auxiliary
functions Uλ (and the restrictions Uλ

|Γ0
= uλ). We decompose Ω × [0, λ] =Qλ

1 ∪ Qλ
2 ∪Σλ, where

Qλ
1 =

{
(x, z, t) ∈Ω × [0, λ] : x2 + z2 >

t2

λ2

}
,

Qλ
2 =

{
(x, z, t) ∈Ω × [0, λ] : x2 + z2 <

t2

λ2

}
,

Σλ =
{

(x, z, t) ∈Ω × [0, λ] : x2 + z2 = t2

λ2

}
.

In the region Qλ
1. We consider (Uλ, uλ) the solution of problem (PQλ

1
) [51,52].

∂U
∂t

− KH

R2
∂

∂x

(
(1 − x2)

∂U
∂x

)
− Kv

∂2U
∂z2 + w

∂U
∂z

= 0 Qλ
1

wx
∂U
∂x

+ KV
∂U
∂z

= 0 Qλ
1 ∩ (0, T) × ΓH

D
∂u
∂t

− DKH0

R2
∂

∂x

(
(1 − x2)p/2

∣∣∣∣∂u
∂x

∣∣∣∣p−2
∂u
∂x

)

+ KV
∂U
∂n

+ wx
∂u
∂x

+ Bu + C − μu0 = 1
ρc

QS(x)m Qλ
1 ∩ (0, T) × Γ0

(1 − x2)p/2
∣∣∣∣∂U
∂x

∣∣∣∣p−2
∂U
∂x

= 0 on Γ1 ∪ Γ−1

U(0, x, z) = U0(x, z), U(0, x, 0) = u0(x)

Uλ = −10 Σλ

On the region Qλ
2, we define Uλ = −10 − Cλ(t)(x2 + z2 − t2/λ2). Note that if Cλ > 0, then Uλ >−10

in Qλ
2. It is easy to see that (Uλ, uλ) is a solution of problem (Pλ),

∂U
∂t

− KH

R2
∂

∂x

(
(1 − x2)

∂U
∂x

)
− Kv

∂2U
∂z2 + w

∂U
∂z

= Hλ in (0, T) ×Ω ,

wx
∂U
∂x

+ KV
∂U
∂z

= gλ in (0, T) × ΓH

D
∂u
∂t

− DKH0

R2
∂

∂x

(
(1 − x2)p/2

∣∣∣∣∂u
∂x

∣∣∣∣p−2
∂u
∂x

)

+ KV
∂U
∂n

+ wx
∂u
∂x

+ Bu + C − μu0 = hλ in (0, T) × Γ0

(1 − x2)p/2
∣∣∣∣∂U
∂x

∣∣∣∣p−2
∂U
∂x

= 0 in (0, T) × (Γ1 ∪ Γ−1)

U(0, x, z) = U0(x, z) in Ω , U(0, x, 0) = u0(x) in (−1, 1),
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where, for (t, x, z) ∈Qλ
2, Hλ = −(Cλ)′(t)(x2 + z2 − t2/λ2) − Cλ(t)[(−2t/λ2) − (2KH/R2)(1 − 3x2) −

2Kv + 2wz],

hλ = −D(Cλ)′(t)

(
x2 − t2

λ2

)
− Cλ(t)

[
−2Dt
λ2 + 2wx2 + B

(
x2 − t2

λ2

)

− 2p−1 DKH0

R2 |Cλ(t)|p−2(−p(1 − x2)(p−2)/2|x|p

+ (p − 1)(1 − x2)p/2|x|p−2

]
− 10B + C − μu0),

gλ = −2Cλ(t)(x2w − KvH) ≥ 0.

Thus, there exist λ> 0 and Cλ : [0, T0] → R such that hλ ≤ Qs0M/ρc. Then, (Uλ, uλ) is a lower
solution of problem (P2D). Then, by upper and lower solution method, we deduce that there
exists a solution (V, v) of (P2D) satisfying uλ < v. Consequently, v >−10 in some subset of positive
measure. (V, v) is different from the solution of step 1. Finally, we obtain two different solutions
of (P2D) for an initial data satisfying (H∗

5). �

Remark 3.5. The above construction makes arise a parameter λ which is not uniquely
determined. So, in fact, the proof shows the existence of a continuum of solutions, and not only
two of them.

Remark 3.6. In the proof of the above result, the multivalued nature of β was a crucial element.
As a matter of fact, if by the contrary we assume that β is a regular function, for instance a
Lipschitz function then, by standard arguments we obtain the uniqueness of weak solutions.

(c) Uniqueness of non-degenerate solutions
Now, we wonder if it is possible to obtain uniqueness of time-dependent solutions for a model
which may involve a multivalued coalbedo term but for some special initial data. The answer is
positive but it will depend on a suitable property which must be satisfied by the weak solutions.
By simplicity in the exposition, we shall assume here γ (s) = s (the result remains true for the case
of the graph γ corresponding to a positive latent heat but the details are too technical as to be
presented here). We define a class of solutions called as non-degenerate on Γ0. This notion was also
useful in [43,53] where the EBM model without the deep ocean effect was studied.

Definition. Let w ∈ L∞(Γ0). We say that w satisfies the strong non-degeneracy property (resp.
weak) if there exist C> 0 and ε0 > 0 such that for any ε ∈ (0, ε0), |{x ∈ Γ0 : |w(x) + 10| ≤ ε}| ≤ Cεp−1

(resp. |{x ∈ Γ0 : 0< |w(x) + 10| ≤ ε}| ≤ Cεp−1).

Theorem 3.7. (i) Assume that there exists a solution (U, u) of (P2D) such that u(t) verifies the strong
non-degeneracy property for all t ∈ [0, T] then (U, u) is the unique bounded weak solution of (P2D). (ii)
There exists at most one solution of (P2D) verifying the weak non-degeneracy property.

The idea of the proof is based on the fact that β generates a continuous operator from L∞(Γ0)
to Lq(Γ0) ∀q ∈ [1, ∞) when the domain of such operator is the set of functions verifying the
strong non-degeneracy property. More precisely, we estimate the difference between two possible
solutions (U − V, u − v) by using the following

Lemma 3.8. (i) Let w, ŵ ∈ L∞(Γ0). Assume w satisfies the strong non-degeneracy property. Then, for
every q ∈ [1, ∞), there exists C̃> 0 such that for every z, ẑ ∈ L∞(Γ0) verifying z(x) ∈ β(w(x)) and ẑ(x) ∈
β(ŵ(x)) a.e. x ∈ Γ0, we have

‖z − ẑ‖Lq(Γ0) ≤ (bw − bi) min{C̃‖w − ŵ‖(p−1)/q
L∞(Γ0) , |2|1/q}. (3.4)

(ii) If w, ŵ ∈ L∞(Γ0) satisfy the weak non-degeneracy property, then∫
Γ0

(z(x) − ẑ(x))(w(x) − ŵ(x)) dA ≤ (bw − bi)C‖w − ŵ‖p
L∞(Γ0). (3.5)
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The idea of the proof (for the case of the simpler model (P2D)) of the uniqueness of solution
follows closely theorem 5 of [43]. First, we argue on the time interval [0, τ ] (it is enough to repeat
the same arguments on subintervals of length τ to obtain the result on the whole interval [−τ , T]
for any arbitrary T> 0). Assume there exist two solutions (U, u) and (V, v). By using Holder,
Young and Friedrich inequalities and the lemma of non-degeneracy property (by introducing
a suitable spatial rescaling x �→ λx to estimate some balance of the upper bounds), we obtain that

∂

∂t
‖U − V‖2

L2(Ω) + ∂

∂t
‖u − v‖2

L2(Γ0) ≤ K1‖U − V‖2
L2(Ω) + K2‖u − v‖2

L2(Γ0).

Finally, by Gronwall lemma, we conclude that ‖U − V‖L2(Ω) = 0 and ‖u − v‖L2(Γ0) = 0, which ends
the proof.

Remark 3.9. The conclusion of theorem 3.7 also holds for the (P3D), but its proof becomes more
technical. It will be presented in a future work by the authors.

4. Multiplicity of steady states
The analysis of the stabilization, as t → +∞ of the solutions, cannot be carried out by means of
any linearization principle owing to the presence of the possible multivalued graphs γ and β.
An alternative method consists of characterizing the ω-limit set (once it is assumed that f (t, .) →
f∞(.), when t → +∞, in some suitable sense). In that case, it can be shown that, given (U, u)
bounded weak solution of (P3D), any element of the ω-limit set of (U, u), defined by ω(U, u) =
{(U∞, u∞) ∈ (H1(Ω) × V) ∩ L∞(M) × L∞(M) : ∃tn → +∞ such that (U(tn, ·), u(tn, ·)) → (U∞, u∞)
in L2(Ω) × L2(M)}, is formed merely by solutions (U∞, u∞) of the associate stationary model,
which we denote by (P∞). The proof of this result follows the ideas of [22] (the details will
appear in a future work). The associated stationary problem (P∞) consists of the following set
of equations

− div(K∇U) + w
∂U
∂z

= 0 on Ω , (4.1)

F̂(x, ∇N U) + ∂U
∂z

= 0 on N , (4.2)

− divM(|∇Mu|p−2∇Mu) + KV
∂U
∂n

+ F(x, ∇Mu) + Ĝ(u) ∈ Ra(u) + f∞ on M, (4.3)

and U|M = u, (4.4)

where ∂Ω =N ∪ M and with Ĝ(x, u) given by the limit of G(t, x, u, u(t − τ )) when t → +∞. In this
section, we shall assume the conditions

(HS) S :Ω → R, S ∈ L∞(−1, 1), S1 ≥ S(x) ≥ S0 > 0 for some S1 > S0.
(HG) Ĝ : R → R is a continuous strictly increasing function such that Ĝ(0) = 0 and

lim|s|→∞ |G(s)| = +∞.
(Hf ) f∞ ∈ L∞(Ω) and there exist Cf > 0 such that −‖f∞‖∞ ≤ f∞(x) ≤ −Cf a.e. x ∈Ω .
(Hβ ) β is a bounded maximal monotone graph of R

2, and there exist two real numbers 0<
m<M and ε > 0 such that β(r) = {m} for any r ∈ (−∞, −10 − ε) and β(r) = {M} for any
r ∈ (−10 + ε, +∞).

(HCf ) Ĝ(−10 − ε) + Cf > 0 and (Ĝ(−10 + ε) + ‖f∞‖∞)/(Ĝ(−10 − ε) + Cf ) ≤ S0M/S1m.
(Hw) w ∈ C1(Ω̄) (for the sake of simplicity).
(HK) The constants KH, KV , KH, KH0 , D, R, ρ, c and Q are positive.

One important technique that we shall use in the following result is the continuity of the solutions
with respect to the coalbedo β. This allows us to approximate a discontinuous (i.e. multivalued
graph) β by a smoother function. This also have some implications for the numerical treatment of
the model.
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Theorem 4.1. Let (HS), (HG), (Hf ), (Hw), (HK) and (Hβ ) be satisfied. Then, for any Q> 0, there is a
minimal solution (U, u) (resp. a maximal solution (Ū, ū)) of problem (PQ). Moreover, if (HCf ) holds, then
there exist Q1 <Q2 <Q3 <Q4 such that

(i) if 0<Q<Q1, then (PQ) has a unique solution,
(ii) if Q2 <Q<Q3, then (PQ) has at least three solutions,

(iii) if Q4 <Q, then (PQ) has a unique solution, where

Q1 = (Ĝ(−10 − ε) + Cf )ρc

S1M
Q2 = (Ĝ(−10 + ε) + ‖f∞‖∞)ρc

S0M

Q3 = (Ĝ(−10 − ε) + Cf )ρc

S1m
Q4 = (Ĝ(−10 + ε) + ‖f∞‖∞)ρc

S0m
.

Proof. This proof is the extension to (P3D) of the results for (P2D) given in [54] (see also [22]). Let
us define the vectorial operator A : L2(Ω) × L2(M) → L2(Ω) × L2(M) by A(U, u) := (AU, Bu) with
domain

D(A) = {(U, u) ∈ L2(Ω) × L2(M) : AU ∈ L2(Ω), Bu ∈ L2(M), U|M = u},

where AU = −div(∇U) + w(∂U/∂z) and

Bu = −div(|∇Mu|p−2∇Mu) + KV
∂U
∂n

+ F(x, ∇Mu) + Ĝ(x, u).

It is easy to find some constant functions (V, v) and (Ū, ū) verifying

AV = 0

Bv= 1
ρc

QS0m − ‖f∞‖∞ ≤ 1
ρc

QS(x)β(v) + f∞,

AŪ = 0

Bū = 1
ρc

QS1M − Cf ≥ 1
ρc

(x)β̄(ū) + f∞,

where β and β̄ are some (eventually discontinuous) functions (i.e. single-valued sections of the
graph β) such that β(s) ∈ β(s), β̄(s) ∈ β(s) and β(u) ≤ h ≤ β̄(u) for all h ∈ β(u). Every solution (U, u)
of (P3D) verifies V ≤ U ≤ Ū and v ≤ u ≤ ū.

(i) If Q<Q1 then V ≤ Ū ≤ −10 − ε. So, every solution (U, u) of (PQ) verifies u<−10 − ε and it
is a solution of the problem

(Pm
Q)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

AU = 0 on Ω ,

Bu = 1
ρc

QS(x)m + f∞ on M,

U = u on M,

F̂(x, ∇N U) + ∂U
∂z

= 0 on N ,

which has a unique solution. To prove it, we assume there exist two solutions, (U1, u1) and (U2, u2)
and we take the difference U1 − U2 as a test function in the weak formulation. The accretiveness
of the operator allows us to conclude the uniqueness.

(ii) If Q4 <Q then −10 + ε ≤ V ≤ Ū. So, every solution (U, u) verifies −10 + ε ≤ u and β(u) =
M. So, (U, u) is the unique solution of problem (PM

Q ) which is obtained by replacing m by M in
problem (Pm

Q).
(iii) The proof of the multiplicity consists of three steps
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Step 1. Construction of upper and lower solutions. If Q2 <Q<Q3, then,

Ū1 := G−1
(

1
ρc

QS1M − Cf

)
is an upper solution of (PM

Q )

V1 := G−1
(

1
ρc

QS0M − ‖f∞‖∞
)

is a lower solution of (PM
Q )

Ū2 := G−1
(

1
ρc

QS1m − Cf

)
is an upper solution of (Pm

Q)

V2 := G−1
(

1
ρc

QS0m − ‖f∞‖∞
)

is a lower solution of (Pm
Q).

Moreover, V2 < Ū2 <−10 − ε <−10 + ε <V1 < Ū1. Then, there exist two solutions (U1, u1) and
(U2, u2) of (PQ) such that u1 and u2 do not cross the level −10. To find the third solution, we shall
apply a result of [55]. This is possible for the case where β is a Lipschitz function. In next step, we
will approximate the graph β by some Lipschitz functions.

Step 2. Approximate problem. We define a new family of problems, (PQ,λ) by replacing β(u)
by βλ(u) in (P3D), where βλ is the Lipschitz function βλ = (1/λ)(I − (I − λβ)−1), λ> 0 (the Yosida
approximation of β). Because β verifies (Hβ ), we obtain that

βλ is a bounded and non-decreasing function ∀ λ> 0,

βλ(s) = β(s) for any s �∈ [−10 − ε, −10 + ε + λM], ∀ λ> 0,

βλ(s) → β(s) in the sense of maximal monotone graphs when λ→ 0

(see [45]). In the case of β is a Lipschitz function, we take βλ = β. Now, by applying the argument
of step 1 to problem (PQ,λ), there exit λ0 such that V2 < Ū2 <−10 − ε <−10 + ε + λ0M<V1 < Ū1.
Then, we have two families of solutions of {(PQ,λ)} such that uλ1 and uλ2 do not cross the level −10.
We have the third family of solutions by using the following lemma. We recall that X is a retract
of E if there exists a continuous mapping r : X → E such that r(x) = x for each x ∈ X.

Lemma 4.2 (Amann [55]). Let X be a retract of some Banach space E and let F : X → X be a compact
map. Suppose that X1 and X2 are disjoint retracts of X, and let Yk, k = 1, 2 be open subset of X such that
Yk ⊂ Xk. Moreover, suppose that F(Xk) ⊂ Xk and that F has no fixed points on Xk − Yk, k = 1, 2. Then, F
has at least three distinct fixed points x, x1, x2 with xk ∈ Xk and x ∈ X − (X1 ∪ X2).

We see that the assumptions of this lemma are satisfied. Any solution u of the problem (PQ,λ)
is a fixed point of the equation u = F(u) with F : L∞(M) → L∞(M) defined by

u = P2

(
A−1

(
1
ρc

QS(·)βλ(u) + f∞(·)
))

,

where P2 is the projection over the second component. Let E = L∞(M) which is an ordered Banach
space with respect to the natural ordering whose positive cone is given by

L∞
+ (M) = {v ∈ L∞(M) : v(x) ≥ 0 a.e. x ∈M},

having a non-empty interior. Let us define the intervals X = [V2 − δ, Ū1 + δ], X1 = [V1 − δ, Ū1 +
δ] and X2 = [V2 − δ, Ū2 + δ], where δ > λ0M is taken such that V1 >−10 + ε + δ, Ū2 >−10 − ε −
δ. So, there exists an open set Yk of L∞(M) containing uλk for k = 1, 2 such that Yk ⊂ Xk. The sets
X, X1 and X2 are retracts of L∞(M) (resp. X), because they are non-empty closed convex subsets
of L∞(M) (resp. X). Moreover, F(X) ⊂ X and F(Xk) ⊂ Xk. Finally, from the properties of βλ and the
compact embedding W1,p(M) ⊂ L∞(M) for p ≥ 2, we arrive at F : X → X is a compact map. So, by
lemma 4.2, we conclude that F has at least three fixed points, or equivalently, (PQ,λ) has at least
three solutions: uλ1 ∈ X1, uλ2 ∈ X2 and uλ3 ∈ X − (X1 ∪ X2).
Step 3. The proof ends with the convergence of a subsequence of {uλ3} to u3 such that (U3, u3) is a
solution of (PQ,λ). To obtain this limit, we need to use a result of maximal monotone graphs [56]
which guarantees that the limit of βλ(uλ) is in the graph β(u3). Finally, the convergence in L∞(M)
allows us to show that u3 is different from u1 and u2. In particular, u3 must cross the level −10. �



15

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140376

...................................................

Table 1. Physical data used in the model.

parameter value units

KH 0.049 m2c−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KH0 0.555 × 10−3 m2c−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

KV 0.0125 m2c−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C, B 190, 2 Wm−2, Wm−2 K−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c, ρ 3900,1004 J(kg◦C)−1, kg m−3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Q 340 Wm−2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

D 60 m
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. Numerical approximation
Here, we are concerned with computing a numerical solution for the problem (P2D) with
p = 3. The numerical approximation used is based upon the finite volume method with WENO
reconstruction in space and third-order Runge–Kutta TVD for time integration. Details of WENO
reconstruction can be found in many references, among them [57–60]. For each time step, a
numerical solution of the EBM is computed and then used as a Dirichlet boundary condition
for the deep ocean model. Other approximations are possible, for instance, we can mention the
ADER–ENO scheme for nonlinear reaction–diffusion problems proposed in [61]. The numerical
scheme follows the ideas put forward in [62]. Its application allows to obtain γ n+1

i,j for each control
volume. Then, we use an iterative solver of nonlinear equations to compute the cell averages of
the numerical solution for the deep ocean model Un+1

i,j from γ n+1
i,j , solving the nonlinear equation

γ n+1
i,j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k1Un+1,iter
i,j if Un+1,iter−1

i,j < 0

L + k2ε

ε
Un+1,iter

i,j if 0 ≤ Un+1,iter−1
i,j < ε

k2Un+1,iter
i,j + L if Un+1,iter−1

i,j ≥ ε

(iter = 1, 2, . . .),

for a given small ε. This iterative process ends up when |Un+1,iter
i,j − Un+1,iter−1

i,j |< δ for each
control volume Vi,j and with δ small enough. The iterative solver used consists of a combination
of Newton’s method and bisection method, in such a way that the method performing is the one
that converges faster. Note that, following this idea, both methods can act at a particular time step.
Finally, we assign the value Un+1

i,j = Un+1,iter
i,j . As for the cell averages of the delay term ui(t − τ ),

an arithmetic mean of the values ui(tk) and ui(tk+1) with t − τ ∈ [tk, tk+1] has been used.
The evolution of the temperature in the deep ocean is due to the combined effect of water

sinking from the Earth poles with heating–cooling processes taking place in the interface
atmosphere–ocean. In addition, water upwelling takes place at certain latitudes.

In the first numerical example, we compare the numerical solution of the model with and
without the effect of the latent heat. The initial conditions considered are U(0, x, z) = 18e−x2−z2 +
6e6z(11e−x2 − 10) for the ocean interior and u(0, x) := U(0, x, 0) = 84e−x2 − 60. The data used in this
example are depicted in table 1. In table 1, the unit c stands for century. The insolation function
is taken as S(x) = 1 − 1

2 P2(x), where P2(x) = 1
2 (3x2 − 1) is the second Legendre polynomial in the

interval [−1, 1]. The coalbedo β(u) is given by (H∗
1), where m = 0.4 and M = 0.69. The numerical

implementation of the coalbedo is performed considering that we are in the context of an explicit
scheme therefore if, in the previous time step, at certain control volume, u ≤ −10 then β(u) = m
otherwise, β(u) = M. As for the velocity, it depends only on x and in this work, it is defined as

ω(x, z) = W(x) = 10(x + 0.75)(x − 0.75)
(0.1 + 10|x + 0.75|)(0.1 + 10|x − 0.75|) . (5.1)
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Figure 1. Temperature without latent heat (γ (u)= u) and t = 5. (Online version in colour.)
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Figure 2. Temperature with latent heat and t = 5. (Online version in colour.)

This particular velocity is a way to represent sinking water near the poles and upwelling water in
the vicinity of the Equator. The spatial discretization used is �x = 2/60; �z = 1/60, and the size
of the time step is calculated in an iterative way according to the formula

(�t)n = min

(
α�x2((1 − x2)KH)−1, α�z2(KV)−1, α�x2

(
(1 − x2)KH0

∣∣∣∣dun−1

dx

∣∣∣∣
)−1

)
, (5.2)

where α= 0.3 for stability reasons.
Other values used here are k1 = k2 = 1, ε = 0.01 and L = 3 (figures 1 and 2). The numerical

experiment with latent heat shows more clearly (than the experiment without this term) the
crucial role of the deep ocean: indeed, besides a suitable justification of the formation of sea-ice
sheets (the level lines of the lower values of the sea temperature are now more separated, which
corresponds to the presence of large regions without great abrupt temperature changes), most of
the higher level lines of the sea temperature does not arrive to touch the sea surface (except, at
most, some of them which do that around the Equator).

We can generate solutions of (P3D) from the solutions of (P2D) under suitable conditions.
In figure 3, we can see the distribution of temperature on the Earth surface obtained by the
numerical approximation of (P2D) and rotated, thanks to the spherical coordinates. We observe
that the surface temperature is lower in the case of presence of latent heat than when this effect
is neglected. This is precisely what may be considered as an alarm about the gravity of the global
change, because if a realistic deep ocean (that means with latent heat) is heated, the time to return
to previous colder situations may be very large.

Another numerical experiment carried out considers the delay effect. The results can be seen
in figure 4. The range of temperatures is narrower when considering this term than without its
influence. Therefore, the delay term is like a memory one, which remembers the temperature of
previous time steps and, therefore, tends to smooth the spatial evolution of the temperature.
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Figure 3. Mean surface temperature (a) without latent heat effect and (b) with latent heat effect at t = 4. (Online version in
colour.)
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(Online version in colour.)

In this example, we have taken μ= 0.5, but no latent heat, for the sake of simplicity. Another
interesting feature of the effect of the delay term is depicted in figure 5, where the temperature
is plotted as a function of time for the particular latitude 38◦ S and for different values of the
parameters μ and τ . The results show that, in both situations, a stationary state is reached.
Nevertheless, when the time of delay τ is larger, the solution becomes more oscillating and takes a
longer time in reaching the stationary state. This effect is more evident for larger values of μ. This
conclusion is similar to that pointed out in [42]. In addition, figure 5 reveals that the consideration
of the latent heat effect give rise to less oscillating solutions.
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