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Abstract

The biomedical community is increasingly migrating toward research endeavors that are

dependent on large quantities of genomic and clinical data. At the same time, various regulations

require that such data be shared beyond the initial collecting organization (e.g., an academic

medical center). It is of critical importance to ensure that when such data are shared, as well as

managed, it is done so in a manner that upholds the privacy of the corresponding individuals and

the overall security of the system. In general, organizations have attempted to achieve these goals

through deidentification methods that remove explicitly, and potentially, identifying features (e.g.,

names, dates, and geocodes). However, a growing number of studies demonstrate that deidentified

data can be reidentified to named individuals using simple automated methods. As an alternative,

it was shown that biomedical data could be shared, managed, and analyzed through practical

cryptographic protocols without revealing the contents of any particular record. Yet, such

protocols required the inclusion of multiple third parties, which may not always be feasible in the

context of trust or bandwidth constraints. Thus, in this paper, we introduce a framework that

removes the need for multiple third parties by collocating services to store and to process sensitive

biomedical data through the integration of cryptographic hardware. Within this framework, we

define a secure protocol to process genomic data and perform a series of experiments to

demonstrate that such an approach can be run in an efficient manner for typical biomedical

investigations.
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I. Introduction

THE integration of clinical decision support tools and high-throughput technologies into the

healthcare domain is evolving the practice of medicine from a one-size-fits-all model toward

a personalized system [1]. To further this goal, biomedical scientists are conducting large-

scale investigations between patients’ clinical status and molecular data, such as DNA

sequences, to determine how variation in the latter influences patients’ susceptibility to

disease, response to treatment, and potential to succumb to adverse events (e.g., drug–drug

interactions) [2], [3]. The amount of data needed to conduct such studies is often beyond the

capability of a sole institution [4] and emerging regulations, such as the U.S. National

Institutes of Health genome wide association study (GWAS) policy, encourage biomedical

scientists to share person-specific data for reuse [5]. In order to support such regulations,

various technologies have been established to facilitate data sharing, such as the database of

genotypes and phenotypes (dbGaP) in the U.S. [6] and the Welcomme Trust’s biobanking

program in the U.K. [7]. Notably, these systems centralize data from disparate organizations.

To ensure the continued growth of such tools, it is critical to ensure the security of such

systems, as well as the privacy of the records they incorporate.

Traditionally, administrators attempted to achieve privacy by “deidentifying” data through

the suppression of particular attributes, such as personal names, dates, or geocodes.

However, deidentification does not guarantee protection from “reidentification” [8], [9] and

may obscure certain types of information that are critical to longitudinal or epidemiologic

studies. As an alternative, security frameworks have been devised to manage clinical

genomics data, in its most specific form, in a centralized database [10]. In such frameworks,

data holders transmit encrypted versions of clinical genomics records to a third party.

Subsequently, the third party administrator could integrate data coming from different

sources and then execute queries on behalf of a scientist (e.g., How many records contain a

diagnosis of juvenile diabetes and a particular genomic variant?) without decrypting any

record in the database. To achieve this goal, the administrator at the third party evaluates a

query against each stored record securely, and the results are sent to a separate third party

who is in control of the decryption keys and learns only the aggregation of the result (i.e.,

the number of satisfying records). The result is then revealed to the researcher. One

advantage of such a framework is that there is no opportunity to decrypt individual records

unless both third parties collude. Thus, if a hacker breaks into one of the third party’s

computer systems, he cannot expose the sensitive information.

The framework just mentioned, however, has several drawbacks which limits its general

applicability. First, to facilitate evaluation of researcher’s query against the database, a

computationally expensive cryptographic technique needs to be executed. Second, it may

not be practical to set up multiple disparate third parties due to economic, trust, or legal

concerns. Third, even when the first two problems are surmountable, there remain potential

bandwidth challenges because a nontrivial amount of encrypted data must be communicated

between the parties involved in the protocol.

The overarching goal of this paper is to overcome the aforementioned limitations through

the application of secure hardware. We design a framework that leverages tamper-resistant
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hardware to enable secure clinical genomics data storage and processing at a single third

party. To the best of our knowledge, this is the first work to propose such a framework for

biomedical data.

The specific contributions of this paper are as follows.

1. We illustrate that by using the capabilities of the cryptographic hardware, different

organizations can contribute their data to centralized sites, where they can be joined

and queried, in a secure manner.

2. We show that a small program can be executed on secure hardware attached to a

third party’s server that hosts the clinical genomics data. In the process, we

demonstrate that the program has sufficient power to facilitate common queries

used in emerging biomedical investigations, such as count queries as well as join

operations.

3. We show that our strategy can counter various attacks. In particular, even if the

system is hacked, as long as the cryptographic hardware is not compromised, no

information that is stored (whether it is genomic, clinical, or demographic) will be

leaked.

4. We provide experimental studies to demonstrate feasibility with existing hardware

for real world applications.

II. Related Work

In this paper, we propose a framework to securely store, share, and query clinical genomics

data using secure cryptographic hardware. Here, we provide a high-level overview of

current research that is related to our approach and application.

A. Hardware Perspective

Secure cryptographic devices have been used for many tasks, including private information

retrieval [11], private record linkage [12], [13], and tamper-resistant intrusion detection [14].

Recently, trusted computing platform alliance chips have been used to protect outsourced

private customer data [15]. To our knowledge, none of the previous work applies secure

cryptographic hardware for managing or processing clinical genomics data, which has

distinct issues in terms of scale and type.

In [16], Illiev and Smith propose a system for providing obliviousness for arbitrary large

computations on secure coprocessors (SCPs) for any algorithm using circuit evaluation

methods in the context of secure multi-party computation (SMC). In this paper, we provide

much more efficient solutions for processing genomic data in untrusted platforms.

B. Software Perspective

The encrypted data storage problem has been studied in [17]–[22]. However, the focus of

these investigations has been on the various approaches that can be applied to support

encrypted data within relational databases. In addition, encrypted data storage methods have

been applied to personal genomic data [23]. Yet, unlike the work presented in this paper,
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none of the existing schemes assumes that the queries are processed under an untrusted

database server attack model where the attacker is assumed to have access to the content of

the disk as well as the CPU and the memory. Instead, previous work focuses on an attack

model where it is assumed that the attacker has access to the storage devices but not the

memories and the CPU.

Querying encrypted data under the untrusted database server attack model were first

suggested in [24], where the client’s attribute domains1 are partitioned into a set of intervals.

The correspondence between intervals and the original values is kept at the client site and

encrypted tables with interval information are stored in the database. Efficient querying of

the data is made possible by mapping original values in range and equality queries to

corresponding interval values. In subsequent work, Hore et al. [25] analyzed how to create

the optimal intervals for minimum disclosure risk and maximum efficiency. In [26], the

potential attacks for interval-based approaches were explored and models were developed to

analyze the trade-off between efficiency and disclosure risk. The major drawback of the

interval-based approaches is that the data processing capability of the server is quite limited.

Since the server cannot see the data in plain text format, most of the records are sent to the

client for further processing, which increases both the network cost and client-side

processing cost.

In [27], Carbunar and Sion introduce a mechanism for executing general binary join

operations in an outsourced relational database framework based on a bloom filter-based

technique. Our study differs by having a broader framework, which handles various types of

queries, including joins and counts.

An additional difference between our study and previous studies is that in our proposed

framework, we assume that the users who submit their queries do not receive any

information other than the result of the query. For example, if a researcher submits an

aggregation query, the researcher learns only the number of records that satisfy the query. In

the previous approaches, it is assumed that the client can decrypt and further process the

records which would be considered a violation in our framework.

In [28], Aggarwal et al. suggested allowing the client to partition its data across two (and

more generally, any number of) logically independent database systems that are prohibited

from communicating with each other. The data are first partitioned in a fashion that ensures

the exposure of the contents of any particular database does not lead to a violation of

privacy. The client then executes queries by transmitting appropriate subqueries to each

database, and then pieces together the results at the client. A major challenge in realizing

this framework in the real world is that the data owners must assume that the third parties do

not collude to reveal the private data. If an attacker has access to multiple machines, the data

will be compromised. By contrast, in our framework, all biomedical records are stored in an

untrusted central server without requiring any such assumptions.

1In a relational model, an attribute domain is defined as the set of values allowed in an attribute.

Canim et al. Page 4

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2014 September 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



C. Cryptographic Techniques

In our previous research, we introduced a cryptographic framework that can be used for

secure clinical genomics data storage [10]. In this framework, the clinical genomics data

records are first encrypted by the data owners (e.g., hospitals) and stored in a centralized

repository. Using a specific type of public key encryption, the queries of biomedical

researchers (e.g., count queries) are executed by the repository managers, without decrypting

the clinical genomics data.2 Instead, only the aggregated result is decrypted.

This framework provides a cryptographically secure way of executing the queries. However,

this protocol required the integration of two third parties to achieve such computations,

which, as we alluded to in Section I, is not always practical. Additionally, as we elaborate on

in Section VI, excessive processing cost of specialized encryption techniques can make this

mechanism impractical for very large datasets. In this paper, we provide a much more

efficient solution by leveraging the capabilities of secure cryptographic hardware.

III. Background

In this section, we briefly summarize the topics of encrypted data storage and cryptographic

hardware.

A. Encrypted Data Storage in Relational Databases

A variety of defensive mechanisms have been designed to protect against disclosures due to

hacking and system compromise in the context of centralized databanks. One popular

measure that is applied to reduce the effect of various attacks, and to limit disclosure risks, is

data encryption. Once the data is encrypted, and the encryption keys are kept secret,

attackers that hack into a system are unable to interpret the encrypted sensitive data. Due to

popular demand, many commercial database management system products in the market

have built-in encryption support. For example, Microsoft SQL Server 2008 provides a

mechanism called transparent data encryption (TDE), which provides protection for the

entire database at rest without influencing existing applications [29].

In the TDE model, the encryption and decryption operations are performed in memory, so

the cryptographic keys needed for such operations must be kept in memory as well. Unless

special hardware is used, all of these keys are kept in the main memory while they are in

use. The implicit threat model assumed by such database products is that the server is trusted

and only the disk is vulnerable to compromise. In the event that the physical storage devices

are stolen, this method would effectively prevent data misuse. On the other hand, this model

is not strong enough to prevent data disclosure if the attacker has access to the main memory

of the server. An attacker observing memory can easily capture the master keys that encrypt

and decrypt the sensitive information stored on the disk. And once the keys are revealed, all

sensitive data could be compromised.

2In public key encryption, two keys are used: a public key and a private key. The public key is made generally available and is
invoked to encrypt messages by anyone who wishes to send a message to the person that the key belongs to. The private key is kept
secret and is used to decrypt received messages.
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To prevent the aforementioned attack, SQL Server provides an extensible key management

(EKM) module [30]. EKM enables parts of the cryptographic keys to be managed by an

external cryptographic hardware device. This external hardware is leveraged to maintain the

secrecy of the master keys. Unfortunately, naïve execution of such cryptographic hardware

could leave stored data vulnerable to compromise. For example, if the encryption keys for a

database table are leaked to memory, they could be used to recover the contents of the table.

In the framework presented in this paper, we also store the data in an encrypted format.

However, one major difference between the current framework and that in [10] is that we

ensure the sensitive clinical genomics data will be decrypted only within the secure

cryptographic hardware. This will prevent the leakage of sensitive data.

B. SCPs

The secure cryptographic hardware we use is already commercially available in the form of

SCPs. An example of an SCP is the IBM 4764 cryptographic coprocessor [31]. This is a

single-board computer consisting of a CPU, memory, and special-purpose cryptographic

hardware contained in a tamper-resistant shell. The hardware is certified to level 4 under

FIPS PUB 140-1 [31] When installed on a server, it is capable of performing local

computations that are completely hidden from the server. If tampering is detected, then the

SCP clears the internal memory. Despite such enhanced security, current SCPs are limited in

memory size and computation power. For example, the SCP used in this study has only 64

MB and a 266 MHz PowerPC processor. Yet, GWAS is often executed over large quantities

of data. For instance, a typical GWAS study computes the correlation between 600 000 (or

more) single nucleotide polymorphisms (SNPs) and a phenotype for 10 000 (or more)

individuals, which is approximately 1.5 GB of data. It is not possible to fit all of the data

into the SCP’s memory at the same time. In the next section, we will explain how, given its

limitations, such hardware can be leveraged to craft a secure solution for clinical genomics

data processing by a single third party.

IV. Description of the Proposed Framework

For convenience, we assume that the set of data owners corresponds to a set of hospitals. In

our framework, each hospital can verify that the server to which they plan to transfer the

clinical genomics data contains an approved SCP, and provide the SCP with the data using

the SCP’s public key. For efficiency purposes, the data will be encrypted using a symmetric

key encryption scheme and the key used for the encryption will itself be encrypted with the

public key of the SCP.3 The trusted coprocessor can now execute join operations and run

various aggregate queries over encrypted clinical genomics data. Since only the SCP can

recover the key needed for decrypting the data, no individual with access to the server can

interpret the stored data.

Clearly, encrypted storage can prevent the disclosure of the data even if the server is hacked.

Any attempt by the server to take control of, or tamper with, the coprocessor, either through

3In symmetric key encryption, both sender and receiver share the same key to encrypt/decrypt messages. Symmetric key encryption is
typically much faster than public key encryption. See [32] for more details.
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software or physically, will clear the coprocessor. In doing so, the keys will be destroyed,

which eliminates the ability to decrypt any information stored or transmitted.

To guarantee that the application running on the SCP is non-malicious software and was

loaded by a trusted operating system (OS), we use the remote attestation mechanism

provided by the SCP [33].

The following section provides further details related to our framework.

A. Architecture

The overview of the proposed architecture is illustrated in Fig. 1. Our framework

incorporates a third party called the data storage server (DS). The encrypted records of the

hospitals are stored in this server.

We assume that the DS is untrusted.4 All of the interactions among the storage devices, the

server, and the SCP are monitored by an adversary. To perform the data operations without

disclosing any sensitive information, all of the data processing operations are performed

within the SCP. To achieve such processing, each hospital first generates a symmetric

encryption key and encrypts its records. This key is later transferred to the SCP located in

the DS. The SCP provides a secure Ethernet channel through which the hospitals can

communicate and transfer the key.

The information flow in this framework consists of two phases: data integration phase and

query processing phase. In the data integration phase, the DS receives the patient records

from the hospitals and eliminates the duplicates by executing the join operations on the SCP.

In the query processing phase, the DS receives the queries of the scientists and executes

these queries on the encrypted patient records with the help of the SCP.

For the data integration phase, we use the sovereign join algorithms introduced in [12].

Sovereign joins are applied to prevent adversaries from making inferences through the

observation of the interactions between an SCP and the server to which it is attached.

Agrawal et al. [12] formulated this problem and propose alternative techniques to prevent

information leakage through patterns in I/O while maximizing the performance. We provide

the implementation details of this protocol for our framework in Appendix A.

For the query processing phase, we propose a secure protocol that prevents adversaries from

inferring information through interactions between the server and the SCP. We describe the

details of this protocol in Section IV-C.

We describe a step-by-step walkthrough of the framework (see Fig. 1 for the corresponding

protocol) in the following.

4As discussed previously, an SCP has many features that makes it secure against potential physical tampering attacks. Therefore, it
could be used in environments where the DS is untrusted. This enables applications where encrypted data can be sent directly to a DS
that is controlled by researchers. In such applications, researchers can run the queries directly at the DS without ever viewing the data.
In this paper, we focus on a common trusted DS that can support multiple researchers.
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1. Step 1: Each hospital generates a symmetric key Ki to encrypt the data of their

patients. Without loss of generality, we assume that the underlying data consist of

structured clinical terms, DNA sequences, and demographics.

2. Step 2: The records of hospital Hi are encrypted with symmetric key Ki and

transferred to DS.

3. Step 3: Each hospital Hi encrypts its private key Ki with the public key of the SCP

and transfers the key to the SCP over the Ethernet channel of the SCP. An attacker

at the server side cannot interpret the encrypted clinical genomics data because the

keys are secured in tamper-resistant hardware.

4. Step 4: The server retrieves the records from the raw data disk for duplicate

elimination.

5. Step 5: The server communicates with the SCP and performs the join operations on

the encrypted records and eliminates duplicate records.

6. Step 6: The encrypted join results are written to a disk.

7. Step 7: Suppose that a researcher wants to learn how many records in the database

contain a particular combination of SNPs when a patient is diagnosed with a certain

disease. This can be represented in a logical query, such that

, where j1,

…, jk is an arbitrary subsequence of the data attributes. The server first receives the

query.

8. Step 8: Next, the encrypted records are fetched from the storage device for query

processing.

9. Step 9: The query is forwarded to the SCP along with the encrypted attributes. The

SCP processes the query and returns the response to the server.

10. Step 10: Finally, the response is transferred to the researcher.

In the following section, we provide details about how biomedical data, with a focus on

genomic sequences, are stored and queried in our framework.

B. Data Representation

Genomic sequence data are constructed from the four letter alphabet of nucleotides {A, C,

G, T}, each of which can be represented as a pair of bits as shown in Table I(a). In the

context of GWAS, we adopt the model used in standard genome management software [34],

where each SNP is modeled as a pair of nucleotides. Using this representation, each

genomic sequence can be modeled as a series of binary values.5 Table I(b) presents four

samples with three SNPs each, in the four letter alphabet along with the patient ID (PID),

diagnosis information, and the corresponding binary representations [based on Table I(a)].

PIDs are used to compare the records taken from different medical institutions and eliminate

duplicates.

5We note the framework can handle various representations of genomic and health data and we show SNPs without loss of generality.
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As mentioned earlier, we use a symmetric key encryption algorithm to encrypt the

biomedical records [see Table I(c)]. Table I(d) depicts the application of encryption function

and Table I(e) the resulting encrypted data.

From a practical perspective, encrypting each letter separately requires padding each

encrypted block, which unnecessarily wastes memory. To reduce memory consumption, we

construct blocks of biomedical data, which are encrypted one block at a time. We use the

advanced encryption standard (AES) block cipher algorithm [35] to perform encryption,

which supports a block size of 128 bits.

C. Secure Count Queries

One of the more common tasks that genome-based scientists need to perform is to determine

how many samples satisfy certain characteristics. For example, scientists are interested in

learning if there exist associations between SNPs and a range of clinical phenotypes [36],

[37]. To enable a researcher to discover such associations, a secure framework needs to

report the frequency of genomic and clinical feature occurrences. Such frequencies can be

discovered by first counting the number of records the pattern occurs in and then

normalizing this quantity by the total number of records in the database. Unfortunately,

count queries were not designed to be executed over encrypted data in an untrusted server.

Thus, we developed a secure count protocol which calculates the frequency of scientist-

specified patterns without compromising the data.

The overview of the protocol is visually depicted in Fig. 2. The protocol is executed between

the server and the SCP to evaluate the queries. The server has a dataset of n records with m

attributes and the goal is to process a query q with k predicates defined over the columns of

the dataset. Each attribute of the records is encrypted with the symmetric key (K) of the

hospital using AES in counter (CTR) mode of encryption [38]. Before the execution of the

query processing phase, the encryption key K is transferred to the SCP over a secure

Ethernet channel. Now, the goal is to transfer these records to the SCP and determine the

number that satisfy the query.

As mentioned earlier, SCPs have limited memory. Thus, rather than sending all attributes of

the records to the SCP for decryption, the server sends data from only the attributes of the

predicate values defined in the query. Suppose that the first predicate, Pj is defined on the jth

column of the record. As shown in Fig. 2, the server sends EK (Dataset[0, j]) to the SCP

along with the row ID, column ID, and the predicate Pj. Once these values are received, the

SCP decrypts EK (Dataset[0, j]) with K. After the decryption, the SCP matches the predicate

values with the corresponding column’s values. The SCP keeps a counter value (or set of

values) to store the number of records satisfying all predicates while processing the records.

For a particular record, if all predicates are matched successfully, then the counter is

incremented. After the final iteration, the counter value, which corresponds to the response

of the query, is returned to the server. By applying clever buffering schemes (e.g., [12]),

such an approach could handle any amount of data.

Depending on the security requirements of the application, the query results returned to a

researcher can be encrypted as follows. Prior to the protocol, a secure socket layer (SSL)
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channel can be established between the researcher and the SCP.6 Using this channel, the

query results can be transferred to the researcher without revealing the content to the server

or any other observers.

V. Security Analysis

Since the operations inside the SCP are executed securely and all the sensitive biomedical

data that is read or written to the server by the coprocessor are encrypted, the information

leakage is possible only due to the access patterns of the algorithms running inside the SCP.

In the following, we prove that for the two algorithms specified in this paper, an adversary

cannot learn anything by observing the access patterns. This is achieved by proving that the

access patterns of the algorithms that run on the SCP do not change based on the input [39].

Definition 1

The access pattern for algorithm A on input x (i.e., A(x)) is the sequence of accesses

performed by the SCP. An algorithm A is said to run securely on the SCP, if for any two

equal length inputs x, x′ of the client, the access patterns A(x) and A(x′) are computationally

indistinguishable for any observer, except the SCP.

We can now prove that the count query given in Fig. 2 is secure according to Definition 1.

Theorem 1

The count protocol discussed in Fig. 2 is secure according to Definition 1.

Proof

The count protocol always reads each row of the input and outputs just one encrypted count

value. Therefore, for any two equal length inputs x, x′, the access patterns of the count

algorithm are exactly the same. Furthermore, due to the security of the encryption scheme,

any polynomial-time adversary cannot distinguish between the different encrypted output

count values. Therefore, the count protocol satisfies the Definition 1.

A similar proof for the join algorithms is provided in [12].

Traditional oblivious RAM protocols [39] provide general purpose solutions to hide the

access pattern of any algorithm. In contrast, we provide a solution that is tailored for

genomic data processing that is much more efficient than such generic solutions. General

purpose oblivious RAM solutions require O(log2(n)) overhead for each record access, where

n is the total number of records. In the proposed protocol, for count queries, for each record

access, the overhead is just O(1).

VI. Experiments and Results

We developed a prototype implementation of the framework introduced in Fig. 2 to measure

the performance of the data integration and query processing phases. The framework was

6IBM 4764 SCP provides functionality to establish SSL channel to communicate with remote applications.
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implemented using the C programming language on a real server with an SCP. The server

was an IBM x3500 server with 32 GB of main memory and an 8-core Intel Xeon CPU

E5420 @ 2.50 GHz processors. The server ran a 32-bit SLES 10.2 (Linux kernel 2.6.16.60)

OS. The SCP was an IBM 4764 PCI-X cryptographic coprocessor (see Section III-B). For

the cryptographic operations, we used AES in CTR mode as the encryption algorithm, with

a key size of 128 bits.

We organize the experimental analysis into three parts to assess various aspects of the

proposed framework. First, we present the performance for the data integration phase.

Second, we investigate the performance of processing the count queries. Third, we compare

the performance of framework to a prior protocol based solely on cryptographic operations.

In our experiments, we use synthetic binary datasets, ranging in size from 1000 to 30 000

records, and queries that involve between 10 and 50 binary attributes.

We note that the hardware specification of the server has no direct impact on the

benchmarks performed because all cryptographic operations and query evaluation steps are

performed on the SCP. The server is only used to submit the queries to the SCP and retrieve

the output. We further point out that the performance of the experiments does not depend on

whether we use a real or a synthetic dataset because the SNP values do not impact the

performance of the proposed framework.

A. Join Operation

We implemented the sovereign join algorithm described in Appendix A to evaluate the

performance of the data integration phase. In Fig. 3, the execution time of the join operation

is depicted for a buffer size ranging from 1 to 3000 records7. The results indicate that

buffering the records in the SCP yields significant performance gains. Specifically, for 1000

records, a buffer size of 1000 records provides five times improvement compared to a

protocol in which no buffering is used.

The experiments show that the total execution time spent for the join operations is relatively

high. However, it should be noted that the data integration phase is a one time step executed

before the query execution phase. In the real applications, the system administrators could

allow this step to run overnight or even a week to finish. Once the data integration phase is

completed, the researchers can execute their queries in a much faster speed as we discuss the

query processing performance experiments in the next section.

B. Selection Operation

In this section we evaluate the performance of executing secure count queries on the

biomedical data. Fig. 4 shows the query processing time for the count queries on various

datasets with different query sizes. The x-axis shows the number of predicates defined in the

queries and the y-axis represents the total execution time of the protocol in seconds. We

observe that the execution time increases linearly in query size. Moreover, the rate of change

between the execution time and the query size increases as the number of records in the

7See Fig. 6 in the Appendix for the execution time of 10 000 records.
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dataset grows. These results indicate that processing 10 000 records could be handled in

under 1 min in our framework. Even for 30 000 records, the protocol could process a query

with ten predicates in approximately 2 min.

C. Improvements Over Prior Approaches

The solution offered in this paper is more generic in comparison to a prior approach based

solely on cryptography [10]. From an analytical perspective, the multiple third party

framework described in [10] leverages an encryption method that can only support count

queries. In contrast, our proposed solution can directly support any online algorithm (i.e.,

algorithms that require one pass over the data) or multipass algorithms where the

intermediate results could be kept in the memory of the SCP. More complex algorithms

could be supported by modifying them to be secure in the oblivious RAM model.

From an empirical perspective, we demonstrate the runtime efficiency of our protocol with

respect to the secure count algorithm [10]. For the purposes of comparison, we compute

, where tserver and tSCP correspond to the amount of time required to complete a

workload of count queries against a dataset on a commodity server and SCP, respectively.

We refer to this computation as the improvement ratio. For the improvement ratio

computations, we used the server execution times tserver reported in [10].

As Fig. 5 indicates, for a query size of ten predicates, our protocol runs about 80 times

faster. We observe a decline in the improvement ratio as the number of predicates increases.

Nevertheless, the difference is more than an order of magnitude for 40 predicates. One

interesting point to recognize is that the improvement ratio is independent of the dataset size,

which implies that our approach scales to large datasets.

Though the current experiments were run on a different machine than the one utilized in

[10], there are several reasons why this does not influence the implications of our findings.

First, the queries for the proposed protocol were performed on tamper-proof hardware,

which has very limited computational power and memory in comparison to the typical

commodity server adopted in [10]. Second, a typical server is susceptible to many software

and hardware attacks because the execution takes place in an unprotected platform. Thus,

our results indicate that running the queries on an SCP is faster and more secure than the

environment in [10].

VII. Discussion

In this paper, we showed that SCPs can be applied to efficiently share, store, and query

structured biomedical data, such as genomic sequences. Using a real implementation, we

empirically demonstrated that our framework is almost two orders of magnitude more

efficient than alternative solutions based on public key cryptography.

Beyond efficiency gains, another advantage of our framework is that the SCP can facilitate

the generation of secure audit logs. Consider, when a query request is sent to the

cryptographic device, a new log entry could be created by the device. This entry would

include the query information and a timestamp. The most recently generated log ID would
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always be stored within the device. Once created, the log entry would be output to the

server. On the server, these logs could be stored in append-only mode and force written to

write-only disk. The creation of secure logs could be utilized to satisfy some of the more

stringent recommendations for the secure management of patient information as specified in

regulations such as the HIPAA security rule [40].

Though the data remain encrypted at all times within the framework (except in the tamper-

resistant SCP), the results of scientists’ queries themselves can violate privacy requirements.

For instance, if the answer to researcher’s query is such that there is only one record with a

DNA sequence “AATCAATGAA” and a positive diagnosis of juvenile Alzheimer’s, then the

researcher has uniquely pinpointed an individual’s record. In the event that uniqueness is a

violation, it will be necessary to ensure that query results for a researcher do not permit the

triangulation of individual’s record. This can be achieved through a process known as query

restriction and its application is necessary to ensure that our framework achieves identity

protection. For instance, it is possible to implement a query restriction manager that refuses

to report query results if it is below some certain threshold. This topic has been studied

extensively in the database security community [41]. We believe that our framework can be

extended to run any compact query restriction policy manager within the SCP and intend to

design such solutions in future work.

Algorithm 1 Joining patient records with Sovereign Join: Server side

Input: DB1, DB2

Output: Matching records

 1: bufferCtr ← 0

 2: for rec1 in DB1 do

 3:  MSG ← “DB1”, recordID1, rec1 {Prepare message}

 4:  send_MSG(MSG) to SCP {send message}

 5:  get ACK1 from SCP {get acknowledgement}

 6:  bufferCtr ← bufferCtr + 1 {update buffer counter}

  7:  if bufferCtr = BUFFER_SIZE then

 8:   for rec2 in DB2 do

 9:    MSG ← “DB2”, recordID2, rec2

10:    send_MSG(MSG) to SCP

11:    get ACK2 from SCP

12:    outputMatchedDB1Id(ACK2) {output match result}

13:   end for

14:   bufferCtr ← 0 {reset buffer counter}

15:  end if

16: end for

VIII. Conclusion

In this paper, we presented a secure framework by which person-specific biomedical data,

such as genomic sequences, can be joined and queried using cryptographic hardware. In

contrast to formal privacy models for biomedical data that “perturb” or “generalize” records,
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our methods ensure that data are shared in its most specific state. Beyond a theoretical basis,

we experimentally validated that the architecture is much more efficient when compared to

solutions based on expensive public key encryption protocols. We also reduced the trust

requirements from multiple third parties to a single third party, which may be more viable

for real world applications. We recognize this framework does not explicitly address privacy

violations that can be directly extracted from the query results, but are confident that this

issue can be resolved within the memory of the secure hardware and plan to address it in

future work.
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Appendix

A. Joining Patient Records

To perform join operations we implement the sovereign join algorithms introduced in [12].

The join operations in our framework require interactions between the server and the SCP.

The implementation of the algorithms for the server and SCP is provided in Algorithm 1 and

2, respectively. These algorithms describe how records from two hospitals can be joined

using a buffering approach that minimizes the number of passes over the inner relation. The

set of records of the first and second hospital is depicted as DB1 and DB2, respectively.

Algorithm 2 Joining patient records with Sovereign Join: SCP side

Input: Request messages (MSG)

Output: Matching results

 1: bufferCtr ← 0

 2: while TRUE do

 3:  wait for new message MSG in blocked state

 4:  if get_DB_ID(MSG) = “DB1” then

 5:   dataDB1 [bufferCtr] ← decrypt(get_record(MSG))
  {buffer the record}

 6:   recordDB1 [bufferCtr] ← get_recordID(MSG)

 7:   bufferCtr ← bufferCtr + 1 {update buffer counter}

 8:  else

 9:   if get_DB_ID(MSG) = “DB2” then

10:    dataDB2 ← decrypt(get_record(MSG))

11:     recordDB2 ← get_recordID(MSG)

12:    for i = 0 to BUFFER_SIZE do

13:     if distanceMetric(dataDB1[i], dataDB2) < 1 then

14:      matchedDB1Id ← recordDBl [j]
     {send match result}

15:     end if

16:     matchedDB1Id ← “No match”
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17:     send_ACK2(matchedDB1Id) {no match found}

18:    end for

19:    bufferCtr ← 0 {reset buffer counter}

20:   end if

21:  end if

22: end while

Algorithm 1 summarizes the execution of the join operation on the server side. For all

records in DB1, the server prepares a message request MSG, including the record ID and the

encrypted record. Using a blocking function called “send_MSG” provided by the server, the

server sends MSG to the SCP and waits to receive an acknowledgement from the SCP.

Using a counter variable bufferCtr, the server tracks the number of records buffered in the

SCP. If the number of DB1 records transferred to the SCP exceeds the buffer size, the server

starts sending the encrypted records of DB2 together with their record IDs. For all records in

DB2, an acknowledgement is received from the SCP including the knowledge of whether

there is a match. After making a full pass over DB2 records, bufferCtr is reset to continue

with buffering new records of DB1.

Algorithm 2 summarizes the substeps of the join operation executed on the SCP side. The

application running on the SCP waits for new messages to be received in a blocking state.

Once a new message is received, the database identifier of the message is checked using the

function get_DB_ID. If the message includes a record of DB1, the record is decrypted and

buffered in the internal memory of the SCP. For decryption, the application programming

interface (API) provided by the SCP is used. Also, the record ID information is buffered in

an array called recordDB1. The get_recordID function is used to extract the record identifier

from the message. If the message contains a record from DB2, the record is decrypted first

and stored in another buffer. The decrypted record is then compared with all other records of

DB1 iteratively using a preferred distance metric. If there is a match, an acknowledgement

message including the matching identifier information is sent to the server.
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Fig. 1.
Proposed framework for management of biomedical data in third party cryptographic

hardware.
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Fig. 2.
Overview of the secure count protocol.
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Fig. 3.
Execution time of the join operation for various buffer sizes.

Canim et al. Page 22

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2014 September 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 4.
Execution time for count queries on various datasets with different query sizes (SCP-based

protocol).
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Fig. 5.
Improvement ratio compared to the multiple third party protocol in [10].
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Fig. 6.
Execution time of the join operation for various buffer sizes.

Canim et al. Page 25

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2014 September 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Canim et al. Page 26

TABLE 1

Encryption of Clinical Genomics Data (a) Mapping From a Nucleotide Alphabet to a Two-Bit Binary Value.

(b) Binary Representations of SNP Sequence Samples. (c) Original Data (Each Block Has 64 Letters). (d)

Encrypting the Data. (e) The Encrypted Data
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