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Abstract

The information of the Gene Ontology annotation is helpful in the explanation of life science phenomena, and can provide
great support for the research of the biomedical field. The use of the Gene Ontology is gradually affecting the way people
store and understand bioinformatic data. To facilitate the prediction of gene functions with the aid of text mining methods
and existing resources, we transform it into a multi-label top-down classification problem and develop a method that uses
the hierarchical relationships in the Gene Ontology structure to relieve the quantitative imbalance of positive and negative
training samples. Meanwhile the method enhances the discriminating ability of classifiers by retaining and highlighting the
key training samples. Additionally, the top-down classifier based on a tree structure takes the relationship of target classes
into consideration and thus solves the incompatibility between the classification results and the Gene Ontology structure.
Our experiment on the Gene Ontology annotation corpus achieves an F-value performance of 50.7% (precision: 52.7% recall:
48.9%). The experimental results demonstrate that when the size of training set is small, it can be expanded via topological
propagation of associated documents between the parent and child nodes in the tree structure. The top-down classification
model applies to the set of texts in an ontology structure or with a hierarchical relationship.
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Introduction

One of the central purposes of genomics research is to explore

the biological functions of the organism. This is exemplified by the

establishment of a dynamic controlled vocabulary in the Gene

Ontology (GO) database [1], which aims to interpret and annotate

the role of eukaryotic genes and proteins within the cell as well as

relevant biomedical knowledge, and keeps the descriptions of gene

products consistent across a variety of databases. The GO

annotation database contains large amounts of such function

annotation knowledge, which play a key role in the interpretation

of bioinformatics experiments. These annotation databases,

nevertheless, are not complete. What’s more, for all the organisms,

we have known only a subset of all genes so far, and a much

smaller subset of them are annotated with function information.

The knowledge of the GO function annotation is usually extracted

manually from the text data by expert staff and stored in the

databases. Due to the rapid accumulation of function information

in the biomedical literature, the use of text mining tools to assist

with the extraction of function annotation information has become

an important task. The gene function prediction methods, which

annotate genes with function information automatically through

the utilization of existing resources, can be roughly divided into

experimental data-based methods and knowledge-based methods.

The methods based on experimental data were used widely first.

They depend on first hand experimental information of genes, and

usually focus on biological metrics, such as protein structure, gene

sequence, protein-protein interaction, and so forth. Based on

protein sequence similarity, the GO annotations of one protein

can be homologously transferred to another. From the perspective

of machine learning, the annotation transfer method is a nearest

neighbor classifier, so we can make use of classifiers to annotate

proteins, thereby determining their GO classes. In addition, we

might also check the dense regions in the clustering network to

verify that proteins with same labels usually occur in the same

region. Lee et al. (2006) [2] proposed a Markov random field

(MRF) based method that infers protein functions using protein-

protein interaction data and function annotations of its protein

interaction partners. They extended direct interactions to all

neighboring proteins, and one function to multiple functions to

understand the functions of a protein. Ko & Lee (2009) [3] used

systematic feature selection methods to assess the contribution of

genomic data to protein function predicting and then investigate

the relationship between genomic data and protein functions.

Their study used ten different genomic data sources in Mus

musculus, including protein domains, protein-protein interactions,

gene expressions, phenotype ontology, phylogenetic profiles, and

disease data sources. In the experiment, they measured the

contribution of each data set based on its prediction quality. The

methods based on experimental data can only predict the

functions of genes that are provided with biological measures, so

they require in advance the biological measurement of the
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predicted genes or proteins, which is not realistic for many new

entities in the text.

The methods based on knowledge rely on existing knowledge,

such as the biomedical literature and GO annotation data.

Literature-based methods, involving indexing, natural language

processing, computational reasoning, statistical analysis, etc.,

usually achieve a low accuracy in gene function prediction. Done

et al. (2010) [4] proposed a method of gene function annotation

that adopted latent semantic indexing. From the statistics of

known annotated gene databases, this method obtains the matrix

of relationship between genes and labels which measures the

linking intensities between them. Via the singular value decom-

position of the matrix, the data are mapped to a new vector space.

This operation reduces the dimension of the original vector space,

and meanwhile filters the noise of the raw data. Through the

analysis of new matrix elements, new annotation information is

obtained, therefore accomplishing the function prediction. Ver-

spoor et al. (2005) [5] adopted an unsupervised learning algorithm

to expand the associated words of GO nodes. They thought the

original associated words of a GO node were not able to indicate

its correlation with the documents fully. Therefore, by expanding

the associated word set of a given GO node, the indication ability

is enhanced. Besides, the proteins can be represented by its

context, so they regarded the function annotation of the proteins

as a text classification problem. Barutcuoglu et al. (2006) [6]

designed a Bayesian framework to integrate multiple classifiers

conforming to the functional taxonomy constraints. The hierar-

chical classifiers trained on multiple data types are based on

support vector machine (SVM) and their predicting results are

combined in the Bayesian framework to obtain the most probable

consistent set of predictions. In addition, their method is capable to

implicitly calibrate the SVM margin outputs to probabilities.

However, the knowledge-based methods ignore the structural

features of the GO to some extent, and own the following

drawbacks:

a) The numbers of documents annotated by each GO term are

not uniformly distributed. We investigated the distribution of

associated document amounts of each GO term shown in

Figure 1, where the horizontal axis is the number of

documents associated with a GO term, and the vertical axis

is the number of corresponding GO terms. It can be observed

that many of the GO terms have fewer than 10 associated

documents. It is difficult to train an accurate classifier with so

few training documents. In addition, the number of samples

annotated by a GO term is far fewer than that of all the rest

not annotated by it, so the amount imbalance of positive and

negative training samples becomes a serious obstacle to the

classifier learning process.

b) The output of the classifiers may be incompatible with the

existing GO structure. One of the construction rules of the

GO structure states that if a gene is annotated by a GO term,

then it should be annotated by all of its parent items.

However, the actual classification results may not always

adhere to that, i.e. an instance classified as class C is not

necessarily classified as all the parent classes of C.

In order to solve the above problems, we regard the gene

function prediction as a multi-label classification problem, and

attempt to introduce a hierarchical classification algorithm to the

multi-label classification. The GO contains two types of inclusion

relationship, is_a and part_of. It can be argued that these two

types of relationship essentially convey certain hierarchies, so we

consider that the expression of the current node can be enriched

by incorporating the training samples of its ancestor node in the

GO structure, which may solve the problem of insufficient positive

training samples.

Method Description

2.1 Multi-label Classification
In traditional classification studies, it is generally assumed that

an instance corresponds only to one class label. But in reality, an

instance is likely to correspond to a variety of classes. An example

is that a piece of newspaper text may belong to the classes of both

politics and economics. Therefore it is required that the trained

classification model is capable of assigning multiple labels to an

instance. A multi-label classifier is exactly such a kind of classifier.

In the problem of gene function prediction, a gene is likely to

associated with multiple GO concepts. For example, the gene

P25686 in the UniProt database is annotated by GO terms with id
0032436 (positive regulation of proteasomal the ubiquitin-depen-

dent protein, catabolic process), 0090086 (negative regulation of

protein deubiquitination), 0030433 (ER-associated protein cata-

bolic process), 0031398 (positive regulation of protein ubiquitina-

tion), 0090084 (negative regulation of the inclusion of the body

assembly). These GO concepts together describe the gene

functions: protease-based pan-hormone catabolic process positive

regulation of protein de-ubiquitin negative adjustment, the ER-

associated protein catabolic process, positive regulation of protein

ubiquitin, the virus endosome assembly negative regulation.

Therefore, we may regard the prediction of gene function as a

problem of multi-label annotation, namely selecting several GO

concepts as function description of a given gene. Due to the

descriptive precision and free obtainment of biomedical abstracts,

this paper focuses on the abstract-level classification, namely

determining which GO terms a given biomedical abstract is

associated with.

Multi-label classification methods can be grouped generally into

two types: the methods based on problem transformation and the

methods based on algorithm modification. The basic idea of the

methods based on problem transformation is to transform the

multi-label classification problem into multiple single-label classi-

fications, so that existing single-label classification methods can be

used to settle the multi-label classification problems. The

prediction of each class is treated as an independent single-label

classification, which owns an individual classifier. All of the

training data are used to train each classifier, therefore construct-

ing a classification model applicable to that class. Due to the

assumption that all classes are independent of each other, the

disadvantage of such methods is the neglect of the relationships

among these classes. Furthermore, the training of each classifica-

tion model needs to exploit all the training data, which often leads

to an amount imbalance of positive and negative training samples

and thereby has an adverse impact upon the classification. The

principle of the methods based on algorithm modification is to

modify the existing single-label classification algorithm so as to be

capable of handling multi-label classification problems. Rank-

SVM (Elisseeff & Weston, 2003) [7] is a modification of the basic

SVM algorithm. It develops a sorting approach to select a subset of

the whole classes in the class prediction of a given sample, which in

fact converts the multi-label prediction to a quadratic program-

ming problem. The ML-kNN algorithm (Zhang & Zhou, 2005) [8]

is a transformation of the k-nearest neighbor algorithm. This

method acquires the a priori probabilities of each class through a

statistical method, and then for each sample calculates the

posterior probabilities according to Bayes’ rule, in order to

determine the sample classes.

Gene Function Prediction
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Given a gene and its associated literature, we do annotations

according to the classification result of the literature in this paper.

Here the classifiers are trained based on supervised learning, with

the words of the texts as the input features and the GO terms as

the target classes. To determine the classes of the genes, we take

the problem transformation based methods, and train classifiers

for each GO term. When predicting the classes of a given gene, all

the classifiers are called and finally those classes whose classifiers

return positive value are the labels of that gene.

2.2 The Top-down Multi-label Annotation
The hierarchical classification method generally refers to a

method that organizes all the classes into a tree structure according

to a certain hierarchical relationship, and then with the idea of

‘‘Divide-and-Conquer’’, assigns the instances to be classified to the

nodes in the tree. This type of classification method is more

accurate than ordinary classification methods. Common methods

used for hierarchical text classification include the flat classification

and the top-down classification. In the flat classification, the

hierarchical relationship in the tree structure is ‘‘flattened’’. The

construction of a classification model for a node does not consider

other nodes; in other words, this method ignores the association

information in the tree structure of classes. Of all the training

samples, there are some representative ones expressing subtle

differences among the classes, which we believe may provide

essential instruction for the classification. During the training

process of the flat classification model, those samples are mixed

with large numbers of other training samples and submerged, so

the classifiers are not able to classify effectively these samples at the

class boundaries. In this paper, by selecting the training samples

properly for each node in the tree structure, the classifying ability

is enhanced, and thereby it achieves a more accurate classification

result.

In the present study, the gene annotating is transformed into a

classification based on the GO structure. We build a GO graph

using the biological process branch data of Gene Ontology

Annotation (GOA) resources. In this graph, the nodes represent

GO terms and the edges indicate semantic relationship between

the GO terms. The graph structure conforms to the definition of

the biological process branch given by the GO annotation

institutions. Further, the information within the graph is enriched

by adding the associated PubMed literature to GO nodes, which

makes it feasible to construct a text classifier for each node. In our

methods, each node corresponds to two PubMed identifier (PMID)

sets. The first set contains the identifiers of PubMed documents

directly associated with the current node, namely the identifier set

of PubMed documents annotated by the current GO term, which

we call ‘‘the current node associated document set’’ (denoted by

CurNodePMIDSet); the second set is obtained via topological

propagation across the entire GO tree structure, so it contains the

identifiers of those PubMed documents associated with the current

node or its descendant nodes, which we call ‘‘the descendant node

associated document set’’ (denoted by DescNodePMIDSet).
Although this study focuses on the annotation of biological process

branch of the GO, the method also applies to the other two

branches of the GO, molecular function and cellular composition.

Because of the sparsity of the associated PubMed documents for

a given GO node, we try to expand its positive sample set and

reduce the negative sample set during the training set construction,

thereby relieving the amount imbalance of positive and negative

samples. For a GO node, the documents, which are associated

with it or its descendant nodes (namely the documents in

DescNodePMIDSet), are annotated as positive training documents.

As opposed to simply using the documents associated with the

current GO node (namely the documents in CurNodePMIDSet), it

enriches the information about positive samples. On determining

the set of negative training samples, we focus primarily on the

differences between parent and child nodes in the GO structure, in

other words, those samples which are associated with the parent

nodes of the current node but are not inherited by the current

node or its child nodes are selected as negative samples. We

believe that such samples are able to well represent the differences

between parent and child nodes, and do good to classifying the

samples located at the class boundaries. Consequently, the set of

negative documents is the remainder of the union of all the

DescNodePMIDSets corresponding to the current’s parent nodes

minus the DescNodePMIDSet of the current node. Such an

adjustment of negative document set retains the key samples

between parent and child classes, as well as greatly reduces the size

of negative sample set.

Both the flat and top-down classification methods were applied

to the gene function prediction task in this paper, and then the

results were compared. In the flat classification method, for each

node in the GO structure, the documents in its CurNodePMIDSet
are regarded as positive training samples, while all the other

documents in training set are regarded as negative ones. The top-

Figure 1. Distribution of associated document amounts of each GO term.
doi:10.1371/journal.pone.0107187.g001
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down classification method takes into account the relationship

between target classes in the training process, so the multiple

output labels are not compatible with such relationship. At the

training stage, the classification model is constructed respectively

for each node in the GO structure. Then at the predicting stage,

for each document to be classified, starting from the root node, the

classifier of the current node is applied to determine whether the

given document belongs to the current class. If it does, then the

classifiers of its child nodes continue classifying the given

document further, and this process is carried on until reaching

the leaf nodes; otherwise the classification process stops. In this

way it is guaranteed that a document belonging to a certain class is

destined to belong to its parent classes, or the classification process

is impossible to reach the node of this class. Such a top-down

classification process effectively settles the problem mentioned

above that the classification results are not compatible with the

GO structure.

2.3 Detailed Procedure
The detailed procedure of corpus processing and further

generating a classification model for each GO node is as follows:

Step 1. Relation extraction: extract is_a and part_of relations from

the biological process branch of the GO to obtain the hierarchical

relationship between every pair of parent and child nodes, and

determine the child node set and the descendant node set of each

node. Finally a directed graph of GO terms is constructed.

Step 2. Association resolution: resolve the association file of genes,

GO terms and PubMed documents, and then obtain a set of the

current node associated PMIDs for each GO term (namely

CurNodePMIDSet).

Step 3. Topological propagation: based on the child nodes set

acquired in Step 1 and the current node PMID set acquired in

Step 2, topologically sort the whole graph. PMID sets associated

with nodes are propagated from child nodes to parent nodes, and

the descendant node associated PMID set (namely DescNodeP-
MIDSet) is generated for each node.

Step 4. Abstract extraction: extract abstracts of the PMID

mentioned in any CurNodePMIDSet or DescNodePMIDSet from

the whole MEDLINE abstract documents. Stop words are

removed from the extracted abstracts and then a vector space

model is built for each processed abstract so that it can be

represented with a vector.

Step 5. Classification model construction: traverse each GO node

of the directed graph and construct for each node two

classification models based on naive Bayes and SVM respectively.

Finally the 10-fold cross-validation is adopted: each time one tenth

of abstract documents are selected as the test set, with the rest as

the training set.

2.4 Experimental Settings
The whole abstract documents were divided into 10 parts, and

according to the 10-fold cross-validation method, every part was

selected as a test set in turn and the rest used for training. The

present paper checked the effects of the flat classification and top-

down classification method respectively, and furthermore made a

comparison of their classification results. The experimental settings

are as follows:

a) The flat classification: for a node in the GO structure, the

documents associated with the current node, namely

belonging to the CurNodePMIDSet, are regarded as positive

training samples, while all other documents of training set as

negative training samples.

b) The top-down classification: for a node in the GO structure,

the documents associated with the current node or its

descendants, namely belonging to the DescNodePMIDSet,
are regarded as positive training samples, while the union of

DescNodePMIDSet of all parent nodes minus the DescNo-

Figure 2. The file format of the Gene Ontology.
doi:10.1371/journal.pone.0107187.g002

Table 1. The Comparison of Average Numbers of Positive and Negative Training Samples.

Average Number of Positive Training Samples Average Number of Negative Training Samples

the Flat Classification 2.136 10827

the Top-down Classification 3.864 996

doi:10.1371/journal.pone.0107187.t001
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dePMIDSet of the current GO node gets the negative

training sample set.

c) Implementation: the concrete classification algorithms are

implemented with naive Bayes and SVM, respectively.

Experimental Results and Analysis

3.1 The Experimental Data

a) The Gene Ontology files. We downloaded the ontology files

(2010 version) from the GO website [1], and extracted all the

items of the biological process branch, a total of 20385 terms

with the format shown in Figure 2.

In Figure 2, the id entry shows that the identifier of this GO

term in the entire ontology structure is GO:0000001, and the

name entry shows that this term represents mitochondrion

inheritance. The namespace entry shows that this term belongs

to the biological process branch, which is one of the three sub-

hierarchical structures of the GO hierarchy. Two is_a entries

indicate that the term has two parent nodes, namely organelle

inheritance with id GO:0048308 and mitochondrion distribution

with id GO:0048311. By resolving all the GO data, we find that

the child node of term GO:0000001 is the term mitochondrial

DNA inheritance with id GO:0033955.

a) The Gene Ontology association file. Download from the GO

website [1], this file records concretely the relationships

between each gene in the UniProt database and each GO

term. The records are in the form of a triplet ,gene, GOID,

PMID.. The entries of this triplet represent respectively,

from left to right, the identifier of the gene in the UniProt

database, the identifier of GO term associated with the gene

and the PMID of the evident data confirming reasonability of

this annotation. There are a total of 198021 such records in

this file.

b) The MEDLINE abstract file. Downloaded from the U.S.

National Center for Biotechnology Information (NCBI)

website [9], this file contains the title and abstract contents

of MEDLINE documents prior to 2008.

3.2 Evaluation Methods
In this paper, we adopt the precision, recall and F-value to

evaluate the methods in this paper. Because the gene function

annotation methods in the present paper construct a classifier for

each node in the GO structure, the measures of precision and

recall are obtained by summing the results of all classifiers. The

evaluation metrics are defined as bellow, in which Yi stands for the

prediction of the classifier corresponding to node i in the GO

structure, and Zi stands for the standard answer.

Figure 3. Distribution of the document numbers in DescNodePMIDSet/CurNodePMIDSet of each GO node in the tree structure.
doi:10.1371/journal.pone.0107187.g003

b)

c)
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3.3 The Experimental Results
Table 1 contrasts the numbers of positive and negative training

samples for the flat classification and top-down classification,

which are acquired by calculating the average numbers for all GO

nodes. Figure 3 shows the distribution of the document numbers

in DescNodePMIDSet/CurNodePMIDSet of each GO node in the

tree structure, where the horizontal axis is the document numbers

in DescNodePMIDSet/CurNodePMIDSet, and the vertical axis is

the number of GO terms having the corresponding number of

documents in DescNodePMIDSet/CurNodePMIDSet. The curve

corresponding to DescNodePMIDSet is almost above the one

corresponding to CurNodePMIDSet. It clarifies that via topolog-

ical propagation between parent and child nodes in the tree

structure, the additions of associated documents for GO nodes

lead to a general increase in the number of positive training

samples, while the parent-child node differences are taken into

account to narrow the size of negative training sample set

additionally. Because of the great similarity between the parent

and child nodes, we selected the most difference-distinguishing

samples between them as negative samples, which solves the

imbalance of negative and positive training samples to some

degree.

The results of gene function prediction are shown in Figure 4,

where the Flat-NB represents the flat classification result that is

implemented by a naı̈ve Bayes classification model, the Flat-SVM

represents the result of the flat classification based on SVM, and

the TD-NB and TD-SVM represent the top-down classification

result based on naive Bayes and SVM, respectively. It shows the

results of classification based on SVM are slightly better than that

based on naive Bayes. The SVM classification model is based on

geometric principles and each text term is an attribute of the text.

These multiple attribute dimensions form a vector space and a text

can be represented by a point in that space. Then the purpose of a

SVM classifier is to determine a hyper plane that is able to

separate the positive and negative samples correctly. Compared to

the naive Bayes’ classifier based on statistical probabilities, the

SVM model has richer representations for documents, thereby

resulting in the better performance observed in the experimental

results. The latter two groups of results, which are produced by the

top-down classification methods, improve significantly in contrast

with the first two groups by the flat classification methods. The

construction of training samples based on the hierarchical

relationship among the GO nodes, not only reduces the size gap

between the positive and negative samples, but enhances the

instructional role of negative training sample set, and therefore

generates a more accurate classification model.

From the comparison of experimental results, we can see that

the top-down classification model excels over the flat classification

model when the samples are in a hierarchical relationship. The

results show that when the training set is small, our method is able

to increase the number of positive samples via topologically

propagation between parent and child nodes, and constructs a

training sample set with greater difference-distinguishing ability.

The best results are obtained in the top-down classification based

on SVM, where the precision, recall and F-value are 52.7%,

48.9% and 50.7% respectively. Barutcuoglu et al. (2006) [6]

examined predictions using old snapshot data before and after

Bayesian correction. They achieved 32% precision and 7%

sensitivity (recall) with independent SVM classifiers, and the

sensitivity was increased three times (21%) at comparable precision

Figure 4. Performance of different experimental settings.
doi:10.1371/journal.pone.0107187.g004

Gene Function Prediction

PLOS ONE | www.plosone.org 6 September 2014 | Volume 9 | Issue 9 | e107187



(31%) after adopting Bayesian correction. By taking the hierar-

chical structure of functional classes into account, their results

were significantly improved. Compared with the results of

Barutcuoglu et al., the best results of our method excels,

demonstrating the effectiveness of the top-down classification

based on SVM. This is probably because that taking into

consideration the tree structure of GO nodes, we not only build

a top-down classification model, but also adjust the training

samples and expand the positive training sample sets, reducing the

imbalance between the positive and negative samples, both of

which jointly lead to a better gene function predicting result.

Conclusions

For the annotations of the gene functions, which can be

interpreted to explain the phenomena of life science, this paper

studies how to use text mining methods to assist gene function

prediction, and further transforms it into a multi-label hierarchical

classification problem. By making use of the hierarchical

relationship of the GO structure to adjust the training samples,

our method expands the positive training sample sets and reduces

the imbalance between the positive and negative samples.

Meanwhile, we retain and highlight most distinguishing training

samples to enhance the classification ability. The top-down

classifier, constructed from the tree structure, can solve the

incompatibility between the classification results and the GO

structure in that it takes into consideration the relationship

between target classes during the training and predicting process.

Such a top-down classification model applies to a set of texts in a

hierarchical relationship.

There is a drawback with the gene function prediction method

used in this paper. If a classifier of internal nodes produces an

error in the classification process, this error will propagate

downward to leaf nodes. We need to minimize the error

propagation between nodes with an inheritance relation to

improve the accuracy of classification. Some further approaches

could be adopted to correct the classification results, such as the

multi-classifier merging.
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