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Summary

Estimating causal treatment effect for Randomized Controlled Trials (RCTs) under post-treatment

confounding, i.e., noncompliance and informative dropouts, is becoming an important problem in

intervention/prevention studies when the treatment exposures are not completely controlled. When

confounding is present in a study, the traditional Intention-to-treat (ITT) approach could under-

estimate the treatment effect due to insufficient exposure of treatment. In the recent two decades,

many papers have been published to address such confounders to investigate the causal

relationship between treatment and outcome of interest based on different modeling strategies.

Most of the existing approaches, however, are suitable only for standard experiments. In this

paper, we propose a new class of structural functional response model (SFRM) to address post-

treatment confounding in complex multi-layered intervention studies within a longitudinal data

setting. The new approach offers robust inference and is readily implemented. We illustrate and

assess the performance of the proposed SFRM using both real and simulated data.
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1 Introduction

Although Randomized Controlled Trials (RCTs) remain as a benchmark for clinical research

and practice, observational studies and semi-RCTs (trials that initiate treatment dynamically

when needed) have become more popular, especially in studies in the behavioral and social

sciences, health policy and health economics, because of the large amount of data generated

by new web technologies and social media. Even within the confine of RCTs, we see more
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community-based, multi-layered and multi-modal, dynamic interventions to take advantage

of both static (e.g., genetic traits) and dynamic (e.g., treatment response) information during

the treatment. In this paper, we focus on community-based multi-layered RCTs and

introduce a new class of structural functional response models to address complex treatment

noncompliance issues when evaluating treatment effects.

The proposed approach is motivated by a community-based multi-layered RCT–the

Rochester Resilience Project (RRP), where post-treatment noncompliance arises from both

the primary (subject) and supportive (support group) layer. The RRP is designed to promote

behaviorally and emotionally healthy trajectories in 1st–3rd grade urban children who are

showing aggressive-disruptive and school socialization problems, a group at elevated risk

for future mental health disorders, substance abuse problems, reduced educational outcomes

and costly services. The study involved 401 children randomized to the intervention and

control groups. In addition, the study interventionists also worked with parents to teach

children a set of skills to strengthen emotion self-regulation, adaptive social behavior and

classroom conduct. Parent visits focus first on identifying parent goals for the child, then on

introducing and preparing parents to use activity sets that teach and reinforce children’s use

of emotion self-regulation skills and incorporating those skills into their everyday

relationship.

Our initial intention-to-treat (ITT) analyses failed to show any treatment effect for the

primary behavior outcomes. Since ITT estimates are defined based on treatment assignment

at randomization, rather than what actually goes on during the trial, such estimates

completely ignore issues pertaining to violations of treatment protocols such as treatment

noncompliance. For example, had only a small fraction of subjects in the intervention

condition taken the treatment as prescribed, ITT would unduly underestimate the effect of

receiving the intervention. However, child participation over 18 months was, as expected,

high due to skill lessons being delivered in the school setting; 97% of children in the

intervention condition completed all 14 lessons in the first year, and 81% completed all 10

lessons in the second year. Of the 39 non-completers, 33 were children relocating to non-

study schools. Non-participation was unrelated to any baseline outcome measure.

Parent participation, however, was significantly lower; as shown in Table 1, with only

63.4% of parents (128 of 203 enrolled) participating in one or more intervention visits and

few completing the 15 scheduled sessions. Under this condition of lower participation, ITT

analyses are less informative about the true causal effects of parent involvement in the

program, especially if the effect of treatment on child outcomes is achieved in part through

parental participation.

A number of approaches for addressing treatment noncompliance in RCTs have been

developed based on the counterfactual outcome framework, such as the instrumental

variable [1], principal stratification [2] and structural mean models [3]. None of the available

methods address treatment noncompliance in multi-layered intervention studies. In this

paper, we develop a new approach to extend the principles in these approaches to this new

setting with treatment noncompliance from multiple layers of the intervention. In Section 2,

we briefly review the counterfactual outcome based causal framework and introduce a class
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of structural functional response model (SFRM) to address both pre- and post-treatment

confounding. In Section 3, the SFRM is extended to address treatment noncompliance in

multi-layered interventions within a longitudinal study setting. Simulation studies are

presented in Section 4 to evaluate the performance of the proposed SFRM. In Section 5, we

apply the approach to address the variability in parent participation in the two-layered RRP

study. We conclude with a discussion in Section 6.

2 Structural Functional Response Models for Causal Inference

2.1 Counterfactual Outcomes

The concept of counterfactual outcome, the underpinning of the modern causal inference

paradigm, addresses the fundamental question of causal treatment effect [4]. Under this

framework, associated with every patient is a potential outcome for each treatment

condition, and the treatment effect is defined by the difference between the outcomes in

response to the respective treatments from the same individual, thereby free of any

confounding effect and providing a conceptual basis for causal effect without relying on the

notation of randomization.

For example, if the two potential outcomes for the ith child in the RRP Study are yi1 and yi0

for the intervention and control condition, the difference Δi = yi1 − yi0 is the treatment effect

for the child. Since this difference is based on the outcomes from the same child, it must be

the result of the intervention. Unfortunately, since only the outcome from the treatment

condition actually assigned is observed, this difference is unobservable. A large part of the

causal inference literature centers on how to estimate the average, or population-level,

causal treatment effect, Δ = E (yi1 − yi0).

In RCTs, treatment assignment is independent of potential outcomes, i.e., yik⊥zi, where zi

denotes a binary indicator for treatment assignment and ⊥ denotes stochastic independence.

In this case, the average causal effect E (yi1 − yi0) can be estimated by the difference

between the two sample means from the intervention and control group:

(1)

where nk denotes the number of subjects assigned to the kth treatment group such that n = n1

+ n0 and ik denotes the ith subject within the kth treatment group. Note that yikk refers to the

observed outcome for the ikth subject in the assigned kth treatment, while yik denotes the

potential outcome corresponding to the kth treatment.

The above shows that standard statistical models such as linear regression and mixed-effects

models can be applied to RCTs to infer causal treatment effects. Randomization is key to the

transition from the unobserved individual level difference, yi1 − yi0, to the estimable average

treatment effect by the computable sample means in (1). For non-randomized trials such as

most epidemiological studies, exposure to treatment or agent is non-random, in which case

(1) generally does not estimate the average causal effect Δ = E (yi1 − yi0). Thus, associations

found in observational studies generally do not imply causation.
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2.2 Structural Functional Response Models

Since only one of the potential outcomes yik is observable, we cannot model the yik’s

directly using conventional regression models. One way around this is to model the

observed outcomes such as yikk as in the preceding section. Alternatively, we can circumvent

this difficulty by constructing an observable response based on the unobserved yik and relate

the response created to the mean of yik as follows:

(2)

where μk = E (yik) is the mean of potential outcome yik, since it is readily checked that

Although yik are not both observed, the functional response,

, in (2) is still well defined. If π is known as in most RCTs,

it is unnecessary to model zi and (2) reduces to the first equation.

The model in (2) is not a conventional regression model such as the generalized linear or

non-linear models, since f (yi0, yi1, zi) is not a single linear response such as yik or zi. Rather,

this model is a member of the following class of functional response models (FRM):

(3)

where f (·) is some function, h (·) is some smooth function (e.g., continuous second-order

derivatives), yi and xi denote some response and explanatory variables,  denotes the set of

 combinations of q distinct elements (i1, …, iq) from the integer set {1, …, n} and θ a

vector of parameters. The response f (yi1, …, yiq, θ) in (3) for the general FRM can be quite

a complex function of multiple outcomes (e.g., yik, zi in (2)) from different subjects as well

as unknown parameters θ (e.g., π in (2)). By generalizing the response variable in this

fashion, (3) provides a general framework for modeling a broad set of problems involving

higher-order moments and between-subject attributes. The FRM has been applied to a range

of methodological issues involving multi-subject responses such as extensions of the Mann-

Whitney-Wilcoxon rank sum test to longitudinal and causal inference settings [5, 6], social

network analysis [7, 8, 9], gene expression analysis [10], reliability coefficients [11, 12, 13,

14, 15, 16, 17] and complex response functions such as models for population mixtures [18]

and structural equation models [19].

Because of its relationship to (3), the model in (2) will be referred to as the Structural FRM

(SFRM):
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(4)

where θ = (μ1, μ0, π)⊤ denotes the collection of the parameters for this SFRM. Before

adding more complexity to this SFRM to address treatment noncompliance within our

context, let us first extend it to address selection bias in observational studies.

2.2.1 Selection Bias by Pretreatment Confounders—If subjects are not randomized

with respect to the treatment condition (or exposure) as in observational studies (e.g.,

survey, epidemiologic studies), yik ⊥ zi is generally not true. In the presence of such

selection bias, if wi is a vector of covariates containing all sources of confounding such that

the ignorability condition [20], yik ⊥ zi | wi, holds, then we have:

(5)

where π (wi) = E (zi | wi). We may model zi using a generalized linear model such as logistic

regression:

(6)

By combing (5) and (6), we have the following SFRM to provide valid inference about θ =

(μ1, μ0, η⊤)⊤ under selection bias:

(7)

where ℱk = {0} (k = 1, 2) denotes the sigma field generated by the constant 0 and ℱ3 = wi

denotes the sigma field generated by wi. Note that E (fik (yi0, yi1, zi, wi) | ℱk) = E (fik (yi0, yi1,

zi, wi)), since ℱk is contained in ℱ3 for k = 1, 2 (e.g., see Kowalski and Tu [12]).

2.2.2 Treatment Noncompliance as Post-treatment Confounders—In many

RCTs, even well-planned and executed ones, treatment effect may be significantly modified

by levels of exposure of intervention (e.g., compliance or dosage) due to treatment

noncompliance. One popular approach for addressing this primary post-treatment

confounder is the structural mean model (SMM)[3]. Other competing approaches also

address treatment noncompliance such as the Instrumental Variable[1] and Principal
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Stratification methods[2]. However, only SMM models treatment compliance on a

continuous scale, which is more appropriate for session attendance within our context. We

first frame this model within the FRM framework and then discuss its extensions to

accommodate multi-layered interventions and missing data in Section 3.

Consider a randomized medication vs. placebo study and let di1 denote a continuous

potential outcome of medication use, if the ith subject is assigned to the medication

condition. The SMM models the dose effect on treatment difference as follows:

(8)

where g (·) is known up to a set of parameters (i.e., only the functional form of g (di1) is

specified). However, the above model cannot be fit directly using conventional statistical

methods, since only one of the potential outcomes (yi1, yi0) is observed. For RCTs, yi1, yi0 ⊥

zi and it follows that:

(9)

By conditioning on the assigned treatment zi = k, yik in (9) represents the observed outcome

from the kth treatment group (k = 0, 1). Thus, E (yi0 | di1, zi = 0) cannot be modeled directly,

since di1 is not observed for the subjects assigned to the placebo condition.

If treatment compliance is tracked for the subjects in the placebo group, then di0, the

potential outcome of placebo use if the subject is assigned to the placebo condition, is

observed. Because of randomization and the fact that subjects cannot distinguish between

medication and placebo, di0 has the same distribution as di1. Thus, we may replace di1 by di0

in E (yi0 | di1, zi = 0) to re-express (9) as:

(10)

Under this treatment compliance explainable condition, we will be able to model the right

side to obtain estimates of dose-response relationships g (di1) [21].

Although applicable to medication studies, the SMM in (10) in general does not apply to

psychosocial research. Many psychosocial intervention studies do offer attention or

information controls and subjects in such control groups may also be tracked for their

session attendance. However, unlike medication studies, compliance observed in the control

group di0 generally does not have the same distribution as di1. For example, consider a HIV

prevention intervention study for teenage girls at high risk for HIV infection, in which the

intervention condition contains information on HIV infection, condom use and safe sex,

while the control condition consists of nutritional and dietary information. Subjects with

high compliance in the intervention group are generally different from their counterparts in

the control condition; sexually active girls may form a majority of those with high

attendance in the intervention group, while such girls might have low attendance rates, had

they been assigned to the control condition. Thus, when assessing the effect of prevention

intervention using outcomes of HIV risk behavior such as number of unprotected vaginal
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sex over the past month, it is not meaningful to compare compliant subgroups between the

two treatment conditions.

Thus for psychosocial research studies, we cannot simply replace di1 in E (yi0 | di1, zi = 0) by

a measure of treatment compliance such as session attendance in the control group di0 as in

medication trials. In many studies, it is reasonable to assume that there is sufficient

information to predict di1, i.e., given a set of covariates xi, di1 is independent of yi0. For

example, if xi contains information on sexuality and other information on a subject’s interest

to attend sessions in the intervention condition of the HIV study example above, yi0 may no

longer depend on di1 given xi. In this case, E (yi0 | di1, xi, zi = 0) = E (yi0 | xi, zi = 0). Thus,

under this ignorability condition, yi0 ⊥ di1 | xi, (9) becomes:

(11)

Note that the SMM in this case is essentially the same as the Principal Stratification Model,

except that it requires neither discretization of di1 nor parametric distribution models for yik,

since (11) only specifies the conditional mean of yik given di1, xi and zi.

By modeling E (yi0 | xi, zi = 0) and casting (11) in the form of FRM, we obtain the following

SFRM for modeling treatment compliance measured by a continuous dose variable di1 (for

the intervention condition only):

(12)

where h (x, β) (g (d, γ)) is some function of x (d) parameterized by β (γ). As before, n is the

sample size of the study, i.e., the sample size of the intervention plus the control group.

Although for RCTs it is not necessary to include π as a parameter, the general SFRM in (12)

allows us to extend this model to observational studies. For example, for non-randomized

studies, yik ⊥ zi in general is not true. If yik ⊥ zi holds conditional on a set of covariates wi

(possibly overlapping with xi), then by modeling π as a function of wi as in (6), the

following SFRM still provides consistent estimates in the face of selection bias:

(13)

We can model h (xi, β) and g (di1, γ) in various ways. For example, we may model both as a

linear function:  and g (di1, γ) = di1. By specifying an appropriate form for g

(di1, γ), we may also extend (12) to non-continuous dose variables such as categorical

variables. Further, by appropriately specifying h1 (xi, β) and h2 (xi, di1, β), we can also

generalize (12) to non-continuous responses. For example, for a binary yi, we may specify h1

(xi, β) and h2 (xi, di1, β) as follows:
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2.2.3 Inference for Structural Functional Response Models—We focus on

inference about θ = (β⊤, γ⊤, η⊤)⊤ for the SFRM in (13), from which (7) and (12) follow as a

special case. Let

where fik and hik are defined in (13). Then, consistent estimates of θ are readily obtained by

using the Generalized Estimating Equations (GEE) for FRM [18, 12, 22]:

(14)

where R (α) denotes a choice of working correlation matrix.

The choice of R (α) and associated properties for the GEE estimate of θ have been

extensively discussed in the literature, which are stated for ease of reference without

justifications [23, 24]. In particular, the GEE estimate may not be consistent in the presence

of time-varying covariates under working correlation structures other than the working

independence model [23]. Thus, the working independence model may be used in general to

ensure valid inference. Although this simple working correlation structure may incur some

loss of efficiency for time-dependent covariates [24] and thus other models such as the

uniform compound symmetry matrix may be used in some specific applications to improve

power, it suffices for the purpose of illustrating the proposed approach. We focus on the

working independence model in what follows unless otherwise stated.

3 Extension to Complex Studies

We first extend the SFRM in Section 2 to longitudinal data and then to multi-layered

intervention studies.

3.1 Longitudinal Data with Missing Values

Let yit = (yit1, yit0)⊤ (xit) denote the potential outcomes of yit (a vector of explanatory

variables) of interest with i (t) indexing the subject (assessment time) for 1 ≤ i ≤ n and 1 ≤ t

≤ T. By applying (13) to each time point, we obtain a longitudinal version of the SFRM:

(15)

Inference for the FRM above is based on the following GEE for FRM [18, 12, 22]:
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(16)

where Di and Vi are readily computed given (15) and R (α) denotes a choice of working

correlation matrix.

Missing data is a common issue in longitudinal studies. The GEE in (16) generally yields

biased estimates under the missing at random (MAR) mechanism [25, 26, 27]. The weighted

generalized estimating equations (WGEE), a common approach for addressing this issue,

has been extended to the FRM [18, 22]. We adapt this approach to the current context, with

an alternative implementation to simplify the inference procedure. As in the literature, we

assume Monotone Missing Data Patterns (MMDP) to facilitate inference [18, 22, 25, 26,

27].

Let yit denotes the observed potential outcome, i.e., yit = yitk if the subject is assigned the kth

treatment. Let

denoting the all individual responses (yit−) and explanatory variables (xit−) prior to time t.

Let

(17)

We assume no missing data at baseline such that ri1 ≡ 1 (1 ≤ i ≤ n). Under this, MAR and

MMDP assumptions, pit in (17) is well defined for 1 ≤ t ≤ T. By integrating the weights Ψi

into the GEE in (16), we obtain the following WGEE for inference about β:

(18)

In the extant literature, an estimate ξ̂ of ξ, obtained from a separate set of estimating

equations, is substituted into the WGEE and (18) is then solved for θ to obtain the WGEE

estimate θ̂ of θ. Since θ̂ is conditional upon ξ̂, its asymptotic variance is then adjusted to

account for the sampling variability of ξ̂. If α is -consistent and ξ̂ is asymptotically

normal, the WGEE estimate θ̂ obtained from (17) is consistent and asymptotically normal

[18, 22, 27]. The procedure for adjusting the sampling variability of ξ̂ in the asymptotic

variance is quite complex and thus we discuss an alternative approach to estimate ξ and θ

simultaneously.
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Let

(19)

where fit, hit and πi are defined in (15), and rit and pit are defined in (17). Consider the

WGEE in (18), but with Di and Ψi redefined as follows to provide estimates for both θ and

ξ:

(20)

where Ai is defined in (17). Unlike (18), the WGEE in (19) makes joint inference about θ

and ξ. Thus, no adjustment is necessary for the asymptotic variance of the WGEE estimate

of θ to account for the sampling variability of ξ̂ as in the standard approach above.

3.2 Multi-layered Intervention Study

We now extend the SFRM above to multi-layered interventions to address treatment

noncompliance from different intervention layers, such as the child and parent layers of the

RRP. For notational brevity, we focus on two-layered interventions, since extensions to

multi-layered interventions with more than two layers are straightforward.

Consider a two-layered intervention study and let ui1 denote some (continuous) treatment

compliance measure for the second layer. By taking into account both compliance measures

di1 and ui1, we obtain from (11) the following dose-response relationship:

(21)

We assume that the covariates xi sufficiently explain treatment compliance patterns for both

the primary and secondary layers of the multi-layered intervention, i.e., di1, yi0 ⊥ xi and ui1,

yi0 ⊥ xi. In some studies, treatment noncompliance may be limited to some intervention

layers, in which case xi is only required to explain the affected layers. For example, in the

RRP, noncompliance is a major issue only for the second parent support layer and the

ignorability condition only needs to be assumed for parent participation.

By formulating (21) as an FRM as in the case of single-layered intervention study, we obtain

the following SFRM for modeling the effect of treatment noncompliance on the outcome in

a two-layered intervention study:
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(22)

where 1 ≤ i ≤ n. The above has essentially the same form as the single-layered SFRM,

except that the treatment effect g (di1, ui1, γ) is a function of compliance from both the

primary and secondary intervention layers. Note that (22) applies to observational studies

well, in which case wi is assumed to account for all sources of selection bias.

We can model treatment effect g (di1, ui1, γ) to reflect treatment compliance in both layers.

For example, we may specify an additive effect function, g (di1, ui1, γ) = γ1di1 + γ2ui1 or we

may also include a between-layer treatment compliance interaction di1ui1. If the treatment

effect is moderated by some covariate ci, we may also include treatment moderating effect

by setting g (di1, ui1, ci, γ) = ci (γ1di1 + γ2ui1). If the moderating effect only occurs to one of

the intervention layers, we may model g (di1, ui1, ci, γ) as γ1cidi1 + γ2ui1 or γ1di1 + γ2ciui1,

depending on whether the moderating effect operates at the primary or secondary layer of

the intervention.

As in the case of single-layered intervention study, the cross-sectional SFRM in (22) is

readily extended to longitudinal studies. For example, by replacing the treatment effect

function gt (di1, γ) in (15) by gt (di1, ui1, γ) in (22), the SFRM in (15) can be applied to

model the effect of treatment compliance for two-layered observational studies. As well, by

modeling the missing data under MAR using (17), we can make joint inference about θ in

(22) and ξ for the missing data model using a WGEE akin to (18), but with Di, Vi, Ψi and Si

in (20) redefined based on (22).

In the above, we have assumed that both di1 and ui1 are continuous. The models are easily

extended to non-continuous compliance variables, if either di1 or ui1 or both are non-

continuous.

4 Simulation Studies

We carried out a series of simulation studies to assess the performance of the proposed

SFRM for multi-layered intervention studies for the most general case under both pre-

treatment and post-treatment confounders. Since our RRP is a two-layered intervention

study, we only considered this special case for the simulation study. We assessed the

performance of the models under both cross-sectional and longitudinal data.

We considered continuous and binary outcomes yi for both cross-sectional and longitudinal

data settings, with a continuous treatment noncompliance variable for both the primary and

secondary layer. For space consideration, we only report results for two sample sizes n = 50

and 200 for a continuous response in cross-sectional data (Model I) and n = 100 and 400 for

a binary response in longitudinal data (Model II). The increase in sample size for the binary

outcome is to achieve more reliable estimates because of data sparseness in this binary

response case, especially in the presence of missing data in the longitudinal data setting. All
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simulations were performed with a Monte Carlo (MC) sample of 1,000. All analyses were

carried out using codes developed by the authors for implementing the models considered

using the R software platform [28].

For the cross-sectional data scenario, let yik (k = 0, 1) be a continuous outcome in Model I

and let di (ui) denote a continuous treatment noncompliance variable for the primary

(secondary) intervention layer. Model I for the continuous yik is defined as follows:

(23)

where zi is the indicator of treatment assignment, xi is a confounding variable (for both pre-

and post-treatment), ci is a treatment moderator, g1 (g2) is a function modeling the effect of

treatment noncompliance without (with) the treatment moderator, U (a, b) denotes a uniform

over the interval between a and b, and  denotes a χ2 distribution with p degrees of

freedom. Since (yi0, yi1) share the same random effect bi, they are not independent. Note that

to demonstrate robustness of the SFRM, both the random effect bi and model error eik

followed non-normal distributions. In (23), we considered two treatment effect functions,

g1(di, ui, xi; γ) and g2(di, ui, xi, ci; γ), with the latter including a moderating effect of the

former by a treatment moderator ci. This moderator ci can be associated with either the

primary or secondary layer of the multi-layered intervention.

Shown in Table 2 are the estimates of θ, along with their model-based (Mod. S.E.) and

empirical (Emp. S.E.) standard errors for Model I. The model-based standard errors were

computed based on the estimated asymptotic variance, while their empirical counterparts

were calculated from the MC replicates. At the larger sample size n = 200, all parameter

estimates were quite close to the true values of the respective parameters. The model-based

standard errors also matched their empirical counterparts quite well. Although the difference

all increased between the parameter estimates and their true values and between the model-

based and empirical standard errors for the smaller sample size n = 50, the SFRM still

performed quite well.

For the longitudinal data, as noted earlier, we only report results for a binary response. We

extended both the mean for the control group, μt (xi; β), and the treatment effect function, gt

(di, ui, xi, ci; γ), in the cross-sectional case to include a temporal trend. In addition, to reflect

the treatment noncompliance patterns in the RRP study, where treatment noncompliance

only occurred in the supportive parent layer, we only considered treatment noncompliance in

the second layer. As in the cross-sectional data setting, we also included a treatment

moderator ci in gt (di, ui, xi, ci; γ). For notational brevity, we only considered one treatment
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effect function and two assessments, with t = 1 (2) denoting the baseline (follow-up). We

created about 22% missing data at the follow-up.

We discussed two approaches for longitudinal data analysis. The first employs the

conventional WGEE that conditions on the estimates of the missing data model and adjusts

the variance estimates of parameter estimates to account for the sampling variability in the

estimates of the missing data model. Since the adjustment part is quite complex, we also

discussed an alternative that utilized the flexibility of FRM to model both missing data and

treatment effect simultaneously. We used this latter approach in the simulation study.

For the binary response yik, the SFRM is given by:

(24)

where pi = E(ri1 = 1 | yi1) is the probability of missing data at the follow-up t = 2 for both the

treatment and control groups. For the control group, we included a time as well as a time by

covariate interaction. As indicated earlier, the treatment effect function gt (di, ui, xi, ci; γ)

also included a treatment moderator ci. Since the probability of missing response at post-

treatment pi depends on the baseline yi1, the missing data mechanism follows the MAR.

Under the specified ξ, there was about 22% missing data. The correlated yitk were created by

the copula methods [29, 30]. The correlation between the two potential outcomes with each

assessment time as well as between two assessments within the same potential outcome in

our simulation study was set at about 0.5, uncontrolled for any of the explanatory variables.

Shown in Table 3 are the estimates of θ, along with their model-based (Mod. S.E.) and

empirical standard (Emp. S.E.) errors for Model II. In comparison to the cross-sectional data

case, Table 3 contains estimates for the additional parameters ξ = (ξ0, ξ1)𝖳 for the missing

data model. As in the case of cross-sectional data, both the parameter estimates and model-

based standard errors were quite good when compared to their true values or empirical

counterparts.

5 Rochester Child Resilience Study

The Rochester Resilience Project (RRP) is a randomized two-layered intervention study

with significant treatment noncompliance by the parent, whose participation forms the

second supportive layer of the intervention. The study’s enrollment began in Fall 2006, with

data collection for the final cohort completed by June 2011. There were 401 students from

first up to third grade from Rochester City School District elementary schools. The study

examines how children with a higher risk of developing behavioral problems in the

intervention condition improve as compared to the control condition over a 30-month

period. Each child was assessed at baseline, and 6, 18, and 30 months post baseline.
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Since treatment compliance was quite good for the children in the study, we only considered

variability in the parent participation. In order to apply the proposed SFRM to analyze the

data in this study, we first examined the baseline covariates to see if any of these variables

effectively predicted the patterns of treatment noncompliance. We treated the second-layer

noncompliance measure, ui, the number of session attendance by the parent, as a continuous

variable and applied linear regression.

Shown in Table 4 are the estimated coefficients, standard errors and p-values of the

variables that significantly predicted the number of session attendance ui from the linear

regression model. The variable School Number represents the different schools which the

children attended. The variable PNC stands for the Perceived Need for Care scale, assessing

frequency over past six months that parent viewed her child as needing help for behavior or

emotional problems, including from communication with others about child [31]. The

DomEX Baseline denotes the baseline value of the subscale of the Dominic Interactive self-

report, assessing symptoms of three externalizing (oppositional defiant, conduct problems,

and ADHD) problems [32]. The results from the regression show that session participation

was significantly different across the different schools and children with different PNC and

DomEX baseline values. In addition, parent age also significantly predicted the session

attendance.

For our illustrations of the model, we focused on two primary behavior outcomes of the

study, the Teacher ratings of aggressive behavior (AthAcc) and Parent rating of internalizing

behavior problem (PIntD). For both outcomes, higher values indicate fewer problems. For

each of these behavior outcomes yit, let yit1 and yit0 denote the potential outcomes of yit at

baseline (t = 1) and each of the three follow-ups (2 ≤ t ≤ 4). We modeled the causal

treatment effect as a function of treatment compliance from the parent layer using a SFRM

as follows:

(25)

where zi is the indicator variable of treatment assignment with zi = 1 (0) for intervention

(control), xi1 denotes the age of the child at baseline, xi2 − xi5 denote the four binary

indicators of School 19, 22, 30, 45, and xi6, xi7 and xi8 denote the PNC, DomEXT Baseline

and Parent Age variables, respectively. In addition, we included Age and Age by time

interaction, since our theory as well as preliminary analyses show that these behavioral

outcomes have different trajectories for children of different ages.

Prior to fitting the SFRM, we examined the missing data mechanism using logistic

regression to determine whether missing data at each of the follow-up times, 6, 18, and 30

months post-baseline, depended on the observed outcomes at prior assessment times. Results

indicated that missing data was not associated with the observed data for any of the two

behavior outcomes considered. Thus, we assumed the dropouts for these two behavior

outcomes in this RRP study followed the Missing Complete at Random (MCAR)
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mechanism. The MCAR mechanism was also consistent with the excellent treatment

compliance observed for the study subjects (children), since unlike parent participation both

the intervention and assessment were performed during the regular school time.

Shown in Table 5 are the estimates (Est.), standard errors (S.E.) and p-values (p-value) for

the parameter γ in the treatment effect function git in (25) for the two behavior outcomes

analyzed. Within the context of the study, this parameter γ measures the rate of change of

the behavior outcome per month for each additional session attended by the parent. The

results show that for both behavior outcomes γ was quite significant, with the positive

estimate indicating that the intervention improved the child’s behaviors and reduced the risk

for future mental disorder and substance abuse. With the SFRM in (25), causal treatment

effect is given by γui. For example, if the parent of the child attended all the planned 15

sessions, then ui = 15 and the causal effect is β4ui = 0.25 per month time in the scale of the

AthAcc outcome. Thus, in 18 months post-baseline, for instance, the intervention will on

average increase the child AthAcc outcome by 4.32 points.

For comparison purposes, we also performed the intent-to-treat (ITT) analysis for the two

behavior outcomes by setting ui = 1 in git of the SFRM in (25). The estimated γ, standard

errors (S.E.) and p-values (p-value) are shown in Table 5 under the column “ITT Effect”. As

seen, γ was not significant for either outcome. Thus, parent support played a significant role

in improving the two child behavior outcomes in this two-layered intervention study.

6 Discussion

We developed an approach to address treatment noncompliance in multi-layered

intervention studies. This approach extends the structural mean model (SMM) to multi-

layered intervention and longitudinal data settings. We selected the SMM to develop our

approach because of the need to model treatment noncompliance on a continuous scale.

Other competing approaches such as the Principal Stratification method characterize

variability in treatment noncompliance using categorical outcomes. However, within the

context of multi-layered intervention study, such methods yield a large number of

noncompliance categories, limiting their applications. For example, if a 4-level categorical

outcome is used to characterize treatment noncompliance for each layer of a 2-layered

intervention, we will need a 16-level categorical outcome to understand treatment

noncompliance when considering interactions of noncompliance patterns between the two

intervention layers. The larger number of levels of a categorical outcome may cause

problems for fitting models, if there are a limited number of subjects in one or more strata

(defined by the levels of the categorical outcome). With the freedom to choose a continuous

or categorical noncompliance measure as in the SMM and proposed SFRM, we can consider

between-layer interactions in a more parsimonious and reliable fashion.

We also adopted the distribution-free framework of SMM for inference for our proposed

model. Using the framework of FRM, we are able to provide robust inference about model

parameters like the SMM and accommodate noncompliance from multiple intervention

layers as well as missing data under MAR. Our simulation studies show that the proposed

approach perform quite well even for a sample size as small as 50 (for combined
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intervention and control groups). As well, applications of the proposed model to the

Rochester Resilience Project demonstrate the importance to consider treatment

noncompliance from the supportive parent layer in this two-layered intervention study.
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Table 4

Estimates, standard errors and p-values for significant predictors of parent participation for the Rochester

Resilience Project from generalized linear models.

Significant Predictors for Parent Participation

Explanatory Variable Estimate Standard Error p-value

PNC 0.9191 0.2698 0.0008

Parent Age 0.0882 0.0293 0.0030

DomEX Baseline 0.9127 0.0373 0.0154

School Number <.0001

School 19 −4.1065 0.8446 <.0001

School 22 −3.3860 0.9122 0.0003

School 30 −3.1342 0.9873 0.0018

School 45 −4.3626 0.8440 <.0001

School 50 0.0000
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