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Endocarditis isolates of Enterococcus faecalis produced biofilm significantly more often than nonendocarditis
isolates, and 39% of 79 versus 6% of 84 isolates produced strong biofilm (P < 0.0001). esp was not required,
but its presence was associated with higher amounts of biofilm (P < 0.001). Mutants disrupted in dltA, efaA,
ace, Isa, and six two-component regulatory systems were largely unaltered, while disruptions in epa, atn, gelE,
and fsr resulted in fewer attached bacteria, as determined using phase-contrast microscopy, and less biofilm

(P < 0.0001).

Bacteria are frequently found as part of a complex of organ-
isms known as biofilm (15). Although biofilm formation by
enterococci has been reported (1, 3, 28), there has not been a
systematic study of endocarditis isolates and there has been
little published relating to the genetics of biofilm formation by
Enterococcus faecalis. This previous study found that 93.5% of
esp-positive isolates formed biofilm while no esp-lacking isolate
produced biofilm; esp disruption in two strains resulted in
decreased biofilm formation, while esp disruption had no sig-
nificant effect on the strong biofilm phenotype of a third strain
(28). In the present work, we studied the occurrence of esp and
biofilm formation among isolates of E. faecalis and evaluated
mutants of an esp-lacking strain in an effort to unravel the role
played by, and the genesis of, biofilm formation by this organ-
ism.

(Part of this work was presented at the 43rd Interscience
Conference on Antimicrobial Agents and Chemotherapy, Chi-
cago, Ill., 14 to 17 September 2003).

Bacterial strains. A total of 163 E. faecalis isolates (51 from
sources outside the United States) were evaluated. Control
strains (28) were kindly provided by I. Lasa. OGIRF (esp
negative) (12) and mutants of OGIRF that had been previ-
ously generated (14, 17, 18, 22-25, 27, 33) were also evaluated.

Genetic methods. An intragenic fragment of esp was ampli-
fied by PCR using previously described primers (19) and used
as a probe for colony hybridization, as described elsewhere
(23). A disruption mutant (TX5427) of a homologue of Strep-
tococcus agalactiae dltA was generated and confirmed, as de-
scribed previously (27).

Biofilm formation. Bacteria that had been grown overnight
were diluted 1:100 in 200 wl of tryptic soy broth—-0.25% glucose
and inoculated onto polystyrene microtiter plates (Falcon,
Franklin Lakes, N.J.). After 24 h of static incubation at 37°C,
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plates were processed (2, 28), fixed with Bouin’s fixative for 30
min, stained with 1% crystal violet (CV) for 30 min, and rinsed
with distilled water. CV was solubilized in ethanol-acetone
(80:20, vol/vol), and optical density at 570 nm (ODs,,) was
determined. Each assay was performed in quadruplicate on at
least three occasions. For phase-contrast microscopy, bacteria
were grown as described above except in polystyrene petri
dishes (Falcon). After removal of planktonic bacteria, biofilm
was directly examined by phase-contrast microscopy (magnifi-
cation, X600) with an Eclipse TE2000-E (Nikon Corp., Tokyo,
Japan).

For primary adherence, 5 ml of a diluted overnight culture
(ODgq, 0.1) was added to polystyrene petri dishes (Falcon)
and incubated for 2 h for mutants, as described previously (28),
and 30 min for clinical isolates (5) (greater adherence of clin-
ical isolates made counting difficult at 2 h). Bacteria in five
different fields were subjected to light microscopy and counted
(magnification, X 1,000) after Gram staining.

Statistical analysis. Statistical analysis was performed using
the Mann-Whitney test for continuous variables and Fisher’s
exact test (NCSS/PASS 2000 edition; NCSS Statistical Soft-
ware, Kaysville, Utah) or the chi-square test for categorical
variables. Median ODs,, and interquartile range (IQR) values
were calculated using GraphPad Prism 4 software.

Biofilm formation by clinical isolates. ODs,, readings after
CV staining ranged from 0.2 to 3.5 (Fig. 1), and isolates were
categorized (Table 1) based on the approach of others (1, 10,
28) as strong (ODs,,, >2; 36 isolates [22%]), medium (ODs,
1 to 2; 92 isolates [56%]), or weak (ODs,, greater than 0.5 but
less than 1; 23 isolates [14%]) biofilm formers or as non-
biofilm formers (ODs,, =0.5; 12 isolates [7%]). The median
ODs,, values for controls (28) were 3.5 for E. faecalis strain 54
(categorized as a strong biofilm former in reference 28), 1.72
for strain 11279 (medium [28]), 0.85 for strain 11262 (weak
[28]), and 0.61 for strain 23 (categorized as a non-biofilm
former in reference 28). The ca. 93% of 163 E. faecalis isolates
classified as biofilm producers is lower than the percentage
reported in one study (20) that classified any samples with ODs
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FIG. 1. Biofilm formation by E. faecalis isolates derived from different sources. Biofilm formation on a polystyrene surface was assessed after
CV staining. Each dot indicates the median ODs,, value from 12 determinations (three independent experiments, each performed in quadrupli-
cate). The medians (and IQRs) for endocarditis isolates and those from other sources were 1.74 (IQR, 1.32 to 2.35) and 1.31 (IQR, 0.82 to 1.53),

respectively (P < 0.0001).

of >0 as positive for biofilm formation and higher than that
found by others (with slightly different methodologies) who
reported 57% (28) and 80% (1) of E. faecalis isolates as pos-
itive for biofilm formation. If we consider only strong and
medium production as positive (OD > 1.0), 78.5% of our
isolates would be classified as biofilm formers (Table 1).

All 79 endocarditis isolates formed biofilm versus 86% of 84
isolates from other sources (P < 0.001), and 31 of 79 (39%)
were strong biofilm formers (Table 1 and Fig. 1) versus only 5
(6%) of the isolates from other sources (P < 0.0001; median
ODs, 1.74 versus 1.31; P < 0.0001). To our knowledge, this is
the first report to show that endocarditis isolates are associated
with greater biofilm formation, but it would be premature to
speculate whether biofilm contributes to or perhaps results
from endocarditis. Results for primary adherence were gener-
ally, but not absolutely (e.g., TX0034 and TX0291), correlated
with an organism’s level of biofilm formation (Fig. 2A).

Presence of esp and biofilm. esp was present in 74 (45%) of
163 isolates and 49% of biofilm producers (Table 1). Among
endocarditis isolates, 48% were esp positive versus 59% of
urine isolates, 48% of other clinical isolates, 33% of nosoco-
mial fecal isolates, and 19% of community fecal isolates. The
incidence of esp has been reported by others as 29 to 45%
among E. faecalis blood isolates (4, 21, 29, 31), 42% among 33
endocarditis isolates (21), and 3 to 40% among fecal isolates
(21, 31).

All 74 esp-positive isolates produced biofilm, and 77 of 89
esp-negative isolates also produced biofilm. This is in contrast
to results from one study (28) in which none of the esp-negative
isolates formed biofilm, but it is consistent with those of an-
other study (20) reporting no association between esp and
biofilm formation. However, we did find that 69% of strong,
46% of medium, and 30% of weak biofilm producers and 0 of
12 non-biofilm producers were esp positive (P < 0.001) and
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FIG. 2. Biofilm formation (BF) and primary adherence (PA) by representative E. faecalis clinical isolates (A) and mutants (B). Median and
IQR values are shown. Values for the biofilm assays are from 12 determinations (three independent experiments, each performed in quadrupli-
cate). All readings for TX1393 and TX0291 were 3.5, the maximum OD detectable by our microplate reader. Primary adherence was assessed after
incubation on a polystyrene surface for 30 min for clinical isolates and 2 h for mutants. Bacteria in five different fields from two independent plates
were subjected to light microscopy (HPF, high-power field; magnification, X1,000) and counted after Gram staining. TX10275, TX10276,
TX10292, TX10298, TX37200, and efaR are two-component regulatory system mutants. The other 10 mutants which showed no change in biofilm
were not tested for primary adherence.



3662 NOTES

INFECT. IMMUN.

FIG. 3. Phase-contrast photomicrographs of biofilms on a polystyrene surface. Images are representative of what was observed in multiple fields

(magnification, X600).

and TX5256 (ace, encoding a collagen adhesin) (14) were also
unchanged relative to OG1RF, while TX5332 (Isa, encoding an
ATP-binding cassette transporter required for lincosamide and
streptogramin A resistance) (25) showed a small (~9%) but
significant (P < 0.02) increase (Fig. 2B). Biofilm formation by
TX5427 (this study) disrupted in a dltA homologue was ap-
proximately equal to that by OGIRF, unlike that by an S.
aureus dlt mutant (6).

In a primary attachment assay, OG1RF attached to polysty-

rene more efficiently than the seven mutants with reduced
biofilm formation (P, <0.001 for each mutant) (Fig. 2B). As
determined by phase-contrast microscopy, OG1RF formed a
more confluent layer, with dark clusters of bacteria in micro-
colonies interspaced with areas of less densely packed bacteria,
whereas these seven mutants showed fewer attached bacteria
without microcolonies (Fig. 3). This indicates that epa, atn,
gelE, and the fsr locus influence primary attachment, although
additional effects on biofilm accumulation are also possible.
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The atn mutant was again (18) noted to exhibit long chains of
cells whereas mutants disrupted in gelE, fsrA, fsrB, and fsrC
showed short chains and the orfde4 mutant showed no chain
formation (Fig. 3).

In conclusion, our results agree with other reports that bio-
film formation is very common among E. faecalis clinical as
well as fecal isolates. We also found that the percent and
degree of biofilm formation are significantly greater among
endocarditis isolates than among isolates from other sources.
Although esp was not required for biofilm formation, its pres-
ence showed a significant association with the degree of biofilm
production. Our study also identified several other genes that
influenced primary attachment and biofilm formation by E.
faecalis OG1RF.
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Al47923 to B.E.M. from the Division of Microbiology and Infectious
Diseases of the National Institute of Allergy and Infectious Diseases.
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