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QM/MM Model of the Mouse Olfactory Receptor MOR244-3 Validated by
Site-Directed Mutagenesis Experiments
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ABSTRACT Understanding structure/function relationships of olfactory receptors is challenging due to the lack of x-ray
structural models. Here, we introduce a QM/MM model of the mouse olfactory receptor MOR244-3, responsive to organosulfur
odorants such as (methylthio)methanethiol. The binding site consists of a copper ion bound to the heteroatoms of amino-acid
residues H105, C109, and N202. The model is consistent with site-directed mutagenesis experiments and biochemical
measurements of the receptor activation, and thus provides a valuable framework for further studies of the sense of smell at
the molecular level.
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Olfactory receptors (ORs) belong to the family of seven
transmembrane (TM) G-protein-coupled receptors (GPCRs)
that respond to exogenous chemical ligands (1,2). The
signal transduction mechanism is dependent on the shape
and concentration of the odorant ligand in the nasal aqueous
mucus, and on the response kinetics as determined by spe-
cific odorant-OR interactions at the binding site (3.4).
Studies of olfactory response at the molecular level, how-
ever, are currently hindered by the lack of molecular struc-
tures of ORs. This is partially due to the usual technical
difficulties in expression and crystallization of GPCRs (5).
In addition, the characterization of receptor binding sites
with metal centers is particularly challenging (6). Therefore,
it is imperative to combine biochemical studies (7,8) and
computational modeling techniques (9,10) to develop struc-
tural models of ORs that could be tested against mutagen-
esis experiments and activation profiles.

This letter reports a structural model of the mouse olfac-
tory receptor MOR244-3 (Fig. 1), responsive to organosul-
fur odorants, such as MTMT ((methylthio)methanethiol)
found in the urine of fertile male mice (7). MOR244-3 has
been recently reported to require copper for robust ligand
binding and activation (11), although a structural model of
the ligand binding site has yet to be established. The
MOR244-3 model is built at the MO06-L level of density
functional theory (12) in conjunction with quantum me-
chanics/molecular mechanics (QM/MM) hybrid methods
(13), and homology modeling (14) using the x-ray structure
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of the human M2 muscarinic (M2) receptor (15) as a tem-
plate. The comparative protein modeling by satisfaction of
spatial restraints (14) against the available x-ray structures
in the literature indicates a high sequence identity between
the MOR244-3 and M2 receptor TM regions (see Fig. S1
and Fig. S2 in the Supporting Material). The QM/MM cal-
culations are based on the two-layer ONIOM method with
electronic-embedding scheme (13). Electronic embedding
incorporates the point charges of the MM region into the
QM Hamiltonian. This technique provides a description of
the electrostatic interaction between the QM and MM re-
gions (as it is treated at the QM level) and allows the QM
wavefunction to be polarized (16). The resulting density
functional theory QM/MM level ensures a more reliable
description of Cu-ligand interactions than MM or MM-
MD modeling.

An important structural feature exhibited by the proposed
MOR?244-3 model is the internal aqueous channel (Fig. | a,
green) that extends from the extracellular surface through
the ligand binding pocket into a depth of ~30 A, where it
is interrupted by a hydrophobic cap (Fig. 1 a, blue) formed
by L66 and L114. These two residues also form an analo-
gous hydrophobic cap that separates the extracellular and
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FIGURE 1 (Top) (a) QW/MM model of the MOR244-3, including
an aqueous channel (green) inside the barrel of TM «-helices
(pink). (b) MTMT bound to Cu™ coordinated to the heteroatoms
of H105 and C109, and surrounded by a cage of H-bonds linking
H105, D180, K269, Y258, and water molecules. (Bottom) The
active site of MOR244-3 without (¢) and with (d) the MTMT ligand.

cytoplasmic parts of the water channel in the homology M2
receptor (15). The ligand-binding site (Fig. 1 b) consists of
Cu™ coordinated to the heteroatoms N, S, and O of amino-
acid residues H105, C109 (in thiolate form), and N202,
respectively, in the aqueous channel. In the absence of a
ligand, Cu™ adopts a linear coordination with N5 and
Sci0o and a weak interaction with O (Fig. 1 ¢). Upon
MTMT binding, the SMeymt group exchanges with the
Onpoo> ligand and induces Cu™ to adopt a trigonal planar
coordination with Ngjos, Scig9, and SMeyrmt (Fig. 1 d).
A cage of H-bonds linking the amino-acid residues H105,
D180, K269, Y258, T259, F256, 1255, C254, and S207,
and water molecules encloses the binding site and forms a
lid over the organosulfur ligand (Fig. 1 ). Some of these
structural features are similar to those found in the active
sites of other heptahelical TM proteins (17), and the coordi-
nation of Cu to the heteroatoms of histidine and cysteine
residues in other metalloproteins (e.g., azurin). The coordi-
nation of Cu is also consistent with previous studies that
suggested the coordination to a soft anionic center (e.g.,
RS") because Cu has high affinity for thiols (6).

Other cysteine residues, such as C179, have been pro-
posed as potential candidates for Cu binding (18). As
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described below, however, C109 is more consistent with
mutagenesis studies. In contrast, C179 is a conserved
amino-acid residue essential for disulfide bond formation
with C97. The disulfide bond links the EII loop and the
TM3 regions and is conserved in other ORs, including
MOR256-17, which responds to MTMT but does not exhibit
a Cu enhancement effect on activity (11). Conserved amino-
acid residues and structural motifs were found through
the alignment of MOR244-3 and MOR256-17 primary se-
quences (Fig. 2 a). The alignment was also useful to explore
several other possible binding sites for Cu, where pairs of
His/Cys amino-acid residues are sufficiently close (within
3.0 A of each other) to coordinate to a common metal center,
including C240/H243, C72/H73, C127/H131, and H155/
C210, in addition to H105/C109 (Fig. 2 a). However, the
C240/H243 pair was found unlikely to be the active site
because it is conserved in both MOR244-3 and MOR256-
17, and MOR256-17 is insensitive to Cu. Of the other three,
C72/H73 and HI155/C210 pairs were ruled out because
activity was unchanged by the mutations C72V, H73Y,
H73F, C210S, and C210A (11). In addition, the mutation
H155R prevented the expression of the receptor at the sur-
face altogether, leaving the H105/C109 pair as the only
site supported by mutagenesis analysis (11).

The proposed coordination of Cu™ to H105 and C109 is
consistent with mutagenesis analysis. HI05 mutants yield
a loss-of-function phenotype in receptor functional assays
(11). In addition, the C109V mutant model (Fig. 3 a) shows
that the substitution of cysteine by valine replaces the thio-
late (=S") by the larger isopropyl group -CH(CH3),, leading
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FIGURE 2 (a) Partial primary sequence alignment between
MOR244-3 and MOR256-17. (Yellow) Cysteine/histidine (i.e.,
C, H) pairs within 3.0 A of each other in the homology models.
(Black lines) Helices II-VI. (Magenta) Conserved DRY motif.
(b) Real-time measurement of activity of MOR244-3 WT, C109V,
and C109M mutants in the presence of 30 uM Cu®* and/or
30 uM MTMT, using the GloSensor (Promega) assay. (Arrows)
Timepoint of odorant addition. The y axis represents mean lumi-
nescence mean = SE, normalized to the response of wild-type
MOR244-3 to 30 uM Cu?* and 30 uM MTMT (N = 6).
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FIGURE 3 QM/MM optimized models of the MOR244-3 C109V
(a) and C109M (b) mutants with MTMT bound to Cu*. Coordina-
tion distances (dashed lines) are in Angstroms.

to the loss of coordination of Cu™ to site 109 even when
MTMT binds to H105. As a result, the C109V mutant de-
prives Cu™ of one of its key ligands and exhibits reduced
functionality (Fig. 2 b). Activity diagrams of mutants
C72V, H73Y, H73F, C210S, and C210A are available in
Fig. S3 of Duan et al. (11).

The GloSensor assay (Promega, Madison, WI) also shows
that the C109M mutant is activated in the presence of Cu,
while MTMT exerts an inverse agonist effect on the receptor
activation (Fig. 2 b). Consistently, the C109M mutant model
(Fig. 3 b) shows that the coordination sphere of Cu™ re-
places the negatively charged thiolate (-S™) group by a thi-
oether (-SCHj3) ligand. This change reduces the distances
Cu—SMep vt and Cu—Oypp, (Fig. 3 b), while increasing
the distance Cu—Scom (Fig. 3 b). These results are consis-
tent with an inverse agonist effect due to competitive bind-
ing of SMeyvt and Scigom to Cu'. Furthermore, we find
that chelators of Cu®, such as TEPA (tetraethylenepent-
amine), antagonize the activation of the C109M mutant,
likely due to the removal of Cu from the system (see
Fig. S3).

In addition to the analysis of mutants, we find that the
calculated relative stability of various organosulfur ligands
correlates well with the observed changes in the receptor
response, as monitored by GloSensor assays (Promega).
For example, we find that the binding energy of MTMT is
—23.4 kcal/mol, relative to MTMT in aqueous solution
(see Table S1, Table S2, Table S3, Table S4, and Fig. S4
in the Supporting Material). In contrast, methanedithiol
(HSCH,SH) is predicted to have less affinity to bind to
the MOR244-3 binding pocket (by 0.6 kcal/mol) compared
to MTMT, because it does not coordinate with the Cu™ ion
(see Table S1, Table S4, and Fig. S5). These data correlate
well with the significant response of MOR244-3 toward
MTMT and to the lack of response toward HSCH,SH (see
Fig. S6). We note that the main difference between the
two ligands is the presence of the thioether group in
MTMT, which seems to be critical for ligand binding
to Cu’ in MOR244-3. Consistently, other organosulfur
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ligands that lack the thioether group (e.g., CH3SSCHs;,
HS(CH,),SH) exhibit no activity, whereas ligands with
thioether groups (e.g., CH3S(CH,),SH, CH3;CH,SCH,SH)
show high response (see Fig. S7) (11).

In summary, our combined experimental and computa-
tional analysis supports an atomistic structural model of
the MOR?244-3 binding site that consists of Cu bound to
H105, C109, and N202 in an internal aqueous channel of
the TM GPCR. The model is consistent with mutagenesis
studies and biochemical measurements of the receptor acti-
vation, as induced by various organosulfur odorants with
thioether groups. The reported QM/MM model should be
particularly valuable for studies of mammalian olfaction at
the molecular level.

SUPPORTING MATERIAL

Experimental Details, Computational Details, seven figures, and four
tables are available at http://www.biophysj.org/biophysj/supplemental/
S0006-3495(14)00750-4.
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