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Manipulating the shape of nanoscale objects in a controllable
fashion is at the heart of designing materials that act as building
blocks for self-assembly or serve as targeted drug delivery carriers.
Inducing shape deformations by controlling external parameters is
also an important way of designing biomimetic membranes. In this
paper, we demonstrate that electrostatics can be used as a tool to
manipulate the shape of soft, closed membranes by tuning en-
vironmental conditions such as the electrolyte concentration in
the medium. Using a molecular dynamics-based simulated anneal-
ing procedure, we investigate charged elastic shells that do not
exchange material with their environment, such as elastic mem-
branes formed in emulsions or synthetic nanocontainers. We find
that by decreasing the salt concentration or increasing the total
charge on the shell’s surface, the spherical symmetry is broken,
leading to the formation of ellipsoids, discs, and bowls. Shape
changes are accompanied by a significant lowering of the electro-
static energy and a rise in the surface area of the shell. To sub-
stantiate our simulation findings, we show analytically that a
uniformly charged disc has a lower Coulomb energy than a sphere
of the same volume. Further, we test the robustness of our results
by including the effects of charge renormalization in the analysis
of the shape transitions and find the latter to be feasible for a wide
range of shell volume fractions.
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Biological matter in cells is often compartmentalized by elastic
membranes that take various shapes such as blood cell

membranes, organelles, and viral capsids. These biomembranes
are highly optimized to perform specific functions. A key focus of
current biomedical technologies is to engineer synthetic mate-
rials that can match the performance and structural sophistica-
tion displayed by natural entities. Mimicking key physical fea-
tures of biomembranes, including shape, size, and flexibility, is
a crucial step toward the design of such synthetic biomaterials
(1). Recent findings also indicate that the shape of a drug-carrier
nanoparticle directly influences the amount and efficiency of
drug delivery (2–5). The shape and deformability of soft mate-
rials such as colloids, emulsions, hydrogels, or micelles play an
important role in determining their usefulness in various tech-
nological applications as well (6–9). For example, colloidal self-
assembly is governed to a large extent by the shape of individual
colloids (6, 10, 11). Similarly, controlling the shape and size of
reverse micelles is of key importance in their use as solvent ex-
traction systems for removing rare earth metals from aqueous
solutions or as templates for nanoparticle synthesis (12–15).
Shape transformations in materials are engineered via chem-

ically induced modifications (10, 11) or using techniques such
as photoswitching of membrane properties (16) and controlled
evaporation of the enclosed solvent (17). However, generating
desired material shapes with precision and manipulating them
with relative ease at the nanoscale has been a challenge (6). From
the theoretical standpoint, much attention has been focused on
finding the low-energy conformations of flexible materials, modeled
often as soft elastic membranes, in the hope of suggesting superior
experimental systems that can enable the design of nanostructures
(18–20). Examples include the exploration of shape transitions
driven by topological defects (21–23) or compression (24), and the

study of low-energy conformations of multicomponent shells (18,
25–27).
Changing the shape of an elastic shell entails bending and

stretching it, and the associated energy costs form the compo-
nents of the elastic free energy of the shell (28). However, when
the shell is charged, it is possible to compensate for the increase
in elastic energy associated with the shape deformation if the
latter is accompanied with a significant lowering of the electro-
static free energy (29–33). Previous studies on charged soft
membranes mainly focused on mapping a charged elastic shell to
an uncharged elastic shell with charge-renormalized elastic
parameters (34–39). In the case of charged nanoshells, electro-
static screening length is comparable to the shell dimensions, and
the surface-charge density can assume high values. As a result,
shell models where Coulomb interactions are included explicitly
are needed (29, 30). Using such models, it has been shown that
an ionic shell, where positive and negative charges populate the
surface, lowers its energy by taking an icosahedral shape with the
same surface area (29). In this work, we find that a uniformly
charged, spherical elastic shell, when constrained to maintain the
enclosed volume, can lower its free energy by deforming into
smooth structures such as ellipsoids, discs, and bowls (Fig. 1). We
show that the transition to these nonspherical shapes can be
driven by varying environmental properties such as the electro-
lyte concentration in the surrounding solvent.
To include the nonlinear coupling between the shape of the

shell and its electrostatic response self-consistently, we study the
charged soft nanoshells numerically. We model the charged shell
by a set of discrete points placed on a spherical membrane,
forming a mesh consisting of vertices, edges, and faces (Fig. S1),
recognizing that in the limit of large number of vertices the
discretized elastic membrane recovers the physics of the associ-
ated continuum model (see Materials and Methods for details).
The uniform surface-charge density is simulated by assigning
every vertex with the same charge. We work with elastic
parameters such that the uncharged shell assumes a spherical
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shape at equilibrium. We allow only the deformations that pre-
serve the shell’s total volume, the latter being chosen to be that
of the uncharged conformation. Our model is applicable to
monolayers, such as emulsions or reverse micelles where
nanodroplets of oil or water are surrounded by properly poly-
merized charged surfactant molecules, and also to incompressible
bilayer systems and nanocontainers that do not exchange material
with their environment. In the following sections, we provide
evidence that this minimum model reproduces various shapes
observed experimentally. Furthermore, we test the validity of this
electrostatic model and associated simulation results by providing
analytical solutions in limiting cases, namely by computing the
electrostatic energy of oblate spheroidal shells and comparing it
with that of a sphere of the same volume in salt-free conditions.
Effects of ion condensation are then included via a two-state

model to derive the renormalized charge on the spherical and
spheroidal shells to test the robustness of our results.
Using the discretization of the continuum expression for the

elastic energy introduced in ref. 21, we write the free energy F
associated with the discretized shell as
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where F is measured in units of kBT. Here T is the room tem-
perature and kB is the Boltzmann constant. We make the free
energy dimensionless by defining κ= ~κ=kBT, where ~κ is propor-
tional to the bending rigidity κb of the continuum model, and
k= ~kR2=kBT, with ~k being proportional to the 2D Young’s mod-
ulus Y of the continuous elastic membrane, and R is the spherical
shell radius. We use the dimensionless bending rigidity κ and the
spring constant k as the scale for bending and stretching energies
respectively. In Eq. 1, E and V denote the set of all edges and
vertices respectively, and ri is the position vector of the ith vertex.
The first term on the right-hand side is the bending energy with
nl,1 and nl,2 being the normal vectors to the faces adjacent to
edge l. The second term is the stretching energy with rl,1 and rl,2
being the position vectors of the vertices corresponding to the
edge l, and al is the rest length of edge l. The last term is the
(dimensionless) electrostatic energy of the model membrane. We
consider an aqueous environment inhabiting electrolyte whose
presence is taken into consideration implicitly, leading to screened
Coulomb interactions between each vertex pair. Here, lB denotes
the Bjerrum length in water, λD is the Debye length, and z is a
dimensionless charge associated with each vertex. We assume a
uniform dielectric to simplify the computations, thus ignoring any
induced charge effects.
As is evident from Eq. 1, the free energy F is a function of the

set of vertex position vectors {ri} which also parametrizes the
shape of the shell. The equilibrium shape of the shell is the one
that corresponds to the minimum of F subject to constraint of
fixed enclosed volume. We perform this constrained free-energy
minimization using a molecular dynamics (MD)-based simulated
annealing procedure, details of which are provided in Materials
and Methods.

Results
The uncharged elastic shell conformation in all our simulations is
a sphere of radius R ≈ 10 nm. We discretize the sphere with N ≈
1,000 points, generating a nearly uniform distribution with an
average edge length of a ≈ 1 nm. We fix the elastic spring con-
stant k = 100 in all simulations. This value corresponds to Y = 1
kBT per nm2 which, for the bending rigidities under investigation,
leads to shells characterized by a Föppl–von Kármán number
(YR2/κ) in the range of 10 to 100. We consider a monovalent
electrolyte with concentration c. The Debye length λD is known
via the relation λD = 0:304=

ffiffiffi
c

p
nm (40). The concentration c thus

parametrizes the spatial range of Coulomb interactions. In our
simulations, we tune c such that this range varies from λD < a, in
which case the shell mimics the behavior of an uncharged elastic
shell, to λD ≈ R, which corresponds to the case where most charges
feel each other.
In Fig. 1, we show the change in the shape corresponding to

the minimum of the shell free energy F as c is varied. Here, we
set z = 0.6, which is equivalent to a shell surface potential of
∼100 mV. Each column represents the shapes obtained for
a fixed value of κ, with the latter increasing from left to right
assuming the values κ = 1, 5, and 10. Within each column, c
decreases from top to bottom as c = 1, 0.1, 0.05, and 0.005 M.
This range of concentration covers most biological and synthetic

Fig. 1. Snapshots of minimum-energy conformations of charged elastic
nanoshells for three different bending rigidities κ = 1, 5, and 10 (columns
from left to right). In each column the electrolyte concentration c (M)
decreases (rows from top to bottom) as c = 1, 0.1, 0.05, and 0.005. Different
colors suggest different concentration values, with red being the highest c
under study and purple corresponding to the lowest c. As the concentration
is lowered, the range of electrostatic interactions is increased, leading to the
variation in the shape of the nanoshell. We find that for the concentration
range under investigation, softer shells tend to form bowl-like structures,
wheras more rigid vesicles form ellipsoidal and disc-like shapes. All of the
above nanostructures have the same total surface charge and volume, fixed
to values associated with the spherical conformation.
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conditions. We see that the top row (c = 1 M) comprises
spherical shapes. At c = 1 M, the screening length is very small
(λD < a) and hence the electrostatic forces only come into effect
at extremely short distances, resulting in a nearly vanishing contri-
bution to the overall free energy. This leads to conformations that
resemble the shape of the uncharged elastic shell, which is spherical.
However, as c is lowered, transitions to a variety of nonspherical
shapes are observed.
In case of the most flexible charged shell (Fig. 1, left column),

increasing the range of the electrostatic interactions leads to the
formation of concave structures, hereafter referred to as bowls.
The opening of the bowl widens with decreasing c. For a shell
with a higher bending rigidity (center column), as c is lowered,
the shell first assumes a convex, ellipsoidal shape; then a bi-
concave, disc-like structure; and finally the shell deforms into
a bowl. We note the similarity between the biconcave discs we
obtain and the shape of synthetic red blood cells (1), despite the
differences in their respective physical origins and sizes. The
right column shows the results for the most rigid membrane
under study. Due to the high-energy penalty associated with
bending, the shell remains spherical even at c = 0.1 M. However,
upon further lowering of c, we first witness an ellipsoidal shape
and then a flattened disc-like structure at c = 0.005 M. It is worth
noting that the discs and bowls we obtain closely resemble the
shapes of elastic structures in ref. 16 that are synthesized using
light as a tool to engineer shape.
Next, we study the effects of modulating the strength of Coulomb

interactions on shell shape. In Fig. 2 we show snapshots of mini-
mum-energy shell conformations when we vary the parameter z
keeping the flexibility of the shell and the salt concentration in the
environment constant (κ = 5 and c = 0.015 M). Changing z corre-
sponds to simulating shells with different total charge on the sur-
face. The shapes from left to right correspond to the values of z =
0.3, 0.6, and 1. We find that at z = 0.3, the shell assumes a convex
ellipsoidal shape. As z is increased to 0.6, the ellipsoid deforms into
a dimpled disc; and finally at z = 1, the bowl structure is obtained.
The transition to nonspherical shapes is accompanied by a

decrease in the electrostatic energy. In the upper half of Fig. 3,
we plot ΔEC, the total Coulomb energy of the final structure
relative to that of the spherical shell with identical parameters.
The data for ΔEC is shown as a function of c for various values of
z = 0.3, 0.6, and 1 and κ = 1 and 10. In all cases, ΔEC is negative.
For convex shapes (spheres and ellipsoids)—represented by
black symbols—ΔEC is small. On the other hand, for discs and
bowls—represented by blue and red symbols, respectively—the
reduction in electrostatic energy is more pronounced. In general,
as the concentration c is lowered, the behavior of ΔEC suggests
that the spherical shell deforms to an ellipsoid, then to a disc,
and finally to a bowl. We find that the nonspherical shapes have
a larger surface area relative to the spherical conformation
(lower half in Fig. 3). We expect this to be the case as for a given
fixed volume, a sphere has the lowest surface area. We find in

some cases, the minimum-energy structure has twice the surface
area of a sphere with same volume. Although a more general
model of the elastic shell would include an energy penalty as-
sociated with increasing the surface area, we expect the shape
changes to occur in situations where the surface energy increase
due to the rise in area is compensated by the adsorption of
molecules (such as neutral surfactants) to the membrane, thereby
reducing its surface tension. Using the data in Fig. 3 we estimate
that the shell surface tension should be low, Oð1Þ  dyne per cm,
for the aforementioned predicted shapes to be realized.
In Fig. 4, we show the distribution of local electrostatic and

elastic energies on the disc (upper two rows) and bowl (lower two
rows). The disc corresponds to the case of z = 0.6, κ = 10, and c =
0.005 M and the bowl shape is characterized by z = 0.6, κ = 1, and
c = 0.1 M. The electrostatic energy at a vertex is computed by
summing over the screened Coulomb interactions of the charge
at that vertex with all other charges on the shell. As the scale bars
on the right point out, the electrostatic energy is the dominant of
the two energies and drives the shape formation, with the elastic
energy adapting locally to conform to the new shape. For both
disc and bowl, the local elastic energy (second and fourth rows)
has large spatial variations and tends to be higher on the more
bent regions of the nanoshell. For the disc shape, the Coulomb
energy (first row) is higher near the center. This is, in part, due
to the enhanced repulsion resulting from the proximity of the
opposite faces which are at a distance less than the Debye length
associated with this system.

Discussion
Increasing the range or strength of electrostatic interactions
enhances the Coulomb repulsion between any two charged ver-
tices, making them move apart. However, the resulting extension
in edge lengths is penalized by the rise in the stretching energy.
In addition, the bending energy term penalizes any sharp changes
in curvature, thus favoring transitions to smooth shapes. This

Fig. 2. Shell shapes that minimize free energy F for fixed κ = 5 and c =
0.015 M as a function of increasing z = 0.3, 0.6, and 1 (from left to right). As z
increases, the strength of the electrostatic interactions increase and the shell
transforms from a convex, ellipsoidal form to a dimpled disc and finally to
a concave bowl-like structure. All shapes correspond to the same total vol-
ume. See Results for the meaning of symbols.

Fig. 3. Electrostatic contribution to the energy of the shell (upper plot) and
shell’s surface area (lower plot) vs. salt concentration c for different lowest-
energy structures. We plot the electrostatic energy, ΔEC = EC − EC,S, which is
measured relative to that of a spherical shell with identical parameters.
Similarly, the area A of the shell is normalized by the area of a sphere with
the same volume. Black symbols are spheres or ellipsoids, blue symbols are
discs, and red symbols are bowl-shaped structures. Inset shows the legend
for the symbols used in the plot. The large (negative) changes in Coulomb
energy help drive the shape transitions.
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competition between the electrostatic and elastic energies sets
an effective area for the nanomembrane which, in conjunction
with the fixed-volume constraint, determines the eventual
shape of the nanoshell. Varying the screening length or the
total charge on the shell changes this effective area, leading to
variations in the shell shape.
To substantiate the above explanation, we focus on the sphere-to-

ellipsoid-to-disc part of the observed shape transitions and perform
analytical calculations. Judging by the simulation snapshots (see the
images in the right column of Fig. 1), these shapes can be ap-
proximated as oblate spheroids with different degrees of eccen-
tricity e and major semiaxis lengths a. Because the volume of the
shell is fixed, the oblate spheroidal shell can be characterized by
a single parameter e. For e → 0, one obtains sphere-like shapes
and e → 1 leads to disc-like conformations. The competition
between elastic and electrostatic energies can now be considered
as determining the eccentricity e for the oblate spheroid. The
concentration c is seen as the control over e such that the low-
ering of c can be understood as an increase in e. Thus, we can
verify the order of shape transitions observed in our simulations
by examining the change in the electrostatic energy of a uni-
formly charged shell as its eccentricity is increased.
For simplicity, we consider unscreened Coulomb interactions in

the following calculations. We evaluate the electrostatic energy U
of a uniformly charged oblate spheroidal shell with total surface
charge zN and with volume constrained to Ω = (4/3)πR3 (deriva-
tion in SI Text). We obtain

Uðe; z;NÞ= lB
z2N2
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where n is an even integer, Pn and Qn are Legendre polynomials of
the first and second kind, InðeÞ=

R π
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e2 sin2 v

p
Pnðcos vÞsin v dv,

and U is evaluated relative to the thermal energy at room temper-
ature. We define dU as the electrostatic energy of the oblate spher-
oid relative to the electrostatic energy of the sphere with identical
parameters. We examine the variation of dU vs. e for the parameter
set associated with the transition recorded in the open blue circles
of Fig. 3 and find that the Coulomb energy of an oblate spheroidal
shell subject to the constraint of constant volume decreases with
increasing its eccentricity (Fig. S2). In other words, a disc-shaped
shell has lower Coulomb energy than a sphere of the same volume.
The order of shape transitions observed in our simulations is thus
backed by the above analytical result. Next, we examine the spatial
distribution of the local electrostatic energy UL on the surface of the
shell (see SI Text for details). We find that for a spherical shell, UL is
constant everywhere. However, as the eccentricity increases, the
surface distribution of electrostatic energy becomes increasingly in-
homogeneous. In particular, for e = 0.95, which corresponds to
a disc-like shape, we find UL varies significantly on the disc surface,
assuming higher values near the disc center and low magnitude near
the edge of the disc (Fig. S3). It is evident from the top row of Fig. 4
that we observe this trend in our simulation results as well.
We obtain more insight into our results by exploring the low-

energy conformations of a very flexible uniformly charged shell
where the elastic energy can be neglected in comparison with the
Coulomb energy. Equilibrium shapes of such a shell will corre-
spond to the minimum of the total electrostatic energy. In Eq. 2,
taking the limit e → 1 gives U = 0, which is the lowest possible
value for the Coulomb energy of a uniformly charged shell. This
limit corresponds to a disc-like spheroidal shell whose area
approaches infinity. Further, we check that when the enclosed
volume is held fixed, the Coulomb energy of a prolate spheroidal
shell vanishes as well when the shell is stretched into a long and

thin wire-like shape. Thus, we obtain (at least) two distinct shell
shapes that correspond to the state of lowest electrostatic energy.
This result suggests that in our original model system, electro-
static interactions drive the transformation in the shell shape by
favoring the deformation of sphere toward disc-like shapes, whereas
the elastic energies compete with the Coulomb energy to generate
oblate-shaped (ellipsoidal, disc-like) structures of various eccen-
tricities. It also appears that the elastic energy component of the
free energy favors the formation of oblate shapes to prolate ones.
The constraint of fixed enclosed volume is critical to the low-

energy shell conformations obtained in our simulations. If in-
stead of the volume, the shell surface area is fixed, we expect the
gallery of lowest free-energy conformations to look different
from Fig. 1. We check that under the constraint of fixed area, the
Coulomb energy of an oblate spheroidal shell is higher when its
eccentricity increases, and the spherical shape corresponds to the
conformation with the lowest Coulomb energy among all oblate
shapes. However, a sphere is not the configuration that minimizes
the shell electrostatic energy when prolate-shaped deformations are
considered. We find that prolate spheroids of high eccentricities
have lower Coulomb energy than the sphere and the lowest-energy
conformation for the area-constrained system is a prolate spheroi-
dal shell with its major axis length stretched to infinity. Hence, for
the area-constrained problem, we expect the competition between
Coulomb and elastic energies to give rise to different nonspherical
shapes as ground-state solutions.
In our charged shell model, we assume that the counterions

remain in the bulk and do not condense on the shell surface.
However, in an experiment it is possible that a fraction of the
counterions do condense, and in that event it becomes important
to analyze their effect on the observed shape transitions. We
measure this effect qualitatively in the salt-free limit for the

Fig. 4. Spatial distribution of electrostatic and elastic energies (in units of
kBT, where T is the room temperature) on the surface of the disc (upper two
rows) and bowl (lower two rows). The left column shows the front view, the
center column shows the angle view, and the right column shows the side
view. For either shapes, the elastic energy (second and fourth rows) is
concentrated in the edges. The electrostatic energy on the disc (first row)
is higher in the center where the opposite faces are nearby. The five-
coordinated vertices, which are visible as spots in the electrostatic energy
distribution, lead to small fluctuations in the energy.
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sphere–disc transition by using the expression for the electro-
static energy of a uniformly charged oblate shell in a two-state
model of free and condensed counterions (41–43). We consider
a spherically shaped Wigner–Seitz (WS) cell of volume VWS
with a single shell of volume Ω = (4/3)πR3 and surface charge
zN placed at its center. We define the quantity η = Ω/VWS as the
shell volume fraction. The cell also contains N counterions, each
of charge −z to neutralize the shell charge. We separate the
counterions into two distinct groups: free ions and condensed
ions. Free ions occupy the available space in the WS cell which in
the dilute limit becomes the volume of the cell. The condensed
counterions are restricted to have translational motion in a thin
layer of volume V =Aðe;RÞb surrounding the shell, where
Aðe;RÞ is the surface area of the oblate shell and b = 1/(2πlBσ) is
the Gouy–Chapman length that is chosen as the condensed-layer
width. Here, σ is the unrenormalized surface-charge density.
When a shell has a higher σ or the system is characterized by a
longer lB, we expect the condensed-layer width to shrink owing to
the enhanced counterion–shell attraction. Our choice of b as the
layer thickness correctly reflects this behavior. As b is a charac-
teristic of the charged planar surface, our analysis is limited to
the regime where b is much smaller than the lengths of the major
and minor semiaxis of the shell.
We write the free energy (in units of kBT) associated with the

shell in the event of ion condensation as

Fðα; eÞ=U
�
e; z; ð1− αÞN	+ αN ln



αNΛ3

Aðe;RÞb
�
− αN

+ ð1− αÞN ln

ð1− αÞNΛ3

VWS

�
− ð1− αÞN;

[3]

where α is the fraction of counterions that condense and Λ is the
thermal de Broglie wavelength. Here, the first term is the elec-
trostatic energy of the shell obtained from Eq. 2 by replacing
zN with the reduced charge z(1 − α)N, the next two terms stem
from the entropic contribution of the αN condensed ions, and
the last two terms correspond to the entropy of (1 − α)N free
counterions. F can be considered as a function of two variables:
eccentricity e, which characterizes the shape of the shell, and
condensate fraction α, which measures the renormalized charge
on the shell. For a given e, we find the condensate fraction that
extremizes the above free energy F. Using α, we evaluate the
equilibrium free-energy difference, dF, between the free energy
of the oblate shell and that of the sphere of the same volume (see
SI Text for details). We compute dF for the parameters associ-
ated with the transition recorded in the open blue circles of Fig. 3
and find that for all values of the volume fraction η, dF becomes
increasingly more negative as the eccentricity e is raised, implying
that the shape transitions from sphere to oblate spheroids are
favored (Fig. S4). Additionally, we find that the condensate frac-
tion α decreases with increasing e for all values of η. For low η, we
obtain α ≈ 0.1, whereas for large η, we find the condensate fraction
to be α ≈ 0.5. Regardless of the amount of condensation, we find
the shell with higher eccentricity is preferred energetically.
We next examine the variation of the renormalized electro-

static energy dU with e for different η values. For low and high
values of the volume fraction, we find that dU is negative and
decreases, just like dF, upon the increase of the eccentricity (Fig.
S5). However, for some intermediate η values, we observe that
dU > 0, that is, the electrostatic energy increases as e is raised, in
sharp contrast to the free energy associated with the shell. This
suggests that for some values of shell volume fractions, the shape
transitions are expected to occur despite an increase in the elec-
trostatic energy. We attribute the feasibility of such transitions to
the gain in entropy by the ions as less numbers of ions condense
when the shape is deformed from a sphere to an oblate.
The main conclusions reached above remain unchanged when

we repeat the two-state model analysis assuming that the shell is
an equipotential surface. For all values of η, dF increasingly

becomes more negative as the eccentricity e is raised, implying
that the shape transitions from sphere to oblate spheroids are
favored (Fig. S6). Thus, judging by the variation of dF deter-
mined by the above two-state model analysis, we conclude that
the shape transitions from sphere to oblates of increasing ec-
centricity should be feasible in the event of ion condensation.
However, due to the renormalization of the charge on the shell
surface, it is likely that the specific parameter values (for ex-
ample, concentration strength, bending rigidity) for which the
shape transitions occur, will change. Quantitative results can be
obtained by including counterions explicitly in the simulations
and taking into account the induced polarization charges on the
shell surface in analyzing changes in shape. We note that our
MD-based simulation algorithm provides an ideal platform to
include these effects via its coupling with recently introduced
energy–functional-based approaches of treating dielectric in-
homogeneities (44, 45).

Conclusion
We investigate the prospects of electrostatics-based generation
and control of shapes in materials at the nanoscale. We find that
by increasing the strength or the range of Coulomb interacting
potential, a uniformly charged spherical shell, constrained to
maintain its volume, deforms to structures of lower symmetry,
resulting in ellipsoids, discs, and bowls. This symmetry breaking
is accompanied by a reduction in the overall electrostatic energy
of the shell and a significant spatial variation in the local elastic
energy on the shell surface. To support our simulation findings, we
show analytically that a uniformly charged disc-like spheroidal shell
has a lower Coulomb energy than a spherical shell of the same
volume. To evaluate the renormalization of shell charge due to
nonlinear effects, we use a two-state model of free and condensed
ions. We find that the shape transitions are feasible in the event of
ion condensation for a wide range of shell volume fractions.
Shape changes in our model membrane are triggered by

changing the attributes of the environment external to the mem-
brane, such as the electrolyte concentration in the surrounding
solvent. This is in contrast with transitions brought about by pat-
terning the shell surface with defects (20, 22, 23) or by introducing
elastic inhomogeneities on the shell surface (18, 25–27). In com-
parison with ionic shells (29, 30), where the primary experimental
challenge is to synthesize membranes with desired stoichiometric
ratios (30), our base shell surface is uniformly charged and elasti-
cally homogeneous, which is relatively simple to design.
We envision that the electrostatics-driven shell design mech-

anism proposed here can function as a useful template for syn-
thesizing nanoparticle-based drug delivery carriers of desired
shapes (2, 3, 5). Our results can also prove useful in the analysis
of shape changes in charged emulsions or reverse micelle systems
that form during the metal-extraction processes involved in the
recovery of scarce rare earth elements or the cleaning of nuclear
waste (15). In addition, our findings can aid in the development
of theories explaining the properties of stretchable electronic
materials such as dielectric elastomers where electrostatic field
and deformation are intimately coupled (7, 46).

Materials and Methods
We generate the triangulation on the shell via the Caspar and Klug con-
struction (47), which produces a lattice where each point has six neighbors
with the exception of 12 five-coordinated vertices (defects). Due to the
presence of these defects, the lattice has a nonvanishing initial stretching
energy. We remove this residual strain by appropriately choosing rest
lengths of the edges (48), leading to a vanishing stretching energy for the
initial mesh. The defects, however, lead to slight variations in the surface-
charge density and local elastic and electrostatic energies. By choosing a
large number of lattice points, the effect of these small deviations on the
resulting shape transformations is minimized. To make sure that our results
are independent of the particular triangulation, we perform simulations
using a sufficient number of lattice points generated via different choices of
Caspar and Klug constructions, obtaining similar results for all runs.

Our lattice maintains the initial connectivity throughout the shape evo-
lution. Because each vertex carries a charge of the same sign, our discretized
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membrane is characterized with an inbuilt self-avoidance due to the mutual
electrostatic repulsion between any pair of vertices. However, to ensure
complete stability, we include an additional short-range, purely repulsive
Lennard-Jones potential between two vertices, where each vertex is modeled
as a hard sphere with radius chosen to be a fraction of the average edge
length a associated with the triangular lattice.

We use an MD method to minimize the free energy F , which requires the
analytical expressions for the gradients of F with respect to the vertex
positions. Evaluating the gradient of the bending energy term is relatively
difficult and we show this calculation in SI Text. Our simulations start from
a spherical shell with a nearly homogeneous surface distribution of local
elastic and electrostatic energies. Slight deviations in the energies arise from
the presence of five-coordinated vertices which are the result of using the
aforementioned triangulation of the shell surface. We assign the vertices
a kinetic energy K=

P
ið1=2Þμ _r2i , and direct their motion according to the

forces derived from F , where the latter plays the role of the potential en-
ergy. We thus obtain the Lagrangian L=K−F , from which we derive the
equations of motion for the vertices: μr

::
i =−∇riF . Here, μ is a mass term

associated with the vertices which determines the choice of the simulation

time step. These equations of motion, which form the basis of the MD
simulation of the vertices, are appropriately augmented to preserve the
constraint of fixed total volume. We achieve this via the Shake–Rattle rou-
tine (49) of implementing constraints that guarantees the conservation of
shell volume at each simulation step. Finally, to arrive at the shape that
corresponds to the minimum of the energy landscape we couple the MD
scheme with simulated annealing. We associate a (fictitious) temperature with
the kinetic energy of the vertices and use a Nosé–Hoover thermostat to set it.
This temperature is not the physical temperature; it is merely a parameter we
use to control the annealing process. We reduce this temperature at periodic
intervals so as to arrive at the lowest point of the potential energy associated
with the MD Lagrangian, thus reaching the minimum of the free energy F .
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