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SUMMARY

Accuracy and limitations of automatic scoring of sleep stages and electroencephalogram arousals

from a single derivation (Fp1–Fp2) were studied in 29 healthy adults using a portable wireless

polysomnographic recorder. All recordings were scored five times: twice by a referent scorer who

viewed the standard polysomnographic montage and observed the American Academy of Sleep

Medicine rules (referent scoring and blind rescoring); and once by the same scorer who viewed

only the Fp1–Fp2 signal (alternative scoring), by another expert from the same institution, and by

the algorithm. Automatic, alternative and independent expert scoring were compared with the

referent scoring on an epoch-by-epoch basis. The algorithm’s agreement with the reference

(81.0%, Cohen’s κ = 0.75) was comparable to the inter–rater agreement (83.3%, Cohen’s κ =

0.78) or agreement between the referent scoring and manual scoring of the frontopolar derivation

(80.7%, Cohen’s κ = 0.75). Most misclassifications by the algorithm occurred during uneventful

wake/sleep transitions, whereas cortical arousals, rapid eye movement and stable non-rapid eye

movement sleep were detected accurately. The algorithm yielded accurate estimates of total sleep

time, sleep efficiency, sleep latency, arousal indices and times spent in different stages. The

findings affirm the utility of automatic scoring of stages and arousals from a single frontopolar

derivation as a method for assessment of sleep architecture in healthy adults.
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INTRODUCTION

The standard somnological armamentarium lacks affordable tools for objective assessment

of sleep architecture on a large scale or repeatedly over time (e.g. epidemiological studies or

clinical trials). Multichannel polysomnography (PSG) is encumbering and costly for such

applications; simpler devices for assessment of sleep-disordered breathing (SDB) provide

only autonomic indices of sleep quality that have not been validated in non-SDB

populations; actigraphs estimate duration and timing of sleep but render no information

about its macro- or microstructure; finally, diaries and questionnaires are subjective. Recent

years have seen the emergence of self-applicable recorders worn on the forehead that assess

sleep architecture from the mixture of electroencephalograms (EEGs), electrooculograms

(EOGs) and electromyograms (EMGs) recorded in a single differential derivation (Fp1–Fp2).

Given their user-friendliness and low cost, devices of this type could become a valuable

complement to the established somnological methods in ambulatory settings, provided the

accompanying software is able to, at least, score the conventional sleep stages and cortical

arousals. Unfortunately, the forehead-worn systems introduced hitherto staged sleep with

modest accuracy and did not detect EEG arousals at all (Fischer et al., 2004; Popovic et al.,

2008; Shambroom et al., 2012). It is, however, unclear whether their performance was

hindered by deficiencies of the devices or algorithms, or limited by insufficiency of the

information contained in the Fp1–Fp2 signal. Resolving the dilemma deserves attention

because the forehead is an opportune location where self-application of sensors or miniature

devices is relatively easy. This study has, therefore, investigated the accuracy and limitations

of automatic scoring of sleep stages and EEG arousals from the Fp1–Fp2 derivation in

healthy adults under optimal recording conditions, i.e. using the standard PSG equipment.

The algorithm is described in detail, and the impact of relevant factors on its accuracy is

discussed.

MATERIALS AND METHODS

Data

The data originated from two studies that investigated the relationship between sleep and

performance in healthy volunteers. One study contributed with daytime recordings of 21

subjects [nine females; age: 26 ± 6 years; body mass index (BMI): 22 ± 2 kg m−2] who took

a nap upon completion of a sleep restriction protocol; the other provided nocturnal

recordings of a different 18 subjects (10 females; age: 27 ± 6 years; BMI: 23 ± 2 kg m−2).

Subjects provided written informed consent, and were compensated for their participation.

The self-reported absence of sleep problems was corroborated by standard questionnaires,

sleep logs and actigraphy (Actiwatch_64; Philips Respironics, Bend, OR, USA). Biomedical

Research Institute of America Institutional Review Board (San Diego, CA, USA) approved

both studies.
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The recording conditions were identical for daytime and nocturnal sessions. Subjects slept in

a dark and soundproof room monitored with an infrared camera. Scalp EEG (C3–A2, C4–A1,

Fz–Oz, Cz–Oz), left and right EOG, submental EMG, the Fp1–Fp2 signal and the signal from

a respiration belt were acquired using an ambulatory PSG recorder (×10, Advanced Brain

Monitoring, Carlsbad, CA, USA). The forehead electrodes were placed on the frontal

eminences, approximately 1 cm laterally from the Fp1 and Fp2 positions of the 10–20

system. All signals were filtered (0.1–70 Hz, 20 dB decade−1), digitized (256 Hz), wirelessly

transmitted to the monitoring station in the adjacent room, and stored on a disk.

For the purposes of this study, the available sleep recordings were divided into three groups

(Table 1). The data from the training group, which included 10 randomly selected daytime

recordings, served to derive parameters of the algorithm for automatic scoring of sleep

stages and cortical arousals from the Fp1–Fp2 signal. The algorithm was subsequently

validated on the remaining 11 daytime and all 18 nocturnal recordings that, respectively,

constituted the ‘sleep-deprived’ and ‘well-rested’ validation group. The groups were similar

with regard to the demographic and sleep variables, and the sleep-deprived and well-rested

groups were therefore often combined in the analyses to increase the statistical power.

However, the validation groups were analysed separately when the between-group

differences in sleep architecture could help elucidate limitations of either the algorithm or

Fp1–Fp2 signal morphology.

Algorithm

FP-STAGER is a modification of our algorithm that scores the referential EOG leads

(Levendowski et al., 2012). It is implemented in MATLAB 7.7 (MathWorks, Natick, MA, USA)

and involves four major steps (Fig. 1): spectral decomposition of the input signal;

computation of descriptors of sleep macro- and microstructure; artefact detection; and

classification of 30-s epochs into one of the five stages [wake, rapid eye movement (REM),

non-(N)REM1, NREM2 or NREM3]. The input signal is decomposed into delta, theta,

alpha, sigma, beta and EMG bands using digital filters. Two signals are derived in the delta

band, one from the raw signal and one after removal of ocular artefacts with a median filter.

The other bands are extracted directly from the raw signal (eye movements had little impact

on the signal power >4 Hz). Descendant signals in each band are integrated and fed to the

feature extraction block.

Six descriptors of sleep macro-structure [sigma-beta index (SBI), delta-beta index (DBI),

eye movement index (EMI), beta-EMG index (BEI), average EMG activity ( ); average

beta activity (β̄)] are derived for each 30-s epoch (for details, see Table S1 in the online

supplement); their selection was guided by the literature (Uchida et al., 1994) and attempts

to mitigate between-subject variability of the envelopes in each band. Three descriptors of

microstructure are also determined: number of spindles, number of arousals and total length

of all arousals in the epoch. Spindles and arousals are detected by contrasting short-term

fluctuations to long-term trends in the signal, as in De Carli et al. (1999). Spindles are

identified as 0.5- to 2-s segments of the signal during which the sigma envelope is larger

than the theta, alpha and beta envelopes, and its instantaneous value exceeds by a factor of

two the median value of the sigma envelope calculated over the preceding 30 s. Cortical
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arousals during NREM sleep are detected as 3- to 15-s segments during which either alpha

or beta envelope exceeds by a factor of two the respective median values calculated over the

preceding 90 s; in REM sleep, the EMG envelope within the segment must also exceed the

median EMG calculated over 90 s.

Artefact detection proceeds in parallel with the previous two steps and is based on the

algorithm devised earlier by our group to detect motion, cardio-respiratory and EMG

artefacts in daytime EEG recordings (Berka et al., 2004). The presence of artefacts is

assessed in successive non-overlapping 1-s segments of EEG data by evaluating four

variables in each segment: the peak-to-peak amplitude and largest slope of the band-pass

filtered (0.5–7 Hz) Fp1–Fp2 signal, and average beta and EMG power levels of the original

signal. The segments for which the four variables exceed pre-defined (fixed) thresholds are

considered to be contaminated with artefacts and are consequently excluded from the

calculations of the six aforementioned descriptors of sleep macrostructure. Furthermore, the

proportion of EEG signal contaminated with artefacts [the artefact index (ARI)] is

determined for each 30-s epoch.

The ARI and the descriptors of sleep macro- and microstructure are fed to a hierarchical

decision tree with eight nodes. Epochs where the EEG is contaminated with artefacts more

than 50% of the time are classified as artefact (A) at node R0. At the next level, node R1

classifies epochs that are not dominated by artefacts into NREM cluster (NREM2; NREM3;

some NREM1) or beta-dominated cluster (wake; REM; most of NREM1). The NREM

cluster is further separated into light (NREM1/2) and deep sleep (NREM3), whereas the

beta-dominated cluster is divided into REM/NREM1 and wake/NREM1 sub-clusters (nodes

R2, R3). REM sleep is identified in two steps that resemble the American Academy of Sleep

Medicine (AASM) rules for initiation and continuation of REM scoring: seed epochs are

first identified with high precision using one set of thresholds, followed by examination of

the 3-min segments around each seed against another set of thresholds. At the next level,

nodes R4 and R5 separate NREM1 epochs with arousals from the NREM1/2 and REM/

NREM1 clusters, and node R6 identifies wake and arousal-free NREM1 epochs. The epochs

unclassified at nodes R1–R6 are assigned a stage using a simple ‘score-through’ rule (node

R7). The rules and thresholds in the decision tree were derived by a step-wise (node-by-

node) maximization of the epoch-by-epoch agreement between the algorithm and manual

scoring reference in the training group (Table 1). The rules are summarized in Table S2 in

the online supplement.

Analyses

The study aimed not only to validate the algorithm’s output against a manual reference, but

also to assess the impact of morphology of the Fp1–Fp2 signal on the algorithm’s accuracy

and distinguish it from the effects of the algorithm’s deficiencies or ambiguity of the scoring

rules of the AASM (Iber et al., 2007). The traditional analysis of agreement between the

algorithm and a human scorer was, therefore, complemented by comparisons of the

algorithm’s accuracy to the agreement between two expert scorers and performance of an

expert scorer challenged with the task of determining sleep stages from the single

frontopolar derivation. Accordingly, the recordings from the two validation groups were
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independently scored five times: (1) by an in-house specialist who observed the AASM

guidelines [initial referent scoring (IREF)]; (2) by the same expert who, 6 months later,

blindly rescored the recordings while viewing only the Fp1–Fp2 signal [alternative scoring

(ALT)]; (3) by the same expert who, more than 1 year later, blindly rescored all the

recordings in accord with the AASM guidelines [repeated referent scoring (RREF)]; (4) by

another in-house expert who observed the AASM rules [independent expert scoring (EXP)];

and (5) by the FP-STAGER algorithm [automatic scoring (AUT)]. In all scoring rounds the scorers

were instructed to mark off the epochs contaminated with excessive noise (>50% of an

epoch) as ‘artefact’ (n = 136, or 0.7% of all epochs).

The algorithm’s performance was first assessed in each validation group by quantifying its

epoch-by-epoch agreement with the referent scoring (both IREF and RREF) on all available

epochs, including those labelled as artefacts (n = 19 445 from both validation groups). The

epoch-by-epoch comparison was also performed against the consolidated reference (CREF),

i.e. a subset of 17 438 epochs (89.7% of all epochs) that had been assigned the same stage

by the referent scorer during both rounds (IREF and RREF). Both sets of the referent

hypnograms were additionally compared with the independent expert scoring (IREF–EXP,

RREF–EXP) and the manual scoring of the Fp1–Fp2 signal (IREF–ALT, RREF–ALT).

Overall percentage agreement, all-stage Cohen’s kappa, stage-specific sensitivity (SEN) and

positive predictive value (PPV) were calculated from the resultant contingency tables.

The algorithm’s estimates of total sleep time (TST), sleep latency (SL), sleep efficiency

(SE), wake time after sleep onset (WASO), time spent in stages REM and NREM3 (REMT,

SWST), latency to REM and NREM3 (REML, SWSL), and arousal indices (AIs) were then

calculated for all 29 recordings and compared with the corresponding variables derived from

the referent (IREF and RREF) hypnograms (all epochs included, n = 19 445). Arousal

indices were calculated by dividing the total number of arousals identified by each method

with the TST determined by the same scoring method. Statistical significance of differences

among the five sets of estimates was tested with one-way repeated-measures ANOVA for

normally distributed variables, and Kruskal–Wallis tests for the variables with a bimodal

distribution (TST, WASO, REMT and SWST). Bland–Altman plots and intra-class

correlation coefficients were used to additionally analyse differences between the algorithm

and referent scoring for variables whose automatic estimates might be influenced by the

(relatively frequent) confusion among stages wake, NREM1 and REM by the algorithm

(variables TST, SE, SL, WASO, REMT and REML). The Bland–Altman plots were made

only against the initial round of referent scoring (IREF) because the epoch-by-epoch

comparisons revealed insignificant differences between the IREF–AUT and RREF–AUT

agreement.

Arousals identified by the referent scorer were compared with events marked during the

independent, alternative and automatic scoring, and sensitivity and PPV were calculated for

the three methods. All segments marked as arousals were counted, including those occurring

in epochs scored as ‘artefact’ by the scorers or the algorithm (38 such instances, or <3% of

all segments marked as arousals). The algorithm was also evaluated against the ‘consensus’

arousals (those marked by both referent and independent scorers). Any overlap between

arousal strips was counted as a true positive, whereas segments marked only by the referent
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or comparative method were counted as true negatives and false positives, respectively. The

Bland–Altman plot was created to compare the duration of referent arousals and their

algorithm-generated counterparts.

Finally, in order to assess the degree to which morphology of the Fp1–Fp2 signal limited the

performance of the algorithm, the accuracy of automatic scoring was contrasted to the

agreement between the experts and the performance of the referent scorer when scoring

sleep stages from the single frontopolar derivation. In order to simplify the interpretation

and eliminate the effects of intra–rater (score–rescore) differences on the agreement

measures, the comparison was performed only on the CREF, i.e. a subset of epochs that had

been assigned the same stage during both initial (IREF) and repeated scoring (RREF). The

CREF included 1527 epochs of wake, 1301 epochs of stage NREM1, 6752 epochs of stage

NREM2, 4182 epochs of stage NREM3 and 3541 epochs of REM sleep (n = 17 438 or

89.7% of all epochs), and was therefore representative of all sleep stages and their typical

proportions in healthy sleepers. (The CREF also included 135 epochs labelled as ‘artefact’,

but they were not of interest for this analysis due to their low count and generally very high

agreement among the scorers and algorithm when scoring artefacts.) The inter–rater

agreement on such a subset (CREF–EXP) was considered to reflect the ambiguity of the

EEG patterns in our dataset and, thus, to represent an empirical estimate of the upper limit of

performance of any algorithm. The between-montage agreement (CREF–ALT) on the other

hand served as a heuristic measure of sufficiency of the information in the frontopolar

derivation, as compared with the information available in the PSG montage. Box plots were

created of the distributions of SEN and PPVs for each of the three methods (EXP, ALT and

AUT), and differences were tested using the Kruskal–Wallis test. A significant negative

difference between the expert and alternative scoring with respect to a stage-specific metric

was interpreted as an indication that the morphology of the Fp1–Fp2 signal was insufficient

for a reliable identification of that stage. Likewise, a negative difference between the

alternative and automatic scoring suggested a limitation of the algorithm. As the latter was

the case for stages wake and NREM1 (see Results), we additionally investigated whether the

algorithm’s performance was hampered by between-subject variability of features used by

FP-STAGER to identify these two stages. To test this hypothesis, the group-based thresholds at

node R6 of the algorithm were ‘individualized’, i.e. replaced by values optimized separately

for each recording by finding the combination that optimizes the wake/sleep agreement

between the algorithm and referent scoring for that particular recording. (This procedure was

used only to an analytic tool, and it is ‘not’ part of the algorithm’s training or its regular

use.)

In all analyses, sensitivity denoted the proportion of all elements of a referent class that were

correctly identified by the algorithm (SEN = (True Positives)/ (True Positives + False

Negatives)). The PPV expressed the proportion of all elements assigned to a class by the

algorithm that indeed belong to that class (PPV = (True Positives)/(True Positives + False

Positives)). Agreement was quantified as a percentage and with Cohen’s kappa statistics,

which measures the agreement beyond chance (Cohen, 1960). Kappa values between 0 and

0.20, 0.21 and 0.40, 0.41 and 0.60, 0.61 and 0.80, and 0.81 and 1, respectively, indicated

poor, modest, moderate, substantial and excellent agreement (Landis and Koch, 1977).
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RESULTS

Sleep stages

The pooled epoch-by-epoch agreement between the algorithm (AUT) and referent scoring

(IREF, RREF and CREF) is shown in Fig. 2. The agreement was substantial for all pair-wise

comparisons in both validation groups, and was (expectedly) higher in the case of CREF.

There was no significant difference between the IREF–AUT and RREF–AUT agreement

patterns in either the sleep-deprived or well-rested group: generally, REM and solid NREM

sleep were identified with high sensitivity and PPV, whereas the detection of wake was

slightly less accurate, and that of stage NREM1 considerably less accurate. Wake epochs

were most frequently confused with NREM1, and NREM1 epochs were frequently

misclassified as REM and NREM2 by the algorithm. The agreement between the algorithm

and referent scorer was comparable to the agreement between the referent and alternative

scoring, and only slightly lower than the inter–rater agreement for the same data sets and

same choice of reference (Table 2; the respective contingency tables are shown in Figs S1

and S2 in the online supplement).

All-night sleep structure

There was no difference among the referent, independent, alternative and automatic scoring

with respect to the estimates of all but one all-night measures (Table 3). The algorithm

underestimated latency to NREM3, but the magnitude of this statistically significant

difference (maximum: 8 min) nonetheless seemed acceptable for most practical applications.

Bland–Altman plots (Fig. 3) showed negligible biases for all variables and clinically

acceptable variances for TST, SE, SL and REMT. Standard deviations of the WASO and

REML estimates were, however, large in comparison to the range of these parameters,

which could limit their utility in practice.

Cortical arousals

The algorithm detected 1317 of the 1826 arousals marked by the referent scorer, and made

648 false detections (SENAUT = 72.2%, PPVAUT = 67.0%). The alternative scoring

identified 1379 true and 668 false events (SENALT = 75.5%, PPVALT = 67.3%). The

independent scorer marked a total of 1860 events (SENEXP = 68.9%, PPVEXP = 67.6%).

The algorithm detected 1031 out of the 1258 consensus arousals (SEN = 82%). The duration

of algorithm-marked arousals was in a good agreement with the duration of their

counterparts identified by the referent scorer (Fig. 4).

Sufficiency of information contained in the Fp1–Fp2 derivation

The distributions of SENs and PPVs across the 29 recordings are shown in Fig. 5 for the

CREF–EXP, CREF–ALT and CREF–AUT comparisons. The automatic identification of

wakefulness was inferior in comparison to the other two methods

( , P

< 0.05;

, P

< 0.05). The large difference in PPV (and a smaller but notable difference in sensitivity)

Popovic et al. Page 7

J Sleep Res. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



between the independent scoring of the standard montage and manual scoring of the Fp1–Fp2

signal suggests that frontopolar cues (e.g. slow eye movements, theta bursts) were not as

reliable indicators of wake/sleep transitions as was the attenuation of occipital alpha in the

PSG montage. The comparatively smaller differences between the manual and automatic

wake/sleep scoring from the Fp1–Fp2 signal were related to between-subject variability of

the features used by FP-STAGER to identify wakefulness: when the group-based thresholds at

node R6 were replaced with values optimized separately for each subject, the automatic

detection of wakefulness became as sensitive and precise as the alternative scoring

( ). The detection of stage

NREM1 was challenging for all three scoring methods, but the algorithm was the least

accurate among them

( , P

< 0.05;

, P <

0.05). The large difference between the stage-specific REF–EXP and REF–AUT sensitivity

and PPV pointed, again, to the inconsistency of features in the Fp1–Fp2 signal as a key

problem during uneventful transitions from wake through NREM1 to stable NREM sleep

(stage NREM2). The differences in NREM1 sensitivity and PPV between the alternative and

automatic scoring were also, to a large degree, annulled by the individualization of the

thresholds at node R6 ( ).

Stages NREM2 and NREM3 were identified accurately (average SEN and PPV in excess of

85%), and the respective stage-specific measures did not significantly differ among the three

methods. Automatic detection of REM sleep was also accurate, but its visual identification

from the forehead was significantly hampered by difficulties with assessment of the muscle

tone from the Fp1–Fp2 signal

( , P

< 0.05;

, P <

0.05).

DISCUSSION

The agreement between the manual reference and automatic staging of the single frontopolar

derivation was similar to the inter–rater and between-montage agreement for the same data,

and lied within the range of inter–rater agreements reported for experts from the same

laboratory and samples composed of healthy subjects (Anderer et al., 2005; Berthomier et

al., 2007; Schaltenbrand et al., 1996; Shambroom et al., 2012). The accuracy of the

automatic detection of arousals was comparable to the inter–rater and intra–rater

concordances reported in the literature (De Carli et al., 1999; Whitney et al., 1998).

Furthermore, the algorithm’s performance was consistent and satisfactory across the

individual recordings, and its estimates of the common descriptors of all-night sleep

architecture were in close agreement with the referent values. The results, therefore, affirm
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automatic scoring of sleep stages and EEG arousals from the Fp1–Fp2 derivation as an

accurate method for assessment of sleep architecture in healthy adults.

The accuracy of both visual and automatic scoring of the Fp1–Fp2 derivation was primarily

determined by the morphology of the signal, and varied significantly by stage. Stages

NREM2 and NREM3, and NREM1 epochs associated with arousals were identified

accurately because the detection rested on waveforms that, for the most part, coincided in

the frontopolar and scalp EEG derivations during the respective stages (e.g. EEG arousals,

spindles, K-complexes or delta waves). REM sleep detection was challenging for a human

eye because the frontopolar EEG is similar in wakefulness, REM and light NREM sleep,

while changes in the generally meager EMG activity of the frontalis muscle were difficult to

distinguish from variations in the background beta EEG. The algorithm, nonetheless,

accurately delineated REM from wake or NREM1 epochs by contrasting the average beta

power to the power in the sigma and EMG bands (an approach similar to, e.g. Berthomier et

al., 2007; Shambroom et al., 2012). Identification of wake and NREM1 epochs was, on the

other hand, challenging for both automatic and visual scoring of the Fp1–Fp2 signal because

of its features (or lack thereof): the absence of alpha rhythm, inconsistent relationship

between the attenuation of the posterior alpha and frontopolar waveforms suggestive of

sleep onset, and early occurrence of slower spindles (12–14 Hz) that had no counterparts in

the scalp EEG (for details on different classes of spindles see, e.g. Huupponen et al., 2008).

Differences between the automatic and visual scoring of the Fp1–Fp2 signal resulted mostly

from the algorithm’s inability to handle between-subject variability of certain features, and

were mitigable through individualization of pertinent thresholds in the algorithm’s decision

tree. Beyond its use as an analytic tool, the individualization is, however, of limited practical

value, as it requires at least one baseline PSG study per subject, which may not be feasible

or economical in all applications. Future work, thus, needs to concentrate on clarifying the

relationship between the standard (parieto-occipital) and frontopolar hallmarks of wake,

NREM1 and early NREM2 stage on a representative sample of subjects.

Table 4 compares FP-STAGER with the performance of other algorithms for staging sleep from

simplified recording configurations, such as the ASEEGA system (Berthomier et al., 2007),

algorithms that operate on EOG channels (Levendowski et al., 2012; Virkkala et al., 2007,

2008), and the forehead-worn ZEO and ARES systems (Popovic et al., 2008; Shambroom et

al., 2012). For a fair comparison to algorithms that were trained and validated against

different scorers (e.g. ZEO) or a consensus reference created by eliminating the epochs

where the scorers disagreed (e.g. ASSEGA), FP-STAGER was also compared with the

independent expert and the subset of epochs where the referent and independent scorer

agreed. FP-STAGER performed comparably to algorithms validated with conventional PSG

equipment, and clearly outperformed the forehead-worn ZEO and ARES systems or the

Alive Heart Monitor that recorded from a single differential EOG lead (Virkkala et al.,

2008). The performance of the forehead-worn systems was, therefore, likely hindered by

properties of the devices, such as the thermal noise of utilized dry sensors and/or narrow

bandwidth of the amplifiers (e.g. 2–47 Hz for the ZEO). FP-STAGER performed similarly to the

algorithms for staging of the full montage that have been validated by an epoch-by-epoch

comparison to the reference (Anderer et al., 2005; Pitman et al., 2004; Schaltenbrand et al.,
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1996; Svetnik et al., 2007). Differentiation of wakefulness from light sleep was problematic

for some of these algorithms too, even though they operated on the scalp derivations, where

alpha rhythm is easily captured (Pittman et al., 2004; Svetnik et al., 2007).

Wrist actigraphs have been used for objective, unobtrusive and inexpensive estimation of

wake/sleep patterns in ambulatory settings for over 50 years; thus, a considerable audience

might be interested in comparative advantages and disadvantages of the automatic scoring of

frontopolar EEG. Although the two methods were not directly compared in this study, the

sensitivity and PPV of the automatic wake/sleep scoring were higher than the values

typically reported for actigraphy in healthy individuals (Ancoli-Israel et al., 2003; Martin

and Hakim, 2011). Considering its different sensitivity to solid and transient wakefulness,

automatic scoring of the Fp1–Fp2 derivation is likely to be more accurate than actigraphy in

clinical populations with lots of wake periods during which subjects lie still (e.g. insomnia);

some support for this assertion is provided by a study of 26 volunteers that found actigraphy

inferior to the forehead-worn ZEO system in subjects with low sleep efficiency (Shambroom

et al., 2012). However, the main advantage of the automatic scoring of frontopolar EEG

over actigraphy is its ability to accurately identify restorative sleep (NREM2, NREM3 and

REM) and cortical arousals (in addition to the wake/sleep classification).

The algorithm described herein has four major limitations. First, it was developed and

validated on a relatively small population of young, healthy subjects whose recordings

mostly consisted of long periods of uninterrupted sleep and contained relatively few

arousals. Further studies on elderly subjects and various clinical populations are, therefore,

warranted before the algorithm is eventually introduced into clinical practice. Second, the

algorithm was validated on the data acquired in a sleep laboratory and containing relatively

few artefacts (0.7% of all epochs). Although the artefacts were detected with high sensitivity

and precision in this sample, the true ability of the algorithm to deal with artefacts will be

known only after a study performed outside of a dedicated facility, where artefacts can

occupy as much as 10–15% of the recording. Third, the algorithm’s thresholds as reported

herein were optimized for the utilized sensors and hardware, and may need to be adjusted

prior to eventual use of the algorithm with sensors or recorders that have different noise

spectra, amplification gains or channel bandwidths. Finally, the reported thresholds reflect

the scoring habits of our sleep expert(s), and might be a suboptimal combination if used by

researchers with significantly different scoring styles. It is, therefore, advisable that the

thresholds be adjusted against a representative set of recordings scored by a local referent

scorer prior to any large-scale deployment of the algorithm by other groups.

In summary, the study affirmed the utility of automatic scoring of sleep stages from a single

frontopolar derivation, and demonstrated that its accuracy is primarily limited by

physiological differences between the frontopolar and scalp EEG. The method could be used

for assessment of sleep quality of healthy individuals in domicile or operational settings (e.g.

shift workers, deployed military servicemen). Upon a successful validation in relevant

clinical populations, the algorithm or its improved variants could also be used in in-home

diagnostic sleep studies, clinical trials or epidemiological studies.
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Figure 1.
Block diagram of the FP-STAGER algorithm.
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Figure 2.
Agreement between the manual scoring reference and automatic scoring of the Fp1–Fp2

signal in the groups of sleep-deprived and well-rested volunteers. The referent scoring of the

polysomnography montage is in rows, and the automatic scoring of the frontopolar

derivation is in columns.
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Figure 3.
Bland–Altman plots of selected variables calculated from the automatic (AUT) and referent

scoring (REF). Biases, standard deviations (SD) and intra-class correlation coefficients

(ICCs) are reported for pooled data from both validation groups, but the groups are

differentiated graphically because of the large between-group differences in ranges of some

variables. Dotted lines mark biases and limits of agreements (± 1.96*SD).
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Figure 4.
Bland–Altman plot of the cortical arousals determined by the algorithm (ADAUT) versus

duration of arousals marked by the referent scorer (ADREF).
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Figure 5.
Distributions of the stage-specific sensitivity (SEN) and positive predictive value (PPV) of

the expert (EXP), alternative (ALT) and automatic scoring (AUT) as compared with the

consolidated reference (CREF).
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Table 1

Demographic characteristics and sleep structure in the training and validation groups (all fields show mean

values with the range in brackets)

Training group (sleep-deprived) Validation group 1 (sleep-deprived) Validation group 2 (well-rested)

Number of subjects (m/f) 10 (6/4) 11 (6/5) 18 (8/10)

Type of data Daytime naps Daytime naps Nocturnal sleep

Age (years) 27 (20–63) 25 (18–40) 27 (18–45)

RT (min) 160 (120–197) 175 (112–260) 450 (314–502)*

RDI (h−1) 1.5 (0–3) 1.8 (0–4) 1.9 (0–4)

Arousal index (h−1) 11 (1–30) 12 (2–25) 10 (1–20)

Wake (% of RT) 10 (3–21) 11 (2–26) 9 (2–18)

REM (% of RT) 15 (2–29) 14 (1–26) 19 (8–26)

NREM1 (% of RT) 9 (4–24) 10 (1–23) 11 (5–21)

NREM2 (% of RT) 36 (22–45) 35 (10–53) 41 (34–50)

NREM3 (% of RT) 30 (2–45) 30 (3–53) 20 (14–41)†

*
P < 0.0001.

†
P < 0.1, marginally significant.

NREM, non-rapid eye movement; RDI, respiratory disturbance index; REM, rapid eye movement; RT, recording time.
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Table 2

Inter–rater and between-montage agreement

Group Sleep-deprived Well-rested

Inter–rater % agreement (kappa)

  IREF–EXP 83.8 (0.78) 83.2 (0.77)

  RREF–EXP 83.7 (0.78) 82.8 (0.77)

  CREF–EXP 88.5 (0.84) 86.2 (0.81)

Between-montage % agreement (kappa)

  IREF–ALT 82.9 (0.76) 80.4 (0.74)

  RREF–ALT 81.5 (0.75) 80.5 (0.74)

  CREF–ALT 85.4 (0.80) 83.8 (0.78)

ALT, alternative scoring; CREF, consolidated reference; EXP, independent expert scoring; IREF, initial referent scoring; RREF, repeated referent
scoring.
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