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Abstract

Coating stability is increasingly recognized as a concern impacting the long-term effectiveness of

drug eluting stents (DES). In particular, unstable coatings have been brought into focus by a recent

published report (JAMA 2012). Towards the goal of overcoming current challenges of DES

performance, we have developed an endothelium mimicking nanomatrix coating composed of

peptide amphiphiles that promote endothelialization, but limit smooth muscle cell proliferation

and platelet adhesion. Here, we report a novel water evaporation based method to uniformly coat

the endothelium mimicking nanomatrix onto stents using a rotational coating technique, thereby

eliminating residual chemicals and organic solvents, and allowing easy application to even

bioabsorbable stents. Furthermore, the stability of the endothelium mimicking nanomatrix was

analyzed after force experienced during expansion and shear stress under simulated physiological

conditions. Results demonstrate uniformity and structural integrity of the nanomatrix coating.

Preliminary animal studies in a rabbit model showed no flaking or peeling, and limited neointimal

formation or restenosis. Therefore, it has the potential to improve the clinical performance of DES

by providing multifunctional endothelium mimicking characteristics with structural integrity on

stent surfaces.

1. Introduction

Recent studies have reported that cracking, flaking, and detachment of particles from

polymeric coatings may play a major role in the limitations of current FDA approved DES,

as described in JAMA 2012 (Denardo et al., 2012). Several of the evaluated stent coatings

come loose during the enormous mechanical stress of stent expansion and could cause

additional vessel wall injury. Damage to polymeric coatings during balloon expansion has
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also been reported before (Otsuka et al., 2007, Basalus et al., 2009). Case reports of

embolization of polymeric fragments from other intravascular devices have also been

reported and correlate with adverse events (Mehta et al., 2010). In addition, the process of

elimination of these polymeric particles and associated vascular injuries could lead to local

inflammatory reactions, which is a major concern with DES. Stent coating damage and

detached microparticles could therefore contribute to DES-associated complications,

including thrombosis, restenosis, and microvascular and endothelial dysfunction. Therefore,

it is critical to address coating stability as a component of a multifunctional strategy

designed to simultaneously tackle all the challenges faced by current drug eluting stents.

Towards this ultimate goal, we have developed a self-assembled endothelium mimicking

peptide amphiphile (PA) based nanomatrix by incorporating laminin derived endothelial cell

adhesive ligands, nitric oxide donors, enzyme mediated degradable sites, and water based

self-assembly (Kushwaha et al., 2010, Andukuri et al., 2011). As described by Otsuka et al

(Nat Rev Cardiol 2012), a healthy endothelium has been recognized as critical for long term

vascular health in stenting (Otsuka et al., 2012), and this nanomatrix has demonstrated

improved endothelial cell adhesion and proliferation, endothelial progenitor cell adhesion

and differentiation, reduced smooth muscle cell proliferation and platelet adhesion

(Kushwaha et al., 2010, Andukuri et al., 2011, Andukuri et al., 2013). These multiple

bioactive functions in addition to controlled nitric oxide release and the unique water

evaporation based self-assembled nanomatrix coating could therefore simultaneously

prevent all the limitations of DES by reconstituting an endothelium mimicking on the stent

surface.

In light of the emerging significance of coating stability, the goal of this study is to analyze

and validate the stability of this endothelium mimicking nanomatrix as a coating for drug

eluting stents. To coat the nanomatrix, we developed a rotational coating technique as shown

in Figure 1A. The PA solution is held in an open top reservoir and the stent, held on a

mandrel is rotated to ensure uniform coating. This technique allows the PAs to self-assemble

onto the stent surface without organic solvents, and therefore can be easily applied to even

promising bioabsorbable stents. To evaluate stability of the coatings, two critical factors that

need to be addressed were considered – Shear stress and the force experienced during

expansion. These processes can cause flaking, peeling, and cracking of the coating, thereby

contributing to adverse events. We hypothesized that the unique water evaporation based

self-assembly into a uniform multilayered nanofibrous matrix (Kushwaha et al., 2010,

Andukuri et al., 2011) will endow the nanomatrix with sufficient stability in response to

expansion and shear stress. Proof of stability in addition to previously mentioned bioactive

properties will demonstrate the potential of this endothelium mimicking nanomatrix as a

coating for next generation DES and pave the way for preclinical and clinical studies.

2. Methods

2.1. Fabrication of the Endothelium Mimicking Nanomatrix

The nanomatrix was synthesized as previously described (Kushwaha et al., 2010, Andukuri

et al., 2011, Andukuri et al., 2013). Briefly, two different PAs were synthesized via

Fluorenylmethoxycarbonyl (Fmoc) chemistry. One PA contained an endothelial cell
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adhesive ligand (YIGSR) (Andukuri et al., 2010) linked to a matrix metalloprotease-2

(MMP-2) degradable sequence (GTAGLIGQ) to form PA-YIGSR. The second PA

contained a polylysine nitric oxide (NO) donor (KKKKK) linked to the MMP-2 degradable

sequence, forming PA-KKKKK. The two PAs were mixed in a 9:1 ratio as previously

described (Kushwaha et al., 2010, Andukuri et al., 2011) and reacted with NO to form PA-

YK-NO, the endothelium mimicking nanomatrix. Self-assembly of PA-YK-NO was

achieved by a water evaporation method (Kushwaha et al., 2010, Andukuri et al., 2011).

2.2 Rotational Coating Technique

Coating of PA-YK-NO via water-evaporation based self-assembly was achieved by a

rotational coating technique, as shown in Figure 1A. PA-YK-NO solution was contained in

an open top reservoir to facilitate evaporation and the substrate, which was held by a

mandrel attached to a rotating motor, was placed in the solution and rotated for 12 hours.

Rotation ensured uniform coating of all surfaces. After immersion for 12 hours, the substrate

was allowed to dry for a period of 24 hours.

2.3. Bioreactor Setup

The bioreactor setup is shown in Figure 1B (Walmet et al., 2003). Stainless steel strips (1cm

× 3 cm) were coated with 1 wt% PA-YK-NO by the rotational coating technique, followed

by self-assembly by water evaporation overnight. Two strips were placed in the parallel

plate flow chamber. Phosphate buffered saline was perfused at 10 dynes/cm2 for three days.

The flow rate was determined based on physiological shear stress, which ranges from 5 to

10 dynes/cm2 for arteries (Dammers et al., 2003, Sheikh et al., 2003). The coated stainless

steel strip was then removed and the coating was analyzed by AFM. A PA-YK-NO coated

strip that was not exposed to shear was used as a control surface.

2.4. Expansion of Stents

Coating of PA-YK-NO onto stainless steel stents (Pulse Systems, CA) via water-evaporation

based self-assembly was achieved by the rotational coating technique. Coated stents were

then expanded to 14 atm in DI water at 37°C, as previously described (Denardo et al., 2012,

Basalus et al., 2009). PA-YK-NO coated unexpanded stents were used as controls, and the

coatings were analyzed as follows.

2.5. Scanning Electron Microscopy (SEM)

Coated stents were analyzed using a Philips SEM 510 at an accelerating voltage of 20 KeV

after being sputter coated with gold/palladium. This enabled visualization of any defects or

cracks that arise from handling of the stents. Coated Stainless steel strips were analyzed by

FE-SEM (Hitachi S-2500C, Japan) after mounting on aluminium stubs and platinum sputter

coating.

2.6. Atomic Force Microscopy (AFM)

Surface characterization was performed using AFM following the procedure described by

Booth et al and Lewis et al (Booth et al., 2011, Lewis et al., 2002). Topographical and

lateral analysis of the coated surface was performed using contact mode AFM (Park
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Systems, XE-100, CA). This enabled analysis of the topography and adhesion of the coating

to the stainless steel strip.

2.7. Fourier Transform Infrared Spectroscopy

Fourier Transform Infrared Spectroscopy (FTIR) was performed following the procedure

described in the paper by Thomas et al (Thomas et al., 2007) to confirm the presence of PA-

YK-NO coating on the stainless steel stents. Uncoated stainless steel stents were used as

control surfaces. Attenuated total reflection (ATR) mode using a single crystal diamond

window was used. The spectra were obtained with 64 scans per sample ranging from 4000–

400 cm−1, with a resolution of 4 cm−1.

2.8. Analysis of In Vitro Cell Viability

To analyze cell viability, human umbilical vein endothelial cells (HUVECs) in EGM Media

(Lonza) were seeded on stents at a density of 50,000 cells/cm2. After 7 days, the cells were

stained with Live/Dead viability assay kit (Molecular probes) and visualized using an

epifluorescence microscope.

2.9. Evaluation of In Vivo Performance using Rabbit Iliac Artery Model

In vivo performance of PA-YK-NO coated stents was performed in a rabbit iliac artery

model. Using IACUC approved protocols, PEO sterilized coated (2) and uncoated control

(2) stents were implanted into the iliac crest arteries of male white New Zealand rabbits (18–

20 lbs). In detail, rabbits were anaesthetized with an intramuscular injection of ketamine (35

mg/kg) and xylazine (5 mg/kg). A 6 French Sheath was inserted into the carotid artery and

heparin (150 units/kg) and gentamicin (1 mg/kg) were administered intravenously. Under

fluoroscopic guidance, a 6 French JR4 coronary guide catheter was advanced over a 0.014”

coronary guide wire to the descending aorta. Angiography was performed using

approximately 8 ml of Meglumine diaztroate contrast injected via the catheter to determine

to diameter of the artery. A 6 French JR4 coronary guide catheter was then advanced to the

distal aortic bifurcation, and following angiography, a stent mounted on a delivery balloon

was advanced over the guide wire into one iliac artery. The stent was deployed as slightly

oversized, with a stent to artery ratio of 1.1 to 1. After 4 weeks, the rabbit was euthanized,

and the stented artery sample was collected. It was fixed, sectioned, and stained with

Hematoxylin and Eosin stains.

2.10. Statistical Analysis

All in vitro experiments were performed in quadruplicates and repeated at least three times

to give a total n value of 12. All the values are expressed as mean±standard deviation. One

way ANOVA was used to determine statistical significance and p<0.05 was considered

significant using SPSS software.

3. Results and Discussion

PA-YK-NO was successfully fabricated. The bioactive properties of the nanomatrix have

been studied earlier. Successful self-assembly into nanofibers, and long term NO release

have been demonstrated (Kushwaha et al., 2010, Andukuri et al., 2011). Interestingly, this
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self-assembly into a multilayered nanomatrix is achieved via water evaporation without any

organic solvents or chemical reactions. This is a unique property that highlights the

innovation in the endothelium mimicking nanomatrix.

Peptide based stent coatings have been investigated before (Sargeant et al., 2008, Punet et

al., 2013), but none of them have been made without the use of chemical reactions or

organic solvents. This property enhances the biocompatibility of the nanomatrix, prevents

solvent interference with NO release, and ensures that inflammatory reactions are limited. It

also allows the utilization of the nanomatrix to functionalize bioabsorbable materials

(Andukuri et al., 2011), thereby translating their application to promising bioabsorbable

stents. Furthermore, the mechanical properties of PAs can be tuned by incorporating

cysteine residues (Hartgerink et al., 2001). The bioactive properties of this endothelium

mimicking nanomatrix have been demonstrated earlier. Adhesion and proliferation of

endothelial cells, and the adhesion and differentiation of endothelial progenitor cells were

promoted (Andukuri et al., 2013). This shows that the nanomatrix has the potential to

promote endothelialization. The nanomatrix also inhibited the proliferation of smooth

muscle cells, and the attachment of platelets. This shows that the nanomatrix can potentially

reduce neointimal hyperplasia and thrombosis, thereby reducing the risk of restenosis. To

utilize the unique properties of PA-YK-NO, a rotational coating technique was developed to

allow self-assembly by water evaporation without organic solvents. To validate the stability

of the nanomatrix, first PA-YK-NO was coated onto stainless steel strips and placed in the

bioreactor to analyze the effect of physiological shear stress. Next, PA-YK-NO was coated

onto stainless steel stents and the stents were expanded, and the coatings were analyzed.

Successful coating by PA-YK-NO was confirmed by Fourier Transform Infrared

Spectroscopy (FTIR) as shown in Figure 2. In comparison with uncoated stainless steel

stents, the PA-YK-NO coated surfaces showed presence of amide group (1643 cm−1 and

1533 cm−1, N-H bend), carboxylic group (3282 cm−1, O–H stretch), and alkyl group (2925

cm−1 and 2850 cm−1, C–H stretch) confirming the presence of PAs.

The effect of shear stress on PA-YK-NO coatings was analyzed using a bioreactor that

simulates physiological shear stress. 1 wt% PA-YK-NO was coated onto stainless steel

strips (1 cm × 3 cm) using the rotational coating technique and exposed to shear stress of 10

dynes/cm2. Arterial shear stress ranges from 5–10 dynes/cm2, and the higher end of the

range was chosen for these experiments (Dammers et al., 2003, Sheikh et al., 2003). The

first three days constitute a critical period in the timeline of vessel healing after stenting.

According to Edelman and Rodgers (Edelman and Rogers, 1998), vascular healing after

stenting occurs in four phases. Within minutes of stent placement platelets aggregate and

activate, secrete various cell-signaling factors and can result in thrombus formation. At this

stage, the biocompatible coating on the stent may have a positive effect in reducing the risk

of stent-related thrombosis. Over the next few days to weeks, a variety of white cells will

gather at the injury site and secrete their own factors and exert their influence in turn on the

healing tissue. The inflammatory response can persist for months, over which time the

vessel wall is remodeled, largely by migration of smooth muscle cells to the site and

creation of extracellular matrix (neointimal hyperplasia). This can act to reduce the vessel

lumen size once again. Typical drug delivery strategies target one or more of these phases.

PA-YK-NO is designed to deliver NO in a biphasic manner, with an initial burst release that
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is expected to reduce thrombus deposition, and therefore limit the possibility of thrombosis.

Therefore, the first 3 days after stenting is critical for a PA-YK-NO coated stent to maintain

its coating stability and uniformity, and thus prevent the aggravation of this initial

physiological response to injury. PA-YK-NO coatings were first analyzed by SEM, and the

results are shown in Figure 3A. There is no change in the coating surface after exposure to

physiological shear stress. Next, topographical analysis of these coatings by AFM is shown

in Figure 3B. As shown, there is no evident difference in the two images. There is no

peeling, cracking, or flaking of PA-YK-NO. To further confirm the observations, surface

roughness, the lateral force required to remove the coating, and depth of coating were

analyzed. The results from these studies are shown in Figure 4. There was no statistical

difference in surface roughness (Control: 99±21 nm; Test: 90±5 nm), force of removal

(Control: 2.9± 0.5 MPa; Test: 3.3 ± 0.5 MPa), or coating depth (Control: 84±9 nm; Test:

72±3 nm) between the test and the control samples. This shows that shear stress is unlikely

to cause flaking or peeling of the nanomatrix. Therefore, we can infer that coating stability is

not significantly affected by exposure to physiological shear stress. After three days, there

are no differences in surface topography, surface roughness, or the strength of adhesion.

This indicates that the endothelium mimicking nanomatrix can withstand the shear stress it

may experience in the critical period after stent deployment, and therefore, the next step was

to analyze the stability of PA-YK-NO coatings on stents.

To analyze this coating stability, stainless steel stents were coated with PA-YK-NO using

the rotational coating technique. This coating method allows water evaporation based self-

assembly into a uniform nanomatrix. The stents were then crimped, and expanded in DI

water at 37°C to 14 atm as previously described (Denardo et al., 2012), and imaged by SEM

before and after expansion. The results are shown in Figure 5A. An unexpanded PA-YK-NO

coated stent is displayed on the left, while a PA-YK-NO coated stent that was crimped and

expanded is displayed on the right. The coating was stable, and no flaking, peeling or

cracking is visible after expansion. There are no visible differences between the two

conditions. This is critical as finite element modeling has revealed up to 25% plastic

deformation in 316L stainless steel stents during expansion (Migliavacca et al., 2002), and

recent reports indicate that unstable coatings may contribute to the limitations of DES. PA-

YK-NO coatings on expanded stents were further analyzed by contact mode AFM. The

results of this study are shown in Figure 5B. As shown in the figure, the topographies of

balloon expanded stents and unexpanded stents are similar, with no evidence of cracking,

flaking, or peeling. To further confirm this, the roughness and the lateral force of removal

were measured. Surface roughness would give a measure of the uniformity of the coating

and a risk of flaking, while force of removal would give a measure of the strength of

adhesion of the nanomatrix to the stent, as well as a measure of the risk of peeling. As

shown in Figure 6A, there is no statistical difference in roughness between expanded (228

±3.86 nm) and unexpanded stents (219 ±13.68 nm). There was also no significant difference

between the unexpanded (77±12 MPa) and expanded stents (59±16 MPa) with respect to

force of removal (Figures 6B) indicating that the strength of adhesion was unchanged after

balloon expansion. Further, there was no statistical difference in the depth of PA-YK-NO

coating on stents before (29±2 nm) and after expansion (33±5 nm) (Figure 6C). From these

results, we can infer that expansion of stents does not affect the stability of the PA-YK-NO
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nanomatrix. There is no change in surface topography, surface roughness, or the strength of

adhesion to the stent surface. This is critical for clinical success, as recent reports indicate

that balloon expansion of FDA approved DES causes damage to coatings which in turn may

contribute to their limitations. Expansion of PA-YK-NO coated stents is therefore unlikely

to contribute to adverse events such as restenosis, or affect the bioactive properties of the

nanomatrix.

Further, the effect of PA-YK-NO coated stents on endothelial cells was investigated by

seeding HUVECs on coated stents and analyzing via Live/Dead assay kit at 7 days. As

shown in Figure 7A, the cells attach the surface, spread, and achieve confluence. They

remain viable, suggesting that PA-YK-NO coated stents support endothelial cell viability.

Finally, the efficacy of PA-YK-NO coated stents was analyzed by implantation in a rabbit

iliac artery. After 4 weeks, the stented arteries were harvested and were histologically

analyzed via hematoxylin and eosin staining. The results are shown in Figure 7C. In

comparison with control, uncoated stent (Figure 7B), the coated stent displayed significantly

reduced neointimal thickness and restenosis. There was no evidence of flaking, peeling, or

deposition of thrombus and fibrin. Overall, these results suggest that PA-YK-NO can form a

stable coating on stents, which in synergy with multiple bioactive functions can promote

efficacy of implanted stents.

4. Conclusion

In light of emerging reports suggesting that insufficient stability of DES coatings may

contribute to their limitations, this study aimed to demonstrate the coating stability of an

endothelium mimicking nanomatrix in response to critical forces experienced by DES

coatings – expansion and shear stress. To coat the nanomatrix onto stents, we have

developed a rotating coating technique that allows self-assembly of PAs onto stent surfaces.

This technique allows coating without the use of organic solvents and can therefore be easily

applied to bioabsorbable stents and scaffolds. Results indicated that there was no evidence

of flaking, peeling, or cracking of the nanomatrix. There were no statistical differences

between test and control samples that were subjected to expansion and shear stress. In

addition, PA-YK-NO coated stents implanted in a rabbit iliac artery model displayed no

flaking or peeling and reduced neointimal formation and restenosis. This study demonstrates

that this nanomatrix can provide stents with endothelium mimicking characteristics on the

surface with structural integrity, and therefore it is an attractive coating for next generation

DES.
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Figure 1.
(A) Rotational coating technique for coating stents with the bioinspired multifunctional

nanomatrix. (B) Bioreactor setup for simulating physiological shear stress.
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Figure 2.
FTIR spectra of PA-YK-NO coated stainless steel stent and an uncoated stent.
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Figure 3.
(A) SEM analysis of PA-YK-NO coating before shear stress (Left) and PA-YK-NO coating

that was exposed to shear stress (Right). Scale bar = 2μm. (B) Topographical analysis of PA-

YK-NO coating exposed to shear stress and PA-YK-NO coating that was not exposed to

shear stress.
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Figure 4.
(A) Surface roughness of PA-YK-NO coatings exposed to shear stress. (B) The lateral force

required to remove coatings exposed to shear stress. (C) Depth of PA-YK-NO coating

before and after shear stress. In all three cases, there is no difference compared to controls.

Andukuri et al. Page 13

Biofabrication. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5.
(A) SEM analysis of unexpanded PA-YK-NO (left) coated stent and PA-YK-NO (right)

coated stent expanded at 37°C, 14 atm. Scale bar = 50 μm. (B) Topographical analysis of

expanded and unexpanded PA-YK-NO coated stents using AFM.
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Figure 6.
(A) Surface roughness measured using contact mode AFM. (B) Force of removal of coating

from the surface measured from AFM. (C) Depth of coating before and after balloon

expansion. In all three cases, there was no difference before and after balloon expansion.
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Figure 7.
PA-YK-NO coated stents support endothelial cell viability (A). At 7 days, HUVECs seeded

on PA-YK-NO coated stents attach, spread, and remain viable. Scale bar = 500 μm. (B)

Uncoated control stent implanted in rabbit iliac artery, 4 week time point. (C) PA-YK-NO

coated stent implanted in rabbit iliac artery at 4 weeks. There is limited neointimal growth,

limited restenosis, and no evidence of flaking or peeling, suggesting the potential stability

and efficacy of PA-YK-NO coating.
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