
Homocysteine in renovascular complications: hydrogen sulfide
is a modulator and plausible anaerobic ATP generator

Utpal Sen, Sathnur B. Pushpakumar, Matthew A. Amin, and Suresh C. Tyagi
Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville,
KY-40292

Abstract

Homocysteine (Hcy) is a non-protein amino acid derived from dietary methionine. High levels of

Hcy, known as hyperhomocysteinemia (HHcy) is known to cause vascular complications. In the

mammalian tissue, Hcy is metabolized by transsulfuration enzymes to produce hydrogen sulfide

(H2S). H2S, a pungent smelling gas was previously known for its toxic effects in the central

nervous system, recent studies however has revealed protective effects in a variety of diseases

including hypertension, diabetes, inflammation, atherosclerosis, and renal disease progression and

failure. Interestingly, under stress conditions including hypoxia, H2S can reduce metabolic

demand and also act as a substrate for ATP production. This review highlights some of the recent

advances in H2S research as a potential therapeutic agent targeting renovascular diseases

associated with HHcy.
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1. Introduction

Progressive decline of renal function in chronic kidney diseases such as glomerulosclerosis

and tubular-interstitial fibrosis impairs the ability of kidney to excrete waste products and

maintain water and electrolyte balance. Renal microvascular endothelial injury, vessel

calcification and remodeling can increase vascular resistance causing elevation of blood

pressure [1; 2],. Clinical data suggests an association between systolic hypertension, renal

dysfunction and high levels of plasma homocysteine (Hcy). There is an inverse relationship

between plasma Hcy levels and progressive decline in renal function.
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In the body, Hcy is metabolized by two distinct pathways: 1) remethylation back to its

precursor methionine, and 2) transsulfuration to form H2S. Since the original discovery of

H2S biogenesis, it has gained substantial interest in the research community for determining

its role in health and disease. Current evidence suggests that H2S regulates a number of

physiological processes including but not limited to synaptic transmission, vasorelaxation,

pro- and anti-inflammatory effects, angiogenesis, smooth muscle cell proliferation and

migration, and autophagy. In hyperhomocysteinemia (HHcy), decreased H2S has been

linked to disease progression and morbidity. HHcy and impaired H2S formation is

commonly seen in patients with cirrhosis [3]. Further, HHcy in cirrhosis has been shown to

cause endothelial dysfunction in rats which was reversed following H2S treatment [3]. In a

rat model of HHcy, Wei el al demonstrated marked increase in endoplasmic reticulum (ER)

stress in cardiomyocytes and reduction in endogenous H2S production, whereas H2S

supplementation decreased the expression of ER stress-associated proteins [4]. Increased

Hcy levels and decreased H2S production has been reported in patients undergoing

hemodialysis for uraemia [5]. Also, low levels of H2S have been demonstrated in HHcy-

induced hypertension wherein both endogenous and exogenous H2S was shown to mitigate

high blood pressure suggesting a key role in blood pressure regulation [6]. Taken together,

the above studies suggest an inverse relationship between Hcy and H2S in diverse

pathologies.

In this review we discuss recent developments on Hcy handling, particularly its synthesis,

accumulation, and metabolism in renal vasculature. Furthermore, in light of present

literature the roles of H2S are highlighted as a molecule which mitigates renovascular

complications and hypertension.

2. Hcy biosynthesis and accumulation

Hcy is a non-protein α-amino acid derived from methionine and is a homologue of amino

acid cysteine, differing by an additional methylene group. The normal plasma Hcy levels in

humans range from 5–15 μmol/L. In rare inborn errors of metabolism, levels >100 μmol/L

have been reported [7]. Based on the plasma concentration, HHcy is categorized into three

groups, mild (>15 μmol/L to italic> 30 μmol/L), moderate (> 30 μmol/L to bold> 100

μmol/L) and severe (>100 μmol/L) [8]. A number of studies suggest moderate HHcy as an

independent risk factor for vascular diseases including coronary artery disease and venous

thromboembolism [9; 10]. To aid US Preventive Services Task Force for finding novel risk

factors for coronary heart disease (CHD), a meta-analysis was performed, and the analysis

suggests that each increment of Hcy level by 5 μmol/L increases the risk of CHD events by

approximately 20 percent [11]. This underlines the clinical significance of HHcy.

There is however no direct diet source of Hcy; instead it is biosynthesized from methionine.

Hcy biosynthesis, accumulation and metabolism in the body depend on many factors and

several pathways contribute to regulate plasma Hcy levels. Five major pathways are

involved in this process, a) methylation reaction, b) remethylation pathway, c) renal

mechanism via volume retention, d) transsulfuration pathway, and e) protein-energy

malnutrition (Figure 1). Among the pathways, methylation reaction, renal volume retention

and protein-energy malnutrition increase plasma Hcy levels; whereas, remethylation and
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transsulfuration decrease its level. In cells, methionine by condensation reaction with ATP

forms methyl donor, S-adenosylmethionine (SAM) (Figure 1). In the methylation reaction,

SAM is transformed into SAH (S-adenosylhomocysteine) by donating its methyl group to

other substrates, and in subsequent reversible reaction SAM produces Hcy. Hcy is converted

back to methionine through folate and vitamin B12 remethylation pathway. Excess Hcy in

circulation is cleared by the kidney and liver. The kidney is capable of filtering as well as

metabolizing Hcy [12]. Although the molecular mass of Hcy (135 D) is within the filtration

range of glomeruli, major portion of filtered Hcy is absorbed by tubular uptake [12]. In

addition, kidney contains transsulfuration enzymes CBS, CSE, 3MST and CAT as well as

remethylation enzymes [13; 14; 15; 16]. Therefore, renal pathways of Hcy handling largely

depend on filtration, reabsorption and metabolism (remethylation and transsulfuration)

ability of kidney [17]. In chronic kidney diseases (CKD) reduced glomerular filtration thus

increases plasma Hcy accumulation [12]. In addition, dysregulation in the transsulfuration

enzymes further increases plasma Hcy levels [18; 19; 20]. Similar to kidney, the liver

remethylates Hcy back to methionine through remethylation (Figure 1) [12; 21], and can

also metabolize it by transsulfuration pathway [22; 23]. A derangement in either of the

pathways can therefore result in abnormal increase in Hcy. In addition, protein-energy

malnutrition is also reported to increase plasma Hcy levels (Figure 1) [24].

3. Hcy pathobiology in kidney diseases

HHcy is a recognized risk factor for vascular diseases [25; 26]. Individuals with advanced

CKD [27] and patients undergoing hemodialysis [28] are reported to have high levels of

plasma Hcy, which may further contribute to renovascular injury leading to a vicious cycle

[29]. Renal injury has been reported in an experimental weanling rat model of HHcy [29;

30] which is consistent with our own recent findings in mice [19; 31]. A recent systemic

review and meta-analysis reported that glomerular filtration rate inversely correlates with

Hcy levels with HHcy prevalence of 36–89% in patients with CKD, 70–75% in patients with

viable kidney transplants and 85–100% in end-stage renal disease [32]. In vivo studies have

demonstrated that HHcy can increase blood pressure by causing arteriolar constriction,

arterial stiffness, endothelial damage, and increased sodium absorption [33]. The underlying

mechanisms include: a) oxidative stress, b) smooth muscle cell proliferation, c)

inflammation, d) autophagy, e) extracellular matrix remodeling, f) formation of Hcy-

thiolactone, and g) protein homocysteinylation. Protein modification by homocysteinylation

has been implicated in the development of atherogenesis and atherothrombosis [34; 35].

Indeed patients deficient in cystathionine β-synthase (CBS) were shown to have increased

levels of prothrombotic N-Hcy-fibrinogen increasing their risk for thrombotic events [35]. In

addition, Hcy may homocysteinylate endothelial nitric oxide synthase (eNOS), resulting in

decreased nitric oxide (NO) production by endothelial cells including renal vessels. This

possibility however is yet to be confirmed.

4. Metabolism of Hcy and formation of H2S

Metabolism of Hcy occurs by two distinct pathways: 1) remethylation wherein Hcy receives

a methyl group to form its precursor molecule methionine, and 2) transsulfuration pathway

to form cysteine (Figure 1). In the remethylation process, Hcy acquires a methyl group from
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N-5-tetrahydrafolate in the presence of vitamin B12 catalyzed by homocysteine

methyltransferase (HMT) and occurs in all tissues. In the alternate pathway occurring

exclusively in the liver, Betaine HMT converts Betaine to dimethylglycine releasing a

methyl group which couples with Hcy to form methionine [36].

In the transsulfuration pathway, Hcy condenses with serine to from cystathionine (Figure 2).

A pyridoxal-5′-phosphate (PLP)-containing enzyme, cystathionine β-synthase (CBS)

catalyzes this reaction where vitamin B6 acts as a co-factor. Cystathionine is further

hydrolyzed by a second PLP enzyme, cystathionine γ-lyase (CSE) to form cysteine.

Cysteine is the main precursor of endogenous H2S formation; thus, Hcy and cysteine

synthesize H2S by cytosolic enzymes CBS and CSE, or by the sequential activity of cysteine

aminotransferase (CAT) and 3-mercaptopyruvate sulfur transferase (3MST) in both the

cytosol and mitochondria (Figure 2). H2S synthesis by other mechanisms independent of

Hcy has been summarized recently in a review article by Olson et al [37].

5. Physiology of H2S in the kidney

H2S has long been known for its neurotoxicity and as an environmental hazard. The ground

breaking work by Abe and Kimura in 1996 however demonstrated for the first time that the

hippocampus produces H2S, which functions as a neuromodulator [38]. A subsequent study

by Kimura H reported the role of H2S as an endogenous smooth muscle relaxant suggesting

possible regulation of vascular tone [39]. Subsequent studies by other researchers

documented that endogenous H2S has a variety of physiological functions and a decrease in

its production was involved in diverse pathological processes, such as oxidative stress,

vascular dysfunction, inflammation, neurodegenerative diseases, apoptosis, autophagy,

atherosclerosis, hypertension and diabetes [40; 41; 42; 43; 44; 45]. These discoveries further

stimulated research into its development as a potential therapeutic agent in diseases

attributed to diminished H2S synthesis [46].

In the kidney, H2S is reported in a wide array of physiological functions. For example,

Holwerda et al reported that H2S attenuated hypertension and renal damage by upregulating

VEGF [47]. In an rat model of unilateral ureteral obstruction (UO), exogenous H2S donor

inhibited renal fibrosis by attenuating the production of collagen and other extracellular

matrix proteins [48]. In addition, H2S attenuated inflammation by decreasing the expression

of inflammatory cytokines and recruitment of macrophages [48]. In another study involving

UO model, treatment with with sodium hydrogen sulfide reduced oxidative stress by

preserving catalases such as CuZnSOD and MnSOD, and glutathione level [49]. Although

these studies did not measure Hcy levels in UO model, decreased levels of H2S were

reported in both studies which are consistent with our previous finding in renal pathologies

associated diminished H2S and HHcy [18; 19]. Below, we review the beneficial effects of

H2S in renal pathology associated with HHcy. Of note, in a recent review Snijder et al

summarized in depth on how H2S, along with other two gasotransmitters, NO and carbon

monoxide (CO), interact in renal transplantation to exert cytoprotection and reduction of

tissue injury in transplanted organ [50].
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6. Roles of H2S in Hcy-mediated renovascular pathophysiology

6.1. Normal physiology of renal vasculature and gasotransmitters

Kidney is the filtration unit in vertebrate animals and comprises two major parts: cortex and

medulla. The functional unit of kidney is nephron and is grossly divided into two parts; a)

renal corpuscle located in the cortex and b) renal tubule that passes from the cortex into the

medulla. The major function of the kidney is filtration, reabsorption of glucose, sodium,

potassium and other solutes, secretion of hormones and maintaining fluid homeostasis in the

body. Endogenous gaseous transmitters, NO, CO and H2S, play immense role in

maintaining normal physiological function of kidney. NO is produced by nitric oxide

synthase (NOS) and the kidney expresses all three isoforms of NOS, i.e eNOS, nNOS and

iNOS [51; 52]. In the kidney NO regulates renal hemodynamics, modulates fluid and

electrolyte transport, and may also help minimize renal injury [53]. However, NO generated

from iNOS may exacerbates renal injury in concert with oxidative-redox state particularly in

the presence of super oxide due to the formation of peroxynitrite [54].

In the kidney, CO is generated during heme degradation by the enzymes heme oxygenase –

1 and -2 (HO-1 and HO-2) or fatty acid oxidation [55]. Studies have demonstrated that CO

is a natural vasoprotector against excessive vasoconstriction and promotes natriuresis [55].

H2S is the third gaseous molecule in the group and its production in the kidney is

summarized in section 5 above. All the gasotransmitters above have similar physiological

effects such as vasodilatory, anti-oxidant, anti-apoptotic, anti-inflammatory, and angiogenic

properties through an array of inter- and intracellular signaling cascades [56] however, their

mode of action and regulatory function may differ from each other [57]. In addition, recent

literature suggests significant crosstalk between these gasotransmitters for synergism and

normal physiology [58; 59]. In the following section, we discuss the physiological functions

of the gasotransmitters in the kidney in relation to HHcy with an emphasis for using H2S as

a potential therapeutic agent.

6.2. Oxidative stress and endothelial dysfunction

A vast majority of literature suggest that Hcy causes oxidative injury to the endothelial cells

(EC) [18; 60; 61]. Due to the presence of the highly reactive sulfhydryl group, Hcy can

undergo auto-oxidation to generate oxygen radicals [62]. In circulation, the thiol group

undergoes rapid metal-catalyzed auto-oxidation leading to generation of super oxide and

hydrogen peroxide [60]. In addition to generating oxidant stress, Hcy has indirect effects on

vascular redox status by diminishing the expression and activity of anti-oxidant enzymes

superoxide dismutase (SOD) and glutathione peroxidase (PGx) [62; 63]. The endothelial

cells which line the vessel walls are the primary target of these radicals. Since eNOS derived

NO is the primary vasorelaxation factor under physiological conditions, the cells are

deprived of NO following endothelial injury [64], leading to impaired endothelial function

[65; 66]. In a transgenic CBS–deficient mice model Cheng et al reported that HHcy impairs

NO– and endothelium-derived hyperpolarizing factor (EDHF)–mediated endothelium-

dependent relaxation of small mesenteric arteries (SMAs) [67]. Hcy is also known to

promote oxidation of eNOS cofactor, tetrahydro-L-biopterin (BH4), resulting in BH4-eNOS

uncoupling and diminished NO production [68; 69; 70; 71]. Asymmetric dimethylarginine
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(ADMA) is an endogenous inhibitor of NO synthase [72], and Hcy is reported to increase

ADMA and thus decrease NO production [73]. In contrast to decreased eNOS-derived NO

during HHcy, the activity of neural NOS (nNOS) and inducible NOS (iNOS) is increased by

HHcy [74; 75]. This paradox, although presumed to have beneficial effects by

vasorelaxation, the increase of NO in a highly reactive HHcy-induced oxidative

environment can in fact lead to the formation of more potent peroxynitrite radical (ONOO-),

known as reactive nitrogen species (RNS) [68]. This can lead to nitration of tyrosine

residues in proteins thus impairing their function [76].

Evidence from animal models of HHcy suggest that endothelial dysfunction is largely due to

oxidative stress and decreased bioavailability of NO [77]. A decrease in the production and

circulation of H2S can further contribute to endothelial-dependent impaired vasorelaxation

in these models [18; 19; 20; 43]. This mechanism is partly mediated by interaction between

H2S and NO. Both H2S and NO can engage in covalent reactions with proteins thereby

temporarily modulating protein structure and function. H2S reacts with Cys residues of the

target protein through the formation of persulfide (-SSH) bond and this modification is

known as protein S-sulfhydration [78]. Similarly, NO predominantly binds to sulfhydryl

groups (-SH) of Cys residues of target protein, and the process is termed as protein S-

nitrosylation [79]. It is also reported that H2S functions in concert with NO forming

nitrosothiol (RSNO) [80] or reacts with S-nitrosothiols to form thionitrous acid (HSNO)

[81]. The latter further metabolizes to form NO [81], and/or H2S displacing NO from S-

nitrosothiols to liberate free NO [82]. Thus, it is postulated that impaired production of H2S

in HHcy may reduce some of the physiological aspects of NO-signaling. In fact, in a recent

finding King et al reported that mice lacking CSE exhibited elevated oxidative stress,

diminished NO levels due to dysfunctional eNOS in ischemia/reperfusion (I/R), and

exacerbated myocardial injury [83]. These changes were ameliorated following H2S therapy,

suggesting H2S-mediated cytoprotective signaling in I/R myocardium is dependent on eNOS

activation and NO generation [83]. Using a similar model, Bos et al reported that CSE

deficiency increased renal damage and mortality after I/R injury, whereas treatment with

exogenous H2S rescued CSE knockout mice from these injuries [84]. Further,

overexpression of CSE in in vitro human embryonic kidney 293 cells (HEK293) was found

to reduce ROS production [84]. Taken together, the findings above underline the role of

endogenous H2S in oxidative stress, and give direction to the mechanisms of H2S related

antioxidant effects.

On the other hand, although the role of reduced H2S in CBS-deficiency remains largely

unknown, H2S activity is reported to occur partly through sulfhydration [85], a mechanism

where NO acts through S-nitrosylation [86]. The literature on the effects of sulfhydration is

however limited. It is therefore premature to generalize whether H2S activity occurs through

this mechanism. Nonetheless, this process is highly interesting as it could have a major role

in physiology, but due to the lack of advanced techniques for accurately measuring

sulfhydration it is not certain whether this process occurs or not. Further to H2S generation

and mechanism of vascular protection, Bearden et al reported an interesting finding that H2S

generating enzyme CBS and CSE are secreted into the bloodstream and generates H2S

through extracellular transsulfuration pathway, which protects endothelium from redox
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stress [87]. Whether these mechanisms are universal or kidney vasculature has additional

pathways to handle HHcy-stress is unknown and remains to be elucidated.

6.3. Homocysteinylation and protein malfunction

The consequence of high Hcy level has been studied in numerous in vivo and in vitro

experimental models. The sulfhydryl group of Hcy forms stable disulfide bonds with

cysteine residues in proteins altering their structure and function [62]. Recently, Hubmacher

et al demonstrated that homocysteinylation affected functional properties of fibrillin and

tropoelastin [88]. Fibrillin and tropoelastin are essential components for the formation of

elastic fibers. Fibrillin contains intra-domain disulfide bonds which maintain its structural

integrity and functional properties [89]. It is secreted into the extracellular matrix and

becomes incorporated into the microfibrils to provide a scaffold for deposition of

tropoelastin that is found in the elastic fibers of connective tissues including blood vessels.

The N- and C-terminal regions of fibrillin colocalizes to form typical microfibril structure

[90], and in this regard disulfide bond-mediated multimerization of the fibrillin-1 C-

terminus and N- to C-terminal self-interaction are considered the initial steps for tissue

microfibrils formation [91; 92]. Homocysteinylation reduces N- to –C-terminal fibrillin-1

self-interaction properties which is essential for biogenesis of microfibrils [88]. In addition,

homocysteinylation on the disulfide bond in tropoelastin changes the self-assembly process

which reduces elastic properties of blood vessels [88].

Although the protein modification by Hcy has focused on homocysteinylation, a metabolite

of Hcy known as Hcy-thiolactone has the ability to form isopeptide bonds with protein

lysine residues leading to a product termed as N-homocysteinylated protein (N-Hcy-protein)

[93]. N-Hcy-protein has prothrombotic properties [94], and N-homocysteinylation triggers

development of autoimmunity [95]. It is reported that serum levels of anti-N-

homocysteinylated antibodies are positively correlated with the levels of plasma Hcy in

CBS-deficient and stroke patients compared to their respective control and healthy subjects

[34; 35; 96]. Thus protein homocysteinylation and autoimmune response may explain some

of the unanswered pathologies found in renal disease patients, even though Hcy levels are at

subclinical levels [96]. We and others have shown that H2S supplementation offers renal

protection in HHcy, especially by mitigating inflammation and ECM accumulation;

however, the subtle mechanism is still incompletely understood. Because H2S has a sulfur

molecule, it is possible that H2S may uncouple protein-S-S-Hcy bridge [97] resulting in

dehomocysteinylation of protein. Another plausible mechanism is that H2S may prevent the

formation of N-homocysteinylated proteins thereby preventing protein modification and

malfunction. These possibilities need to be explored in future.

6.4. Smooth muscle cell proliferation and alteration of vascular elastic compliance

The media layer in blood vessels comprise of vascular smooth muscle cells (VSMC) that

serve as contractile component to regulate blood pressure. Any morphological or

physiological dysregulation in these cells interfere with the vascular elastic compliance

leading to alteration of blood pressure. Perry et al reported that H2S inhibits airway smooth

muscle cell proliferation through ERK-1/2 and p38 kinase pathway [98]. In an in vitro

experimental model Zavaczki et al reported that H2S inhibited phosphate induced
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osteoblastic transformation and mineralization of VSMC [99]. In patients with chronic

kidney disease undergoing hemodialysis, low plasma levels of H2S was associated with

decreased CSE enzyme activity. Although the Hcy levels in these patients were not

measured, previous clinical studies have reported increased Hcy levels in hemodialysis

patients [100; 101; 102]. Decreased CSE activity and low H2S together with calcification

and osteoblastic differentiation of VSMC suggests that Hcy may be involved in this process.

Further studies are needed to dissect this mechanism.

6.5. Inflammation and autophagy

Reactive oxygen species (ROS) in pathological redox environment mediates tissue injury

that facilitates inflammation through activation of pro-inflammatory molecules such as

intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1

(VCAM-1)[18; 19; 103]. While circulating leukocytes adhere to these molecules as a result

of host defense mechanism [104; 105], transmigration of leukocytes to the sub-endothelial

space depends on cytokines and chemokines which are released from the injured tissue

[106]. In chronic inflammatory disorders, sustained elevation of ICAM-1 and VCAM-1 lead

to aggregation of macrophages resulting in formation of plaques and atherosclerosis [107].

HHcy is a recognized pathophysiological stimulus of endothelial injury causing increased

expression of ICAM-1 and VCAM-1 [108; 109]. In an experimental kidney model, we have

shown increased macrophage infiltration, and expression of ICAM-1 and VCAM-1

associated with HHcy [19]. This inflammatory process was partially mitigated by H2S

treatment [19]. Since HHcy induced super oxide production and H2S treatment diminished

the oxidants in HHcy, it suggests that renal protection was secondary to the anti-oxidant

properties of H2S [18; 19].

ROS, including super oxide and hydrogen peroxide are important signaling molecules in

normal and pathophysiological processes [110]. One of the age-regulating genes p66shc has

recently been shown to exploit intracellular ROS levels by activating membrane-bound

NADPH-oxidases, down-regulating antioxidant enzymes synthesis and mitochondrial ROS

generation for cellular apoptosis [110]. Knockout mice of p66shc gene and various p66shc-

deficient cell lines have exhibited higher resistance to agonist-induced oxidative stress and

indicate the importance of p66shc in the stress-mediated apoptotic pathway [111; 112]. In

addition, mice lacking p66shc showed increased resistance to ROS-dependent endothelial

dysfunction and vascular inflammation compared to their wild type littermates [113; 114]. In

a recent study, Kim et al reported that Hcy promotes endothelial dysfunction via p66shc

transcription and hypomethylation of specific CpG dinucleotides in the p66shc promoter

region [115]. In addition, the same group reported that knockdown of p66shc mitigated Hcy-

induced adhesion of monocytes to EC indicating epigenetic mechanism of endothelial

dysfunction and inflammation [115]. Whether H2S has any regulatory role in Hcy-induced

epigenetic mechanism of inflammatory processes and cellular dysfunction is yet to be

investigated.

Oxidative damage of cellular organelles, particularly mitochondria may lead to

mitochondrial autophagy or mitophagy [116]. Mitophagy is a natural physiological defense

mechanism where damaged mitochondria through a mechanism of selective sequestration
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and subsequent degradation are removed from the cells and the components recycled [117].

Mitochondria are the major site of oxidative phosphorylation for the production of ATP by

oxidizing glucose, pyruvate and NADH [118]. This process of cellular respiration is

dependent on oxygen and is known as aerobic respiration. Interestingly, ROS production is a

part of aerobic respiration however, excess ROS can be detrimental to the cells [119]. In an

earlier study, we demonstrated that HHcy initiated mitophagy through ROS generation and

H2S supplementation or delivery of H2S producing gene, CBS, CSE and 3MST mitigated

induction of mitophagy markers [43]. The beneficial effects of H2S in Hcy-mediated

mitophagy may occur by two different mechanisms: a) protection of mitochondria by

scavenging ROS, and/or b) the triple gene (CBS, CSE and 3MST) overexpression

metabolizing excess Hcy to produce H2S thus preventing Hcy toxicity [43]. Further studies

are needed to guarantee the safety and efficacy of gene delivery method for treating HHcy in

pathological renovascular diseases.

6.6. Activation of matrix metalloproteinases

Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases which cleave a wide

variety of substrates including cell surface receptors, adhesion molecules, growth factors,

cytokines, in addition to their well-recognized role in matrix components synthesis and

degradation [120]. The expression and localization of MMPs in the kidney has been

described in a recent review [121]. Resident and latent MMPs are activated by several

mechanisms in a variety of renal pathologies including diabetic nephropathy, glomerular-

tubulointerstitial fibrosis, inherited kidney disease, acute kidney injury and inflammation

[18; 122]. The consequence of aberrantly activated MMPs in physiology are not only

restricted to maintain ECM homeostasis, i.e. matrix degradation and synthesis, but also

involved in the regulation of a wide array of cellular behaviors, such as proliferation,

migration, differentiation, tumor growth and metastasis, epithelial-mesenchymal transition,

angiogenesis, and apoptosis [120; 122; 123]. MMPs are synthesized as inactive zymogens

that have a conserved cysteine residue which interacts with the active site of zinc rendering

the protease inactive [124]. The activity of MMPs depends on disruption of this “cysteine

switch”. Proteolytic cleavage of this switch can be accomplished by trypsin, plasmin, other

MMPs or even nitrosative and oxidative stress [122]. In particular, cysteine residues within

the MMPs propeptide domain are highly sensitive to oxidant-redox status, and ROS oxidizes

cysteine residues and activates latent MMPs to active forms [121; 125; 126]. Hcy is known

to generate ROS, and thus activate MMPs [18; 127]. In addition, Hcy-generated ROS,

especially super oxide (O2
−) reacts with NO forming peroxynitrite (ONOO−) that reacts with

active sites of MMPs increasing their activity [128]. Through nitration of tyrosine residues

within MMPs, Hcy-generated ONOO− can also activate MMPs. In a recent review Steed and

Tyagi postulated a plausible mechanism of MMP activation by this mechanism [129].

Since ROS and RNS activate MMPs, antioxidants are natural inhibitors of MMP activation.

In this regard, H2S is an antioxidant and free radicle scavenger [130] and therefore the

inhibitory mechanism of redox-mediated MMP activity by H2S is largely attributed though

its antioxidant properties. Previously, in uninephrectomized one kidney (1-K) CBS+/−

model we demonstrated that induction of MMP-2 and -9 correlated with the increased Hcy

levels and decreased H2S levels compared with their 2-K littermates [18]. The induction of
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MMPs was due to increased formation of oxygen radicles in the kidney. Interestingly, H2S

supplementation mitigated O2
− production and diminished MMP-2 and -9 activities

suggesting the mechanism of Hcy-redox-H2S pathway of renal MMP regulation in HHcy

[18; 19]. It is also possible that H2S may quench Zn2+ of gelatinases resulting in their

inhibition. This Zn2+ quenching mechanism of MMP-2 and -9 inhibitions by H2S has

recently been reported by Talei et al in a hamster model of lung remodeling [131].

6.7. Extracellular matrix accumulation, glomerulosclerosis and renal dysfunction

Proteinuria is described as loss of protein from glomerular vasculature into urinary space

and is the hallmark of ESRD [132; 133; 134]. Protein loss occurs due to disruption of slit

diaphragm which is the final barrier of glomerular filtration consisting of interdigitating

podocyte foot process with the neighboring cells [135; 136]. Podocytes are highly

differentiated glomerular epithelial cells located in the glomerulus [137; 138]. In recent

years, NADPH-derived ROS production has been implicated as a key mechanism triggering

podocyte injury [139; 140; 141]. ROS activates matrix metalloproteinase in the glomerulus

[142], and activated MMPs degrade matrix components including collagen/elastin [143].

However, since the turnover of collagen is faster than elastin [144; 145; 146; 147; 148] in a

given time frame, excess collagen renders the vessel stiffer as the disease progresses. In

addition, collagen in oxidative redox environment oxidizes [149], and renal peroxidation

products deposits in the interstitial space leading to vascular fibrosis including glomerulo-

tubulointerstitial fibrosis [150]. The early stages of glomerulosclerosis may be asymptomatic

but proteinuria and fluid retention in the body indicates disease progression towards ESRD.

Patients in ESRD require dialysis or kidney transplantation since other treatments for

glomerulosclerosis are limited such as immunosuppressive drugs that prevent proteinuria

[151]. Anti-hypertensive drugs such as ACE inhibitors are currently in use to preserve

kidney function [152]. However, these drugs may cause further damage to the kidney.

Therefore, developing an effective strategy that prevents early progression of kidney

diseases associated with glomerulosclerosis may offer better management of this disease,

particularly kidney failure associated with diabetes and hypertension. Since elevated Hcy

level is known to be strongly associated with diabetes and hypertension induced

nephropathy by deposition of excess ECM proteins in the glomerular-tubulointerstitial

space, faster metabolism of Hcy or counteracting its effect in the microenvironment could be

an important therapeutic tool for prevention or even slowing down disease progression.

Using CBS+/− animal model of HHcy we have shown that uninephrectomy (1-kidney

model) further increased Hcy levels in these mice and were associated with lower plasma

H2S levels and sign of proteinuria than their 2-kidney littermates [18]. Blood pressure was

significantly increased along with a decline in renal function [19]. In addition, increased

ROS, particularly superoxide production and ratio of glutathione-to-oxidized glutathione

(GSH/GSSG) were increased in CBS+/− uninephrectomized mice with increased expression

and activity of MMP-2 and -9 [18; 19]. Furthermore, increased collagen deposition and

expression of inflammatory molecules ICAM-1 and VCAM-1, caused macrophage

infiltration to sites of injury resulting in glomerular remodeling and a decrease in the

filtration rate [19]. H2S supplementation in these animals normalized microarchitecture and

improved renal function suggesting that H2S as a potential therapeutic agent for countering

the adverse effects of HHcy [18; 19].
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6.8. Renal mechanism of hypertension

In chronic kidney disease, low levels of plasma H2S is often associated with a concomitant

increase in plasma Hcy levels [5; 153]. The cause and effect relationship of HHcy in renal

disease can therefore adversely affect the final outcome. Because Hcy is a precursor of H2S

[154; 155], changes in the Hcy metabolism and therefore H2S synthesis can have a

significant impact on HHcy-induced pathology. However, till date the mechanism by which

HHcy causes vascular dysfunction and the role of H2S in renal protection is incompletely

understood. Four enzymes, CBS, CSE, 3MST and CAT metabolize Hcy to produce H2S

[156]. In renal disease and HHcy, impairment of CBS, CSE and 3MST enzymes leads to

deficient H2S production [18; 19; 157; 158]. Available literature suggests that HHcy induces

oxidative stress, endothelial injury and causes down regulation of eNOS resulting in

decrease NO production [68; 159; 160]. Activation of MMPs in the Hcy-redox environment

leads to imbalance in extracellular matrix synthesis and degradation [161; 162]. Excess or

oxidized collagen deposition in the renal microvessels causes glomerulosclerosis and

tubulointerstitial fibrosis resulting in kidney remodeling, renal dysfunction and hypertension

[163; 164; 165; 166]. We have shown that exogenous H2S offers renal protection and

mitigates hypertension by reducing oxidative stress, inflammation, and collagen deposition

the HHcy kidney [18; 19]. Additionally in ex vivo renal artery, single, double or triple gene

delivery of CBS, CSE and 3MST enzymes, we have demonstrated that conversion of Hcy to

H2S improves vascular relaxation [31]. However, further studies are needed for deeper

understanding of Hcy-mediated pro-fibrotic and pro-inflammatory effects in renal

vasculature and beneficial effects of H2S therapy in improving renovascular function in

diseases associated with HHcy.

6.9. Aerobic vs. anaerobic vascular relaxation: Roles of NO, CO, H2S and Hcy

NO, CO and H2S are a group of endogenously synthesized gasotransmitters having distinct

physiological actions in the human body. Of the three, NO has been extensively studied.

Oxygen is an important co-substrate for the generation of both NO and CO. Three isoforms

of nitric oxide synthase (NOS), neuronal (nNOS), inducible (iNOS) and endothelial (eNOS)

have been recognized to catalyze the formation of NO from L-arginine and all three forms

are expressed by the kidney. The activity of NOS requires stimulation by calcium-

calmodulin but the dependence of calcium for nNOS and eNOS is higher than that of iNOS

[167]. NO thus formed activates guanylate cyclase (GC) to increase the concentration of

cyclic guanosine monophosphate (cGMP) which in turn activates cGMP-dependent protein

kinase causing dephosphorylation of myosin light chain phosphatase ultimately leading to

vessel relaxation [168; 169]. In the vascular smooth muscle cells, the upregulation and fate

of cGMP is controlled by phosphodiesterase 5 (PDE 5) [167] [170]. Within the kidney,

iNOS is produced in the proximal tubules and medulla under conditions of inflammation or

sepsis and can result in oxidant injury [171]. The eNOS is expressed in the arterioles and

glomerular capillaries and is involved in regulation of vascular tone.

CO is a product formed during heme degradation by heme oxygenase (HO) system which is

mainly distributed in the spleen, liver and kidney. The isoform HO-1 is induced under

conditions of oxidative stress, inflammation and sepsis; whereas, HO-2 and HO-3 are

constitutively expressed [172]. The formation of CO-guanylate cyclase complex stimulates

Sen et al. Page 11

Nitric Oxide. Author manuscript; available in PMC 2015 September 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the production of cGMP leading to cGMP-dependent signal transduction resulting in

vasorelaxation [173]. Similar to NO, CO is involved in other actions such as

neurotransmission, anti-proliferation of smooth muscle cells and inhibition of platelet

aggregation. When compared to NO, CO is a weak vasodilator but under conditions of

pathological stress where NO production is impaired, induction of HO-1 and the subsequent

contribution of CO may play a significant role [174]. Support for CO induced vasodilation

independent of NO production has been shown by the use of NOS inhibitor, Nω-nitro-L-

arginine-methylester, (L-NAME) which demonstrated increased levels of cGMP [175]. In

contrast, treatment with Tin protoporphyrin, SnPPIX, an inhibitor of HO showed decreased

vasorelaxation induced by acetylcholine [176]. Taken together, the above studies suggest

CO- cGMP signaling as an important mechanism involved in regulation of vascular tone.

Upregulation of HO-1 has been shown to protect the kidneys from ischemia-reperfusion

injury during renal transplantation [177]. Further, pre-treatment with molecules that release

CO has been shown to increase the graft survival following kidney transplant and this effect

has been attributed to its anti-apoptotic and anti-inflammatory activity mediated by cGMP

pathway [178; 179].

Unlike NO and CO, the generation of H2S by CBS/CSE/MST enzymes does not require

oxygen as a substrate. The mechanism by which H2S induces vasorelaxation involves

activation of ATP-sensitive potassium channels (KATP)[180; 181]. In a previous study

involving arterio-venous fistula induced cardiac failure, we demonstrated that pretreatment

with sodium thiosulfate reduced adverse extra-cellular matrix remodeling and improved

cardiac function [182]. In the same study, an increase in H2S production was associated with

ventricular relaxation; this effect could be due to hyperpolarization of KATP channels

inhibiting Ca++ entry into the cells. A second possible mechanism may involve the chelating

property of sodium thiosulfate causing a reduction in free Ca++ intracellular compartments

[182]. A significant down regulation of H2S producing enzymes has been observed in

chronic kidney disease suggesting that H2S deficiency may contribute to the disease process

[157]. Indeed, in an earlier study we found that kidneys from diabetic mice had decreased

H2S levels and underwent adverse renal remodeling involving N-methyl-D-aspartate

receptor 1 (NMDAR1) mediated upregulation of connexin-40 and -43 [183]. H2S treatment

has been reported to reduce renal injury and improve renal function following ischemia-

reperfusion injury in murine models [184; 185]. The beneficial effects of H2S treatment is

possibly due to its multiple roles in modulating vascular tone, inflammation and oxidative

stress.

Interestingly in a recent report, Szabo et al found that both H2S and NO are interdependent

in mediating vasorelaxation and development of new vessels [186]. In addition,

vasorelaxation appears to be secondary to a reduction in PDE5 activity thereby decreasing

breakdown of cGMP [186; 187]. H2S is also known to increase NO synthesis by

upregulation of eNOS [188]. Together, these studies indicate significant cross-talk between

gasotransmitters and appear to maintain reciprocal regulation in various vascular functions.

Possible pathways of aerobic vs. anaerobic vascular relaxation and crosstalk between NO,

CO and H2S is depicted in Figure 3.
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7. Concluding remarks and perspectives

Hcy is a methionine metabolite non-protein amino acid which is the homologue of cysteine,

differing by additional methylene bridge (-CH2-). Although kidney is a major site for Hcy

metabolism, a small portion of Hcy is also excreted by the kidney. However, in chronic

kidney diseases, as renal function declines, plasma levels of Hcy increases due to volume

retention. This in turn, further contributes to renovascular injury through diverse

mechanisms which includes oxidative stress, protein homocysteinylation, inflammation,

autophagy, activation of latent MMPs, ECM deposition and alteration of renal-vascular

elastic properties resulting in exacerbated kidney dysfunction. Renal dysfunction, volume

retention and Hcy accumulation is a vicious cycle causing renal mechanism of hypertension.

Interestingly, many of the adverse effects of Hcy are counteracted by the gaseous molecule

H2S, which is one of its natural metabolites. H2S is produced by desulfuration of Hcy (or

cysteine) in the transsulfuration pathway catabolized by CBS, CSE, 3MST and CAT

enzymes. It functions as endogenous signaling molecule to regulate a wide array of

physiological processes including cellular oxidative stress. Hcy is known to cause oxidative

stress that activates MMPs. In pathological state, active MMPs lead to adverse remodeling

causing an imbalance of collage/elastin ratio resulting in glomerular-tubulointerstitial

fibrosis which progresses to renal dysfunction. Since H2S is an antioxidant and vasodilator,

treatment with H2S reduces oxidative stress and normalizes vascular compliance in kidney

diseases associated with HHcy. Although at our current understanding it is not clear whether

H2S dehomocysteinylates protein; it is apparent that the benefit of H2S treatment in HHcy is

in part by reduction of Hcy-induced oxidant stress irrespective of plasma Hcy levels. In

addition, CBS, CSE and 3MST gene therapy can metabolize Hcy to produce H2S and thus

render better management of Hcy handling in pathological HHcy.

H2S shares many of the physiological processes rendered by CO and NO, although few

fundamental differences exist in terms of their generation and mechanisms of action. For

example, unlike NO and CO, generation of H2S does not require oxygen as substrate and

therefore sustains mitochondrial ATP generation under hypoxic condition [189]. In a recent

report, Modis et al proposed that intramitochondrial H2S producing pathway may serve a

physiological role to maintain mitochondrial electron transport and cellular bioenergetics

[190]. We previously reported that H2S regulated adenylate cyclase VI (ACVI), an enzyme

which converts ATP to cAMP in cardiac tissue [182]. It would be interesting to study

whether the conversion of Hcy to bio-friendly H2S in HHcy may lead to ATP generation and

subsequent cAMP production, which may vasodilate arterioles to improve renal function

under diseased states.
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Highlights

• Renal volume retention in chronic kidney disease increases plasma Hcy levels

• Hcy metabolism produces physiologically important hydrogen sulfide molecule

• H2S production is impaired in chronic kidney disease

• H2S deficiency is associated with vascular dysfunction and matrix remodeling

• H2S treatment mitigates HHcy-associated renal dysfunction
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Figure 1.
Homocysteine synthesis, accumulation and metabolism pathways. MTHFR, Methelene

tetrahydrofolate reductase; SAH, S-adenosyl homocysteine; SAM, S-adenosyl methionine;

THF, tetrahydrofolate reductase.
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Figure 2.
Pathways for hydrogen sulfide (H2S) production from homocysteine (Hcy). Cytosolic

enzymes, CBS and CSE metabolizes Hcy to H2S (lined enclosure); whereas cysteine

aminotransferase (CAT) and 3-mercaptopyruvate sulfurtransferase (3MST) metabolizes Hcy

to H2S in both cytosol and mitochondria (dotted enclosure).
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Figure 3.
H2S mechanism of anaerobic vs. NO and CO mechanisms of aerobic vascular relaxation.

ADMA, asymmetric dimethyl arginine; ATP, Adenosine triphosphate; cGMP, Cyclic

guanosine monophosphate; cAMP, Cyclic adenosine monophosphate; DDAH,

dimethylarginine dimethylaminohydrolase; PDE-5, phosphodiesterase type 5; GC, guanylate

cyclase; GTP, guanosine triphosphate; NADPH, Nicotinamide adenine dinucleotide

phosphate
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