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Synaptotagmin 2 Mutations Cause an Autosomal-Dominant
Form of Lambert-Eaton Myasthenic Syndrome
and Nonprogressive Motor Neuropathy

David N. Herrmann,1,8 Rita Horvath,2,8 Janet E. Sowden,1 Michael Gonzales,3 Avencia Sanchez-Mejias,3

Zhuo Guan,4 Roger G. Whittaker,5 Jorge L. Almodovar,6 Maria Lane,2 Boglarka Bansagi,2 Angela Pyle,2

Veronika Boczonadi,2 Hanns Lochmüller,2 Helen Griffin,2 Patrick F. Chinnery,2 Thomas E. Lloyd,7

J. Troy Littleton,4,8 and Stephan Zuchner3,8,*

Synaptotagmin 2 is a synaptic vesicle protein that functions as a calcium sensor for neurotransmission but has not been previously asso-

ciated with human disease. Via whole-exome sequencing, we identified heterozygous missense mutations in the C2B calcium-binding

domain of the gene encoding Synaptotagmin 2 in two multigenerational families presenting with peripheral motor neuron syndromes.

An essential calcium-binding aspartate residue, Asp307Ala, was disrupted by a c.920A>C change in one family that presented with an

autosomal-dominant presynaptic neuromuscular junction disorder resembling Lambert-Eaton myasthenic syndrome. A c.923C>T

variant affecting an adjacent residue (p.Pro308Leu) produced a presynaptic neuromuscular junction defect and a dominant hereditary

motor neuropathy in a second family. Characterization of the mutation homologous to the human c.920A>C variant in Drosophila

Synaptotagmin revealed a dominant disruption of synaptic vesicle exocytosis using this transgenic model. These findings indicate

that Synaptotagmin 2 regulates neurotransmitter release at human peripheral motor nerve terminals. In addition, mutations in the Syn-

aptotagmin 2 C2B domain represent an important cause of presynaptic congenital myasthenic syndromes and link them with heredi-

tary motor axonopathies.
Synaptotagmin 2 (SYT2), a synaptic vesicle protein, is the

major isoform of the synaptotagmin family at mammalian

neuromuscular junctions (NMJs) and functions as a cal-

cium sensor for neurotransmission.1,2 The C2B domain

of SYT2 is essential for neurotransmitter release at the

NMJ in several animal models, although mutations in

SYT2 (MIM 600104) have not been previously linked to

human disease.1,3 Here we describe two multigenerational

families with dominant mutations of adjacent residues

in the SYT2 C2B domain that cause a disorder with fea-

tures including presynaptic NMJ dysfunction resembling

Lambert-Eaton myasthenic syndrome (LEMS) and motor

neuropathy. We model and validate the identified domi-

nant defects of the protein in a Drosophila model that

recapitulates key synaptic dysfunctions found in affected

individuals.

In the three-generational index family USA1, affected

family members developed foot deformities in childhood

including pes cavus and hammer toes (Figure 1). These

individuals had a variable degree of proximal and distal

limb weakness, muscle fatigue that improved with rest,

mild gait difficulties, and reduced or absent deep tendon

reflexes that could be elicited after brief exercise. Acetyl-

choline receptor binding, blocking and modulating

antibodies, and voltage-gated calcium channel antibodies
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were negative in the proband in USA1. In a second family

(UK1), affected individuals (Figure 1) also presented with

childhood-onset foot deformities, but had congenital hip

dislocation (in affected females), distal, often asymmetric

lower extremity muscle atrophy, lower limb predominant

weakness, and absent deep tendon reflexes. A summary

of the clinical features of each person in both families is

included in Table 1. Electrophysiological studies in USA1

(Figure 2, Table S1 available online) showed presynaptic

NMJ dysfunction with low-amplitude compound muscle

potentials (CMAPs) and marked CMAP amplitude incre-

ments after brief exercise. Concentric needle electromy-

ography was normal in weak muscles in affected USA1

family members. In UK1, electrophysiologic abnormalities

included low-amplitude lower-limb CMAPs with a variable

degree of postexercise amplitude facilitation and slight re-

innervation on needle electromyography of distal muscles,

consistent with motor neuropathy (Figure 2, Table S2).

Sensory nerve conduction studies were normal in all indi-

viduals in each family (Tables S1 and S2).

A whole-exome sequencing study was undertaken in

each family, under Institutional Review Board approval,

and after written informed consent. Whole-exome

sequencing in USA1 family members II.2, III.2, and II.1

(unaffected) was performed with the 50Mbases Agilent
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Figure 1. Pedigrees of Affected Families
and Lower Limb Deformities
(A and B) Family pedigrees for USA1 (A)
and UK1 (B). Filled symbols are clinically
affected individuals, arrows denote the
probands.
(C) Foot and toe deformities in three gen-
erations in the USA1 family.
(D) Asymmetric distal lower limb muscle
atrophy (individual II.2 shown here) was
noted in affected UK1 females. Splayed
toes (family member III.7) were notable
in the UK1 kindred.
SureSelect v.4 capture kit combined with an Illumina

HiSeq2000 sequencing instrument. Raw data were aligned

with the BWA software and variants were called using

GATK. All resulting variants and also genotype calls at non-

variant positions were annotated, and segregation patterns

were calculated with the GEDI protocol.4 After import into

the GEM.app software, we filtered for dominantly segre-

gating variants and excluded variants that were present

in the NHLBI EVS data set of 6,500 individuals, the local

GEM.app data set of 3,000 individuals, variants with

GERP conservation scores of less than 3, and genes with

a residual variation intolerance score of >95 percentile.5

We considered only nonsynonymous variants, splice site

changes, and indels. Using five different protein prediction

algorithms (Polyphen, MutationTaster, MutationAssessor,

SIFT, LRT), we created a composite score where each

‘‘damaging’’ assessment receives one point. Of the six re-

maining genes from this analysis, only one gene, SYT2,

had a full score of 5 (Table S3). Full Sanger-based segrega-

tion analysis of all six genes in the USA1 family reduced

the gene list to only two candidates, including a heterozy-

gous c.920A>C (p.Asp307Ala) missense mutation (RefSeq

accession number NM_177402.4) in the gene encoding

SYT2 (Figure 2, Table S3). SYT2 represents an enticing

candidate given its well-established role in calcium acti-

vation of neurotransmitter release at NMJs.1–3 Further,
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Asp307, an aspartate residue, is the

second of five residues that coordi-

nate calcium binding to the C2B

domain (Figure 2).6 Disruption of

these residues leads to a loss of cal-

cium binding and dominant-nega-

tive disruption of exocytosis in

Drosophila.7–10

Whole-exome sequencing in fam-

ily UK1 (individuals III:2 and IV:1)

was performed with the Illumina

TruSeq 62 Mb exome capture and

sequenced on an Illumina HiSeq

2000 instrument. The in-house bio-

informatics pipeline at Newcastle

University included alignment to

the human reference genome (UCSC

hg19), reformatting, and variant
detection (Varscan v.2.2, Dindel v.1.01), as described previ-

ously.11 On-target variant filtering excluded those with

minor allele frequency greater than 0.01 in several data-

bases. Rare homozygous and compound heterozygous var-

iants were defined, and protein altering and/or putative

‘‘disease-causing’’ mutations, along with their functional

annotation, were identified using ANNOVAR. Lists of on-

target ariants were filtered against data from NHLBI-

6500-ESP, the 1000 Genomes project, and the exome

sequences of 334 unrelated in-house control exomes to

identify rare homozygous variants with a MAF < 0.01.

Putative pathogenic variants were confirmed by Sanger

sequencing and segregation analyses was performed. This

sequencing revealed a heterozygous segregating missense

mutation affecting the amino acid residue adjacent to

USA1 (c.923C>T [p.Pro308Leu]) (Figure 2). This change

was also predicted to be deleterious and not present in con-

trols. No other segregating variants were identified in this

family (Table S3).

To determine how these SYT2 mutations might alter

synaptic function, we focused on the c.920A>C (p.As-

p307Ala) variant given its established role in calcium

binding to the C2B domain. We generated transgenic

Drosophila containing wild-type (WT) and mutant Synap-

totagmin genes using the GAL4-UAS expression system.

Drosophila contains a single isoform (DSYT1) of the
tics 95, 332–339, September 4, 2014 333



Table 1. Clinical Features in Family Members in USA1 and UK1 Affected by SYT2 Mutations

USA1 (c.920A>C [p.Asp307Ala]) UK1 (c.923C>T [p.Pro308Leu])

I.2 II.2a III.1 III.2 II.2 II.3 III.2a III.6 III.7 IV.1

Age (years) 70 49 23 15 44 42 27 16 12 7

Gender F F F M F M F M F M

Foot or Toe Deformity, Joint Abnormalitiesb

Feet/Toes C,H C,H,S C,H C,H C,S H HA,H C,H C,H,S P

Hip dysplasia � � � � þ � þ � þ �

Lower Limb Featuresc

Weakness P ¼ D P ¼ D,F � � R > L; R: D,P; L: D D D � R > L,D �

Wasting � � � � R: D,P; L: D D D � � �

Tendon reflexes A A,F A, Red A,F A A,F A A A A

Upper Limb Featuresc

Weakness D p ¼ D,F � � D � D � � �

Tendon reflexes A A,F A,F A,F A A A A A A

Motor Development and Gaitd

Delayed milestones � � � � � � � � � þ

Rapid fatigue with activity � þþ � þ � � � � � �

Gait abnormalities W TW, HW � þ W, HW, TW HW, TW W, HW, TW � HW W, HW

Orthotics � � � � KO � AFO � � FO

Orthopedic surgeries � T � � K,F A,T F � � �

Difficulty with sports � þ � þ þ � þ þ � þ

Other Clinical Findings

Hearing loss þ þ � � � � � � � �

Benign positional vertigo � þ � � � � � � � �

Sensory loss (hands or
feet)

� � � � þ � þ � � þ

Electrophysiological Findingse

CMAP amplitudes Red Red Red Red Red Red Red N Red ND

CMAP facilitation - þþþ þþþ þþþ - þ þþþ ND þþ ND

SNAP amplitudes N N N N N N N N N N

EMG N N ND ND R R R R R ND

aProband
bAbbreviations are as follows: C, pes cavus; P, pes planus; HA, high arch; H, hammer toes; S, splayed toes.
cAbbreviations are as follows: P, proximal; D, distal; R, right; L, left; A, absent; N, normal; ND, not done; F, facilitation with exercise; Red, reduced. Minus sign (�)
indicates not present; plus sign (þ) indicates present.
dAbbreviations are as follows: AFO, ankle foot orthotic; FO, foot orthotics; KO, knee orthotic; K, knee surgery; A, ankle surgery; F, foot surgery; T, toe surgery; W,
waddling gait; HW, unable/impaired heel walk; TW, impaired toe walk. Minus sign (�) indicates not present; plus sign (þ) indicates present.
eSee Tables S2 and S3 for detailed electrophysiologic findings. Facilitation denotes an increase in tendon reflexes, strength, or CMAP amplitude after 10 s of
maximal voluntary contraction. USA II.1, a 49-year-old male and the husband of the proband, UK III.3 (a 24-year-old male and brother of the proband), and
UK III.8 (a 9-year-old female cousin of the proband) are unaffected with no neurologic symptoms or signs and no foot deformities. Abbreviations are as follows:
CMAP, compoundmuscle action potential; Red, reduced; SNAP, sensory nerve action potential; EMG, needle electromyography; R, reinnervation; N, normal; ND,
not done. Single plus sign (þ) indicates 30%–49% CMAP amplitude increase after 10 s of exercise; double plus sign (þþ) indicates 50%–99% CMAP amplitude
increase; triple plus sign (þþþ) indicates >100% CMAP amplitude increase.
mammalian synaptic vesicle SYT subfamily (SYT1, SYT2,

SYT9). DSYT1 is highly homologous to human SYT2,

with perfect conservation of the five C2B calcium binding

residues, including Asp307 (corresponding to Asp362 in

Drosophila) (Figure 3A, Figure S1). We generated transgenic

WT and c.1527A>C (p.Asp362Ala) UAS-DSyt1 lines and
334 The American Journal of Human Genetics 95, 332–339, Septemb
induced these genes using the pan neuronal GAL4 driver

elavC155 (Figures 3B and 3C). The p.Asp362Ala protein

localized normally to synapses in both the syt1�/� null

and wild-type backgrounds (Figure 3C). Neurotransmitter

release was analyzed at third instar Drosophila NMJs using

current recordings of postsynaptic responses in voltage
er 4, 2014



Figure 2. Postexercise Compound Mus-
cle Action Potential Amplitude Facilitation
in USA1 and UK1 and Family Genetic
Studies
(A) Median nerve distal CMAP before and
immediately after 10 s of maximal volun-
tary contraction for USA1 proband II.2
and her affected offspring III.1 and III.2.
Each of these individuals demonstrated a
greater than 100% increment in median
nerve distal compound muscle action
potential amplitude following brief exer-
cise. Individual II.2 also demonstrated a
139% increment in the peroneal motor
distal compound muscle action potential
amplitude recording from the tibialis
anterior muscle. Individuals III.1 and
III.2 additionally demonstrated 110%
and 200% distal ulnar compound muscle
action potential amplitude increments,
respectively, after 10 s of exercise. See
Table S1 for full electrophysiological data
for USA1.
(B) Amplitude and area increment of the
peroneal CMAP (recording from tibialis
anterior) in the UK1 proband (III.2) after
10 s of maximal voluntary contraction
(MVC), which persisted beyond 5 min.
See Table S2 for electrophysiologic data
for UK1.
(C) Sanger traces demonstrating the
c.920A>C missense mutation in SYT2 in
USA1. This produces an amino acid
change from aspartate to alanine at the
second aspartate residue (p.Asp307Ala) in
the cytoplasmic C2B domain of SYT2. A
c.923C>T missense mutation in SYT2 in
affected UK1 individuals results in a pro-

line-to-leucine amino acid change at the adjacent residue (p.Pro308Leu). Note that the SYT2 gene is encoded at the opposite strand.
(D) Position of the identifiedmutations in each family on the gene structure of SYT2 and the conservation of the affected residues across
species.
clamp. p.Asp362Ala failed to rescue any of the defects

observed in the DSyt1-null background (Figures 3D–3H).

Rescued animals with p.Asp362Ala DSYT1 lacked synchro-

nous neurotransmitter release and displayed enhanced

asynchronous release and elevated spontaneous fusion

rates as previously described in DSyt1-null mutants.8,10

These results indicate that the p.Asp362Ala mutation

completely abolishes the ability of the protein to support

calcium-triggered neurotransmitter release.

We next assayed the effects of the p.Asp362Ala protein

on synaptic transmission in the presence of endogenous

DSYT1, mimicking the dominant human condition. Four

independent transgenic p.Asp362Ala lines were lethal

when driven with the pan neuronal GAL4 driver elavC155

in Drosophila neurons. Two transgenic lines, C2B#1 (with

induced levels of p.Asp362Ala protein similar to WT

DSYT1) (Figure 3B) and C2B#2 (induced at a slightly higher

level), were further characterized. Induction of p.As-

p362Ala DSYT1 in the presence of endogenous DSYT1

caused a striking dominant-negative effect on neuromus-

cular transmission, while WT DSYT1 had no effect (Figures

4, S2, and S3). p.Asp362Ala induction reduced evoked

release (Figures 4A and 4B) and increased the frequency
The American
of spontaneous fusion events (Figures 4C and 4D). The

p.Asp362Ala C2B#2 transgenic line produced a more se-

vere phenotype, indicating dosage-dependent disruptions

in synaptic transmission. High-frequency stimulation re-

vealed increased facilitation of evoked release in the pres-

ence of p.Asp362Ala (Figures 4E and 4F), consistent with

a reduction in initial release probability caused by the

mutant protein and similar to the observation of enhanced

CMAP amplitude after exercise in the USA1 family. These

findings indicate that the SYT mutant exerts a strong

dominant-negative effect on synaptic transmission that

mimics many aspects of the defects observed at the NMJs

of affected USA1 family members.

How does the SYT2 mutant protein dominantly inter-

fere with neurotransmitter release? We previously demon-

strated that SYT functions as a multimer in vivo in

Drosophila, consistent with structural studies of the pro-

tein.9,12,13 The dominant effect observed in the

c.920A>C family and the phenotypes of p.Asp362Ala in

Drosophila suggest that mutant SYT2 is likely to multimer-

ize with endogenous SYT2 and disrupt its normal pro-

perties, resulting in the defects in synaptic transmission

we observe in both systems. Synaptotagmins have been
Journal of Human Genetics 95, 332–339, September 4, 2014 335
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Figure 3. p.Asp362Ala DSYT1 Fails to Support Neurotransmitter Release in a synaptotagmin-Null Mutant
(A) Stereoview of the Asp307 (yellow) and Pro308 (magenta) residues modeled on the rat SYT1 C2B crystal structure. The five essential
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(D) Representative EPSCs recorded in 2 mM external Ca2þ inDsyt1�/� null larvae (red) and null mutants rescued withWTDSYT1 (black)
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(legend continued on next page)
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Figure 4. Mutant Synaptotagmin Dis-
rupts Neurotransmitter Release in the
Presence of Endogenous Synaptotagmin
(A) Representative EPSCs recorded in
0.2 mM extracellular Ca2þ at third instar
larval muscle 6 synapses for the indicated
genotypes (control, induction of WT or
p.Asp362Ala DSYT1 by elavC155-GAL4).
(B) Quantification of mean eEJC ampli-
tudes in the indicated genotypes (w�/�,
120.5 5 5.3 nA, n ¼ 16; elavC155-GAL4;
UAS-SYT1, 117.5 5 11 nA, n ¼ 15;
elavC155-GAL4; UAS-SYT1 p.Asp362Ala#1,
26.6 5 4.7 nA, n ¼ 16; elavC155-GAL4;
UAS-SYT1 p.Asp362Ala#2, 17.3 5 3.2 nA,
n ¼ 16).
(C) Postsynaptic current recordings of
spontaneous release for the indicated
genotypes.
(D) Quantification of average mini fre-
quency for the indicated genotypes (w�/�,
1.65 0.1 Hz, n ¼ 10; elavC155-GAL4; UAS-
SYT1, 2.15 0.2 Hz, n¼ 10; elavC155-GAL4;
UAS-SYT1 p.Asp362Ala#1, 6.3 5 0.5 Hz,
n ¼ 16; elavC155-GAL4; UAS-SYT1 p.As-
p362Ala#2, 8.2 5 0.7 Hz, n ¼ 13).
Student’s t test: *p < 0.05; ****p < 0.0001.
Error bars represent SEM.
(E) Representative EPSCs during a short
10 Hz tetanic stimulation of the nerve in
0.2 mM external Ca2þ for the indicated
genotypes.
(F) The average for the first ten responses
normalized to the first response during
the tetanus is shown following induction
of WT DSYT 1 (blue), DSYT1 p.Asp362Ala
#1 (green), and DSYT1 p.Asp362Ala #2
(red). The average fast tetanic facilitation
after ten responses for each genotype is:
WT DSYT1 ¼ 0.94 5 0.02; DSYT1
p.Asp362Ala#1 ¼ 1.29 5 0.03; DSYT1
p.Asp362Ala#2 ¼ 1.49 5 0.04. Student’s
t test revealed significant differences be-
tween WT and p.Asp362Ala (p < 0.0001).
suggested to function as fusion clamps to prevent sponta-

neous exocytosis, in addition to their role as calcium

sensors for evoked release, which likely explains why spon-

taneous fusion is increased in the Drosophila model.1,2 We

postulate that the SYT2 p.Pro308Leu residue will alter

calcium binding to the C2B domain as well.

While the clinical presentation in the two families

shows similarities, including foot deformity, areflexia,

and limb weakness, there are also features with variable
(E) Quantification of mean excitatory junctional current (eEJC) amp
n ¼ 10; elavC155-GAL4; Dsyt1�/�; UAS-SYT1, 108.4 5 13.9 nA, n
0.5 nA, n ¼ 13).
(F) Cumulative vesicle release defined by charge transfer normalized
code as in D). Each trace was adjusted to a double exponential fit. Bo
increase in the slow asynchronous phase of release.
(G) Postsynaptic current recordings of spontaneous release at muscle
with WT DSYT1 (black) or p.Asp362Ala DSYT1 (blue).
(H) Quantification ofmini frequency in the indicated genotypes (Dsyt
1.7 5 0.2 Hz, n ¼ 16; elavC155-GAL4; Dsyt1�/�; UAS-SYT1 p.Asp362
Student’s t test: ****p < 0.0001. Error bars represent SEM.

The American
degrees of penetrance. In family USA1, harboring the

c.920A>C (p.Asp307Ala) variant, three of four individuals

(II.2, III.1, and III.2) showed a pure presynaptic NMJ dis-

order with low-amplitude CMAPs and a marked postexer-

cise increment of CMAP amplitude. Intriguingly, this

resembles findings in an autoimmune-induced clinical

form of presynaptic dysfunction called Lambert-Eaton

myasthenic syndrome.14 In this rare condition, antibodies

target presynaptic voltage-gated calcium channels, but
litudes in the indicated genotypes (Dsyt1�/� null, 2.1 5 0.3 nA,
¼ 18; elavC155-GAL4; Dsyt1�/�; UAS-SYT1 p.Asp362Ala, 2.0 5

for the maximum in 2.0 mM Ca2þ for each genotype (same color
th the null and p.Asp362Ala rescued animals display a prominent

6 synapses in Dsyt1�/� null larvae (red) and null mutants rescued

1�/� null, 5.25 0.6 Hz, n¼ 8; elavC155-GAL4;Dsyt1�/�; UAS-SYT1,
Ala, 5.2 5 0.4 Hz, n ¼ 12).
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antibodies against synaptotagmins have also been identi-

fied in some individuals.15 Family members from UK1,

harboring the c.923C>T (p.Pro308Leu) variant, also had

low-amplitude CMAPs, but only one person (III.2) ex-

hibited marked, postexercise CMAP amplitude increments

that were longer lasting than in individuals from USA1.

Some UK1 individuals also had muscle wasting, and nee-

dle electromyography disclosed mild chronic distal mus-

cle reinnervation. Mutation in the presynaptic choline

transporter has also been shown to cause a lower motor

neuron phenotype, suggesting that presynaptic dysfunc-

tion may be a more general mechanism for peripheral

axonopathies.16 SYT2 is also expressed in other tissues

outside of the NMJ, including the cerebellum and cochlea.

Analysis of additional families will be necessary to define

the spectrum of human phenotypes associated with SYT2

mutations.

In summary, mutations in the SYT2 C2B domain repre-

sent an important cause of disorders of the human periph-

eral motor nerve terminal; foot deformities are a hallmark,

with phenotypes ranging from a dominant NMJ syn-

drome resembling Lambert-Eaton myasthenic syndrome

tomixedmanifestations of distal hereditarymotor neurop-

athy and presynaptic NMJ dysfunction.
Supplemental Data

Supplemental Data include three figures and three tables and can

be found with this article online at http://dx.doi.org/10.1016/j.
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