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In humans, sleep is primarily regulated by two processes: the circadian process and the

homeostatic process of sleep (1; 2). Although much is known about the molecular processes

driving the circadian clock, the molecular components of human sleep duration remain

elusive. Sleep duration has a genetic component, with heritability estimated at 17–34% (3–

11). To date a variant of PER3 shown to affect diurnal preference reportedly associates with

decreased REM and slow-wave sleep (12), a familial mutation in BHLHE41 (formerly

DEC2) decreases sleep duration (13), and a region near MYRIP may be associated with sleep

duration based on a genome-wide association study (5).
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A recent study by Allebrandt et al. reported a nominal association between two uncorrelated,

common CLOCK genetic variants and sleep duration in two independent European

populations from South Tyrol (n=283) and Estonia (n=1,011) (14). The aim of our study was

to replicate these CLOCK associations in large samples of European ancestry and to further

assess associations using objective data on total sleep time and sleep stage distributions from

polysomnography.

Subjects were participants of European ancestry from the Sleep Heart Health Study (SHHS),

a prospective study designed to assess the impact of sleep disorders on cardiovascular

disease, described in detail elsewhere (7; 15; 16). We used phenotype data from baseline

visits of the Atherosclerosis Risk in Communities Study (ARIC) (n=1,812), Framingham

Heart Study (FHS) (n=2,221), and Cardiovascular Health Study (CHS) (n=954) parent

cohorts. Participants ranged in age from 29–100 years, with mean BMI of 28.82±5.05 kg/m2

(ARIC), 27.76±5.09 kg/m2 (FHS) and 27.45±4.58 kg/m2 (CHS). Daily sleep duration was

calculated as the time difference between bedtime and wake time and average sleep duration

was calculated as follows: [(Weekday sleep duration * 5) + (Weekend sleep duration * 2)]/7.

Individuals with sleep duration less than 3 hours or greater than 14 hours, or shift workers

(with bedtime between 4 a.m. and 6 p.m) were excluded from analysis. Mean sleep duration

was 7.43±0.98 hours (ARIC), 7.46±1.01 hours (FHS), and 7.7±1.35 hours (CHS). To

replicate the findings from Allebrandt et al. (14), we created an age and gender normalized

sleep duration variable in SHHS ARIC and SHHS FHS, excluding CHS due to the advanced

age of the population. Average sleep duration for each individual was standardized to a

“neutral 55 years old” by determining the fitted sleep duration value for a 55 year old and

subtracting the residual from the polynomial fit for each specific observation. The mean

normalized sleep duration in SHHS ARIC and SHHS FHS was 7.22 and 7.20 hours

respectively. Finally, we used sleep duration data from polysomnography conducted in

6,641 participants during a one-night at-home session (17). Percentage of sleep time in each

stage was calculated by dividing time scored in a sleep stage divided by the total sleep time.

CARe IBC array genotype data was used to identify CLOCK SNPs for replication and to

verify self-reported European ancestry (18; 19). To control for relatedness, estimates of

pairwise identity-by-descent (IBD) were calculated, and individuals with values >0.125

were pruned from the sample. The CLOCK SNP rs11932595 was directly genotyped on the

IBC array, and a proxy SNP (rs6843722) was used for CLOCK SNP rs12649507 (r-

squared=0.965, D′=1 in 1000 Genomes CEU). Both SNPs passed quality control in all three

SHHS cohorts (>99% genotyping call rates and Hardy-Weinberg disequilibrium p-value>

0.05). Linear regression analysis was performed in PLINK with normalized sleep duration

treated as a continuous variable and raw sleep duration adjusted for age, gender, BMI, and

sleep apnea diagnosis (20). BMI was log transformed for analysis. A fixed effects, inverse-

variance meta-analysis was performed in METAL (21).

First, we tested both CLOCK SNPs for association with normalized sleep duration in our

population, but failed to replicate the association (rs11932595, FHS p=0.421, ARIC

p=0.649; rs6843722, FHS p=0.712, ARIC p=0.208) (Table 1). In meta-analysis of results

from the SHHS ARIC and SHHS FHS studies, we did not observe a significant association

between CLOCK SNPs and normalized sleep duration. Finally, in a meta-analysis
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combining the previous CLOCK findings from the Allebrandt et al. study with our current

study, again we did not detect a significant association between CLOCK variants and

normalized sleep duration (rs11932595 p=0.596, rs6843722 p=0.530). In addition, pooled

analysis across SHHS cohorts adjusting for cohort did not replicate the association (data not

shown).

Second, we performed multiple regression analysis, testing for an association between

CLOCK variants and raw sleep duration adjusting for age, gender, BMI, sleep apnea

diagnosis, and 10 principal components of ancestry. There was no significant relationship

between raw sleep duration and variation in CLOCK (rs11932595, FHS p=0.1442, ARIC

p=0.128, CHS p=0.2621; rs6843722, FHS p=0.202, ARIC p=0.63, CHS p=0.3908) (Table

1). We also performed regression analysis in the component of FHS aged 50 years or

younger (N=443). CLOCK variants are not significantly associated with raw sleep duration

in this subgroup (P>0.5; data not shown).

Lastly, we tested for an association between CLOCK variants and polysomnographic indices

(available for n=4,251). We found no significant association between CLOCK SNPs and

percent of sleep time spent in stages N1, N2, N3, or REM sleep (data not shown). There was

a statistical trend for a nominal association between the CLOCK SNP rs11932595 G allele

and total polysomnographic sleep time (p=0.067, Beta= −6 minutes, N=509), as well as total

time in bed (p=0.055, Beta= −6 minutes, N=569), but this effect was in the opposite

direction from that in the discovery cohort in Allebrandt et al. (11).

To date, only a handful of human genetic variants show an association with sleep duration

(5; 12; 13; 22) and no associations have been convincingly reproduced. In our study, we find

no evidence of an association between CLOCK variants and sleep duration in three

independent cohorts, despite a sample size three times larger than the previously reported

association and >99% power to detect an effect of similar magnitude as previously reported

(23). Our analysis does not support the previously reported association of CLOCK variants

with self-reported sleep duration, nor identifies associations with sleep stage distributions

from single night overnight polysomnography.
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