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SUMMARY

We implement a joint model for mixed multivariate longitudinal measurements, applied to the

prediction of time until lung transplant or death in idiopathic pulmonary fibrosis. Specifically, we

formulate a unified Bayesian joint model for the mixed longitudinal responses and time-to-event

outcomes. For the longitudinal model of continuous and binary responses, we investigate

multivariate generalized linear mixed models using shared random effects. Longitudinal and time-

to-event data are assumed to be independent conditional on available covariates and shared

parameters. A Markov chain Monte Carlo (MCMC) algorithm, implemented in OpenBUGS, is

used for parameter estimation. To illustrate practical considerations in choosing a final model, we

fit 37 different candidate models using all possible combinations of random effects and employ a

Deviance Information Criterion (DIC) to select a best fitting model. We demonstrate the

prediction of future event probabilities within a fixed time interval for patients utilizing baseline

data, post-baseline longitudinal responses, and the time-to-event outcome. The performance of our

joint model is also evaluated in simulation studies.
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1. Introduction

While longitudinal data from biomarkers or intermediate clinical assessments are often

collected in Phase II and III clinical trials, the primary clinical trial outcome typically

consists of time until the occurrence of a specified event, e.g., time to onset of illness or

death. An example from the field of chronic lung disease research is the study of transplant-

free survival in idiopathic pulmonary fibrosis (IPF). IPF is a chronic, progressive lung

disease characterized by fibrosis of unknown etiology [24]. Here, our primary concern is the

prediction of failure times by modeling the relationship between longitudinally measured

indicators of pulmonary function and time to either lung transplant or death. Specifically, we

utilize longitudinally assessed forced vital capacity (FVC), a continuous measure of

pulmonary function, as a predictor of event times. We also utilize a second, binary, disease

progression indicator defined as a decline of 5% or more in FVC from baseline FVC. Since

these measures are potentially conjointly informative of time to lung transplant or death, it

would be desirable to implement a modeling approach that allows prediction of event times

using two or more longitudinal responses simultaneously.

Several approaches have been developed for handling multivariate longitudinal outcomes

[4,20,16,23,29]. For example, some approaches factorize the joint distribution as the product

of the marginal distribution of one variable times the conditional distribution of the second

variable given the first [3,11]. Other approaches use random effects to model relationships

between outcomes [8,13]. To date, however, most researchers have implemented joint

models in which a univariate continuous longitudinal response is related to the time-to-event

outcome [7,14,15,27]. In this paper, we develop a joint model for mixed continuous and

binary longitudinal responses and a time-to-event outcome. For longitudinal responses we

investigate mixed models with shared random effects. To build a joint model with a time-to-

event outcome, we assume shared parameters exist between the longitudinal mixed models

and the time-to-event outcome. The longitudinal responses and the time-to-event outcome

are assumed to be independent conditional on the shared parameters and measured

covariates.

We apply the proposed joint model to the dynamic prediction of mortality occurring within a

fixed time for a subject still at risk just before time t [30]. A number of authors have

proposed the prediction of future event probabilities for subjects based on the joint modeling

of longitudinal measurements, time-to-event outcomes, and other covariates [9,25]. Fieuws

et al. [9] investigated predicting renal graft failure using multiple longitudinal outcomes of

biochemical and physiological markers utilizing a multivariate mixed model [22] and a

pattern-mixture approach [19]. Rizopoulos [25] provided individualized prediction models

of survival in AIDS patients who also had longitudinal CD4 cell count measurements. Our

prediction approach is most closely related to that of Rizopoulos [25]. However, as is

outlined in Section 2, we use a fully parametric model and a Bayesian approach similar to

that of Guo and Carlin [14].

The remainder of the paper is organized as follows. In Section 2, we present our joint model

assuming shared random effects for the longitudinal outcomes. In Section 3, we describe

parameter estimation approach and model selection methods. In Section 4, we illustrate the
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dynamic prediction of event probabilities within a fixed time window. Section 5 presents

simulation studies using the proposed model, whereas Section 6 applies the joint models to

prediction of failure times in idiopathic pulmonary fibrosis data. Section 7 concludes with a

brief discussion.

2. Joint modeling approach

2.1 Notation and definitions

For brevity, we focus the development of the model on the case of bivariate longitudinal

responses, one continuous and normally distributed and the other binary. The generalization

to higher dimensions and other members of the exponential family of distributions is

conceptually straightforward (see Discussion). For subject i, i = 1,···, n, let y1ij and y2ij

denote the jth outcome at time point tij consisting of continuous and binary components,

respectively. Further, let  denote the bivariate longitudinal outcome vector for

subject i, where yhi = (yhi1,···, yhij)⊤, h = 1,2, j = 1,···, nhi is an nhi-dimensional column

vector giving the hth longitudinal outcomes for subject i. For the longitudinal bivariate

response vector, yi, with different data types, we assume a generalized linear mixed effects

model

(1)

where gh(·) denotes known bijective link functions that differ across data types, Xhi and βh

denote an nhi × ph design matrix of covariate values and a ph-dimensional vector of fixed

effects, respectively, and Zhi and bhi denote nhi × q1 design matrix of covariates and a qh-

dimensional vector of normally distributed random effects with zero mean and covariance

matrix as described below. We assume that the elements of yhi are independent conditional

on bhi [10,12].

Here, we choose the identity link for the continuous response and the logit link for the

binary response. Thus the generalized linear mixed effects model (1) can be written in the

form

(2a)

(2b)

We assume that b1i follows a normal distribution with a mean vector of zeros and variance-

covariance matrix, Σ, and that b2i is proportional to b1i, i.e., b2i = A0b1i, where A0 is a

diagonal matrix of unknown constants. A joint model with this assumption is termed a

shared random effects joint model. We briefly outline another alternative, also implemented

in our code, in the Discussion section.
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2.2 Joint model of multivariate longitudinal outcomes and a time-to-event outcome

Let Ti denote the true event time for subject i, Ci be the censoring time, and δi = I(Ti ≤ Ci) be

the event indicator. Let  be the observed event time for subject i. We

assume that censoring is non-informative [6]. A proportional hazards model is given by

(3)

where x3i is a p3-dimensional vector of covariates with regression coefficients β3, and λ0(t)

is the baseline hazard function, which can be assumed to be of a parametric form or left

unspecified. To express the effects of longitudinal outcomes on the time-to-event outcome,

the shared parameters, U3i, are associated with the random effects of longitudinal outcomes

b1i and b2i. The joint model connects the longitudinal response submodels (2a,b) and the

event time outcome submodel (3)

(4)

where  is a set of unknown constants and b3i is a normally distributed frailty

term with mean zero and variance , independent of the . The hazard function

of the time-to-event depends on the longitudinal outcomes through the shared b1i and b2i.

Thus, the parameter a quantifies the degree of association explained by the random effects in

(2a,b). In terms of a shared random effects joint model, Eq. (4) can be reduced in the form

The components of x1, x2, and x3 may or may not all be the same, allowing the longitudinal

continuous and binary responses, and the time-to-event outcome to depend on different

and/or overlapping covariate information.

3. Estimation and model selection

3.1 Parameter estimation

We assume that the longitudinal responses vectors yi and the time-to-event outcome T are

independent conditional on covariates X, Z, and the random effects vector, b. The observed

data for the ith subject, with ni repeated measurements, for the hth response are denoted by

Based on a full conditional independence assumption, we can express the joint distribution

of the observed data for the ith subject as
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where θ denotes the complete parameter vector and f(·) denotes a generic probability density

function. Thus, the log-likelihood for the observed data is given by

where xhij and zhij are jth row of matrices xhi and zhi, respectively, and f(bi|Σ) is the

multivariate normal density function of bi conditional on the covariance parameter matrix,

Σ.

We implement a Bayesian approach for parameter inferences, using a Gibbs sampling

algorithm. The algorithm was programmed using the R interface, rbugs, which accesses the

software ‘OpenBUGS’ [21]. We implement the Gibbs sampler using weakly informative

priors for all parameters. Fixed effects are normal with large variance components. Error

variances and random effect covariances are distributed as inverse gamma and inverse

Wishart distributions, respectively [2]. Code used in the analyses is available from the first

author upon request.

3.2 Model selection criteria

Spiegelhalter et al. [28] proposed the Deviance Information Criterion (DIC) for model

selection. The DIC is a generalization of the Akaike Information Criterion (AIC) [1] for

hierarchical models based on the deviance of the posterior distribution. For parameter vector

θ and observed data vector, y, let D(θ) be the deviance, D(θ) = −2 log f(y|θ) + 2 log h(y),

where f(y|θ) is the likelihood function and h(y) is a standardizing function of the data alone

[2]. We define D(θ) to be  in our joint model,

 to denote the posterior expected deviance and θ̄ = Eθ|y[θ] to denote the

mean of the posterior distribution of the parameters. The effective number of parameters,

pD, which can capture the complexity of a model is . Then, the DIC is

defined as . Smaller values of the DIC indicate better fitting

models. As with the AIC, differences of the DIC between models are a tool used for model

selection. Differences of 3 to 5 are considered meaningful. In this paper, we use the DIC for

model selection.
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4. Dynamic prediction of event probabilities

We compute dynamic probabilities of an event occurring within a fixed window as proposed

by van Houwelingen and Putter [30]. Specifically, we considered the conditional survival

function of time v ≥ t given survival to time t:

(5)

Equation (5) can also be expressed using a hazard function as

(6)

where Λ(·) denotes the cumulative hazard function and λ(·) denotes the instantaneous hazard

function. Equation (6) implies that only the hazard on the interval [t, v] is necessary to

predict the probability of event up to time v for a subject at risk just before time t. Let v = t +

w be a fixed window of width w. We can relate the survival function to the cumulative

distribution function as follows:

Fw(t) is evaluated at all-time points t where the estimates change value. The variance of this

function is based on the Nelson-Aalen estimate of that cumulative hazard that is given as

where  denotes the set of event times and R(t) denotes the size of the risk set, i.e., the

number of subjects with no event and still being followed just before time t.

5. Simulation Studies

We conducted simulation studies to investigate the performance of the proposed joint

models with the longitudinal continuous and binary outcomes and the time-to-event

outcome. The simulated longitudinal data consisted of a quantitative outcome and a

dichotomous outcome with seven repeated measurements at fixed times 0, 0.5, 1, 1.5, 2, 2.5,

and 3 years. We considered three sample sizes, N=100, N = 200 and N = 500 subjects. Both

longitudinal outcomes depended on the same fixed covariates: a continuous variable (x1)

sampled from the normal distribution, x1 ~ N(0, 52), a dichotomous variable (x2) sampled

from the Bernoulli distribution with probability 0.5, x2 ~ Bernoulli(0.5), and time (t), t = {0,

0.5, 1, 1.5, 2, 2.5, 3}, were included as fixed covariates. Subject-specific random intercepts

and slopes were assumed. For the longitudinal continuous outcome, the measurement error
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term was normally distributed with mean zero and variance, . The continuous

longitudinal outcome was generated from the model

The binary longitudinal outcome was generated from the model

and the random effects were assumed to have distribution

The time-to-event outcome was generated from an exponential distribution, T ~ exp(μ3),

where μ3 = exp(β31 + β32x2 + α3b10 + α4b11 + b3) and  with . A non-

informative censoring time C was generated from a uniform distribution on [0.2, 2] which

resulted in roughly 35% censoring on average. For each simulation study, 200 replications

were performed. In each analysis, a total of 15,000 MCMC iterations were used, discarding

the first 5,000 iterations as a burn-in.

Table 1 shows the results of the simulation studies, including true parameter values, bias

(defined as the true parameter minus the mean estimated parameter), standard errors of the

parameter estimates (SE), mean squared error (MSE), and the coverage probability of the

estimated 95% credibility intervals (CP). With a few exceptions, most parameters in the

joint models show acceptably low levels of bias and good coverage probabilities. For

N=100, the biases of variance and covariance of random effects are relatively higher than for

larger sample sizes, and it might create very low coverage probabilities. For N=200, CP

averages close to 95% for all parameters. Most parameters have very small biases, with the

exception of somewhat higher biases in the α parameters. However, biases in α are fairly

small as a proportion of the size of the parameter, and decrease with larger sample sizes

suggesting that a bias of the links between the longitudinal and time-to-event processes are

strongly related to the number of events in the survival outcome. In general, as expected,

larger sample sizes (N=500) show better results as indicated by the smaller bias, SE, MSE,

and less variable CP that average very close to the nominal 95% level.

6. Application to mortality in idiopathic pulmonary fibrosis outcomes study

6.1 Data description and Preliminary Analyses

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease characterized by

fibrosis of unknown etiology [24]. Our primary concern is prediction of failure times,

defined as time to either lung transplant or death, utilizing longitudinally measured forced
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vital capacity (FVC), a continuous measure of pulmonary function. Individual profiles for

the pulmonary function assessed by FVC are shown in Figure 1, with subjects randomly

apportioned to six subplots in order to more clearly depict these trajectories. An additional

disease progression indicator, defined as a decline of 5% or more in FVC from the baseline

FVC measurement, is also used as a (binary) longitudinal response. Baseline covariates also

considered for inclusion in the models were: age centered at time of diagnosis, baseline

FVC, smoking, gender, and time in years.

Of the 125 patients considered in the study, 64 (51.2%) patients died or had lung transplants.

Patient characteristics are summarized in Table 3. This dataset was comprised of irregular

follow-up times across patients, but generally patients were followed every 3–4 months

according to standard of care. The time origin for each patient was the baseline assessment

of pulmonary function, performed upon evaluation at the Simmons Center for Interstitial

Lung Disease (ILD). The FVC of each patient was repeatedly measured about 11 times on

average, up to 43 times. Follow-up information for the study was reported through

December 31, 2011. The average follow-up time was 3.7 years among all patients and 4.1

years among patients who did not die nor received a lung transplant. All IPF patients were

evaluated at the University of Pittsburgh Medical Center and clinical data were obtained

from the Simmons Center for ILD.

Fitted survival curves of the Weibull model and exponential model are shown in Figure 2.

The survival curves of the Weibull model and exponential both show a good fit to the

marginal survival function. Because the Weibull and exponential models are almost

identical we used the more parsimonious exponential model. The estimated median

transplant-free survival time from the initial visit date was 4.4 years.

6.2 Joint model

As before, let y1ij be the continuous longitudinal outcome indicating FVC measurements,

y2ij be the binary longitudinal outcome indicating disease progression indicator, and Ti be

the transplant-free survival time. More specifically, the model is given by

Under the shared random effects joint model, the random effects terms of the three

submodels are defined as follows:

• U1i(tij) = b10i + b11itij

• U2i(tij) = α1b10i + α2b11itij
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• U3i = α3b10i + α4b11i + b3i

The association between longitudinal responses and time-to-event outcome is explained by

the parameter α = (α1, α2, α3, α4). For the continuous longitudinal response, we included

the covariates of baseline FVC and time in years. For the binary longitudinal response, age

and time in years were found to be significant covariates. Gender, smoking, and baseline

FVC were significant in the model for transplant-free survival.

Non-informative priors were used for all parameters. For the coefficients of the fixed effects

β1, β2, and β3, we assume a multivariate normal distribution with mean zero and variance-

covariance matrices 100I3, 100I3, and 100I4, respectively, where Ik indicates an identity

matrix with dimension k. We assumed that the association coefficient, α, had a normal

distribution with mean zero and variance equal to 100. A total of 15,000 MCMC iterations

were used discarding the first 5,000 iterations for the burn-in period.

6.3 Results

We considered all possible combinations of random effects resulting in 37 assessed models.

Table 3 summarizes DICs for each submodel, the posterior expected deviance, D̄, the

effective number of parameters, pD, and total DIC scores (DICtotal) for each joint model.

Note that DICy1, DICy2, and DICT denote DIC from the longitudinal continuous outcome,

the longitudinal binary outcome, and the time-to-event outcome submodels, respectively.

These scores show relative contributions of each component to the overall model DIC.

DICtotal, was used to choose the “best” model.

Joint models with both subject-specific random intercepts and slopes in both the longitudinal

continuous outcome submodel and binary outcome submodel (Models 29–37) have the

smallest DICs, and hence the smallest DICtotal compared with other joint models with

random effect structures. In the time-to-event submodel, adding a frailty term leads to only a

very slight decrease in DICT. Model 32 with the smallest DICtotal was selected as our best

model. Under Model 32, the longitudinal binary outcome shares the subject-specific random

intercept and slope of the longitudinal continuous outcome and the time-to-event outcome is

related to the subject-specific random slope of the longitudinal continuous outcome.

In Table 4, the posterior estimates for Model 32 parameters along with their standard errors

and 95% credibility intervals are presented. For longitudinal continuous FVC, both the

baseline FVC and time are statistically significant. Hence, patients with high values of

baseline FVC have high FVC measurements and FVC measurements tend to decrease as

time progresses. For the longitudinal binary outcome, there is a significant time effect. For

the time-to-event outcome, male smokers with lower baseline FVC have a higher risk of

death or transplant. The association parameter, α4 indicates that there is a nearly significant

negative association between the subject-specific random slopes of FVC measurements and

the hazard of the transplant-free survival outcome.

Figure 3 shows the predicted four-year-ahead failure probabilities for the IPF data set along

with 95% confidence intervals, obtained from the best-fitting Model 32. In general, the

probability of event within the next four years decreases slowly, with a deceleration

Choi et al. Page 9

J Appl Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



apparent if the patient survives longer than two years, so that at baseline subjects have ~45%

chance of failure in four years, whereas if a patient does not experience failure by year five,

the probability of a failure in the next four years decreases to ~35%. As time progresses,

confidence intervals become wider because of the sparsity of the data.

7. Discussion

In this paper, we have developed a joint model for multivariate longitudinal continuous and

binary responses and a time-to-event outcome, applying this model to the prediction of

failure times from idiopathic pulmonary fibrosis. This general approach was introduced in

Rizopoulos and Ghosh [26] who used natural splines to model three mixed longitudinal

processes (two continuous and one binary) as predictors of a time-to-event outcome. In our

case, we used parametric models for the longitudinal processes as the number of

longitudinal observations per individual was relatively small and hence parametric random

effect models were more tractable. Simulation studies indicate good performance for our

models.

Our joint model was developed utilizing a unified Bayesian framework, including model

fitting, parameter inferences, computation of dynamic prediction probabilities with posterior

credible intervals, and a DIC model selection criterion that parses out the contributions of

the joint sub-models to the overall fit. Results from the best fitting model indicate that the

two longitudinal responses jointly contribute nearly significantly to prediction of failure

times in IPF as indicated by the value of the shared parameter, α4, and its 95% credibility

interval (Table 4). Our approach for choosing prior distributions followed that of Guo and

Carlin [14], which is quite general and easier to implement than that used by Rizopoulos and

Ghosh [26].

In our present investigation, we utilized shared random effects to characterize the

relationship between the longitudinal continuous and binary outcomes. A disadvantage of

the shared random effects joint model is that the structure of the random effects for both the

longitudinal outcomes is limited. Nevertheless, shared parameter random effects models do

gain efficiency by using a smaller number of random effects parameters compared to other

joint model formulations.

A practical purpose our investigation was to illustrate the utility of joint models for

computing dynamic predictions of the probabilities of events occurring within a fixed

window of time. Given a subject is at risk just before time t, the probability of an event

occurring within the next fixed window of time is predicted using the survival function

obtained from our proposed joint models. By predicting the probability of event within a

fixed window of time we can easily visualize conditional probabilities of events. Plots such

as these can be an effective means for presenting dynamic risk of failure times to clinician

researchers. Finally, we have implemented our shared random effects joint models in an R

interface using OpenBugs, available from the first author upon request.

Finally, in related work, we have implemented a correlated random effects joint model [5]

which we plan to investigate further. As part of this future investigation, we wish to extend

models proposed by Lee and Nelder [17,18] that expand the correlated random effects
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models by introducing a general method called maximum h-likelihood estimation. In the

correlated random effects model, the relationship between the continuous and binary

outcomes can be investigated through correlations among the random effects b1i and b2i.
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Figure 1.
Subject-specific trajectories of FVC measurements. (PFT: pulmonary function tests)
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Figure 2.
The Kaplan-Meier plot of transplant-free survival (black solid curve); Weibull survival

curve (grey solid curve) and exponential survival curve (black broken curve).
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Figure 3.
Probability of transplant or death within the next four years using shared random effects

joint model 32: Point estimates (solid curve) and 95 % confidence intervals (dotted curves).
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Table 2

Patient characteristics of Idiopathic Pulmonary Fibrosis (IPF) outcome data

N(=125) %

Gender

 Male 84 67.2

 Female 41 32.8

Race

 White 122 97.6

 Black 1 0.8

 American Indian 1 0.8

 Oriental 1 0.8

Smoking

 Ever 88 70.4

 Never 37 29.6

Diagnosis made

 Clinically 63 50.4

 Historically 62 49.6

Transplant

 Yes 23 18.4

 No 102 81.6

Mean SD

Age (year)

 Overall 65.2 9.34

  Male 65.7 9.00

  Female 64.2 10.04

Follow-up (year)

 All patients 3.7 2.32

 Alive and not transplanted 4.1 2.35

Baseline PFTs

 FVC 2.7 0.85

 FEV1 2.2 0.65

 DLCO 12.7 4.36

Definition of abbreviations: PFT = pulmonary function tests; FVC = forced vital capacity; FEV1 = forced expiratory volume in 1 second; DLCO =
diffusing capacity of carbon monoxide.
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Table 4

Posterior estimates for Model 32

Parameter Posterior Mean Std. Error 95% CI

Longitudinal continuous submodel

 Intercept (β11) 0.167 0.048 (0.072, 0.263)

 BaselineFVC (β12) 0.933 0.014 (0.906, 0.961)

 Time (β13) −0.094 0.016 (−0.122, −0.061)

  

0.081 0.008 (0.066, 0.098)

  

0.068 0.007 (0.056, 0.084)

 ρb1 −0.068 0.069 (−0.200, 0.067)

  

0.060 0.002 (0.055, 0.064)

Longitudinal binary submodel

 Intercept (β21) −1.424 0.325 (−2.043, −0.796)

 Age (β22) −0.015 0.014 (−0.044, 0.012)

 Time (β23) 1.019 0.180 (0.6513, 1.341)

 α1 −10.67 0.835 (−12.38, −9.145)

 α2 −10.31 0.727 (−11.82, −8.961)

Time-to-event submodel

 Intercept (β31) −1.967 0.530 (−3.003, −0.939)

 Male (β32) 0.903 0.360 (0.214, 1.648)

 Smoking (β33) 0.719 0.341 (0.087, 1.422)

 BaselineFVC (β34) −0.405 0.203 (−0.807, −0.013)

 α4 −1.613 0.810 (−3.201, −0.025)
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