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Neighborhood physical disorder is thought to affect mental and physical health, but it has been difficult to mea-

sure objectively and reliably across large geographical areas or multiple locales. Virtual street audits are a novel

method for assessing neighborhood characteristics. We evaluated the ecometric properties of a neighborhood

physical disorder measure constructed from virtual street audit data. Eleven trained auditors assessed 9 previously

validated items developed to capture physical disorder (e.g., litter, graffiti, and abandoned buildings) on 1,826 block

faces using Google Street View imagery (Google, Inc., Mountain View, California) dating from 2007–2011 in 4 US

cities (San Jose, California; Detroit, Michigan; New York, New York; and Philadelphia, Pennsylvania). We con-

structed a 2-parameter item response theory scale to estimate latent levels of disorder on each block face and de-

fined a function using kriging to estimate physical disorder levels, with confidence estimates, for any point in each

city. The internal consistency reliability of the resulting scale was 0.93. The final measure of disorder was positively

correlated with US Census data on unemployment and housing vacancy and negatively correlated with data on

owner-occupied housing. These results suggest that neighborhood physical disorder can be measured reliably

and validly using virtual audits, facilitating research on possible associations between physical disorder and health.

cities; data collection; epidemiologic methods; psychometrics; residence characteristics; social environment;

spatial analysis; urban health

Abbreviations: CANVAS, Computer Assisted Visual Neighborhood Assessment System; IRT, item response theory.

In recent years, the epidemiology community has begun to
assess the associations of physical disorder with health be-
haviors and outcomes, including associations with sexually
transmitted infection incidence (1–3), obesity (4–6), and
binge drinking (7, 8). Findings have been mixed; for exam-
ple, one measure of disorder was unassociated with homicide
rates in NewYork, NewYork (9), but a different measurewas
positively associated in Pittsburgh, Pennsylvania (10). As
these results suggest, difficulties in measuring physical disor-
der objectively and reliably in multiple locales have led both
to inconsistent findings and to difficulty comparing those
findings between geographical locations (11).
Investigators use several methods to measure neighbor-

hood physical disorder. First, some researchers have used

data on neighborhood characteristics reported by study sub-
jects (12, 13). While data can be efficiently collected in this
manner, these data are subject to “same-source bias,” which
occurs when correlation exists between measurement error in
self-reported individual health and behavior data and mea-
surement error in self-reported neighborhood conditions
(14–17). Furthermore, self-reported perception of neighbor-
hood disorder may be influenced by stereotypes related to
neighborhood racial composition (18).
Alternatively, measures of neighborhood physical disorder

can be abstracted from governmental and commercial data
sources and integrated into human health data sets using geo-
graphic information systems (4, 9, 19). However, such rec-
ords are often collected for administrative purposes, may
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not fully capture the construct of research interest, andmay be
collected at a spatial resolution that is not optimal for research
purposes.

To avoid the limitations of self-reported and administrative
data, researchers may employ trained observers to conduct
in-person audits of neighborhood streets (7, 17, 20, 21). Be-
cause street audits assess only features visible at the time of
the audit, measurement modeling techniques are typically
employed to aggregate measurements of observable items
to derive an estimate of a latent construct of interest and the
amount of uncertainty in that estimate (14, 22). These tech-
niques, derived from psychometric item response theory
(IRT), are referred to as “ecometrics” in the context of neigh-
borhood assessment (14, 22).

While the audit technique allows focus on specific con-
structs of researcher interest, systematic field audits can be
expensive, especially if travel between cities is required; as
a result, few studies have employed field audits, and those
that have done so have focused on a single city. This prevents
comparison of associations between neighborhood conditions
and community health conditions across cities. However, recent
studies have shown that it is possible to perform reliable street
audits acrossmultiple cities without requiring travel using visual
imagery available online from sources such as Google Street
View (Google, Inc., Mountain View, California) (23–29).

Combining ecometric measures with spatial interpolation
offers more flexibility to define neighborhood boundaries.
Spatial interpolation predicts the level of disorder on streets
not sampled based on the spatial correlation of disorder
ecometrically measured on a sample of streets, allowing re-
searchers to estimate the level of physical disorder and con-
fidence bounds around the estimate for all streets in a city
(30). Estimating values for every street allows researchers
to define neighborhoods according to their study popu-
lations and research questions, rather than rely on adminis-
trative boundaries (e.g., census tracts) (11, 30–34). The
flexibility to define different boundaries also allows sensi-
tivity analyses to assess the relationships between boundary
choice and estimates of spatial associations (the “modifiable
areal unit problem”) (35).

In this paper, we assess the ecometric properties of a phys-
ical disorder measure constructed from virtual audits of 4 US
cities, using an IRT model to combine items and kriging to
spatially interpolate the resulting measure. We examine the
internal consistency of the measure, spatial variation of the
measure within each city, cross-validations of spatially inter-
polated results, and correlations between the physical disor-
der measure aggregated to census tracts within each city and
2010 US Census measures potentially associated with neigh-
borhood physical disorder to assess the reliability and valid-
ity of the measure.

METHODS

Sample

The Computer Assisted Neighborhood Visual Assessment
System (CANVAS) with Google Street View imagery, de-
scribed in more detail elsewhere (M.D.M.B., unpublished
manuscript, 2014), was used to virtually audit block faces

within 4 US cities with varied spatial and economic profiles:
New York, New York; Philadelphia, Pennsylvania; Detroit,
Michigan; and San Jose, California. Sample points were se-
lected in an approximately 2-km grid across each city, with a
1-km grid oversample in neighborhoods in the highest quar-
tile of population density for the metropolitan area and a
0.5-km grid oversample in neighborhoods where subjects
in the Fragile Families and Child Wellbeing Study resided
(36). This sample resulted in 1,826 block faces with Google
Street View imagery: 532 in New York, 503 in Philadelphia,
289 in San Jose, and 502 in Detroit. More details regarding
sample selection are provided in Web Figure 1 (available at
http://aje.oxfordjournals.org/). The variation in the number of
block faces by city was a function of the geographical size of
the city and the distribution of Fragile Families subjects with-
in the city.Web Figure 2 provides a samplemap of block faces
selected for Philadelphia and the locations where no block
face with Google Street View imagery was available.

Street auditing commenced in June 2012 and concluded
in June 2013. Eleven auditors were trained and engaged in
auditing, though no single auditor audited streets for the
full year. We recorded Google Street View’s report of the
month and year in which imagery was captured at the starting
point of each block face. Approximately 5% of the sampled
block faces in each city were randomly selected to be part of a
reliability subsample to be audited by all auditors auditing
that city; this resulted in a subsample of 109 block faces,
each audited by an average of 3.9 auditors. The remaining
95% of block faces were audited by 1 auditor each. Practical
details regarding implementation of virtual street audits, in-
cluding auditor training, protocol development, and the
CANVAS system, are described more fully elsewhere
(M.D.M.B., unpublished manuscript, 2014).

Measures

Nine virtual audit items designed to assess neighborhood
physical disorder were developed from preexisting and vali-
dated scales: 7 items from the Project on Human Develop-
ment in Chicago Neighborhoods (17) and 1 each from the
Pedestrian Environment Data Scan tool (37) and the Irvine-
Minnesota Inventory to Measure Built Environments (38).
Items from the Project on Human Development in Chicago
Neighborhoods were explicitly designed to assess physical
disorder, while items from the Pedestrian Environment
Data Scan and the Irvine-Minnesota Inventory (assessing va-
cant land and bars on windows, respectively) were added be-
cause of their potential relevance to neighborhood physical
disorder. All items from the Pedestrian Environment Data
Scan and the Irvine-Minnesota Inventory and some items
from the Project on Human Development in Chicago Neigh-
borhoods had previously been assessed for reliability in the
virtual context (M.D.M.B., unpublished manuscript, 2014).
Some items from the Project on Human Development in
Chicago Neighborhoods were moderately reworded or con-
densed from previously tested items to enable virtual auditing
within the CANVAS system while avoiding substantive
change, similar to what has been done in other virtual audits
(26). Training materials for our final audit protocol are avail-
able upon request.
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To assess the potential for imagery limitations to under-
mine street audit reliability, we used 2 measures previously
developed in the context of the CANVAS framework: an in-
dication of camera quality problems (dark vs. bright, where 4
instances of “other” were recoded as bright after manual ver-
ification of the imagery by the data analyst) and the propor-
tion of Street View vantage points along the block face that
were obscured; obstructions were primarily parked cars.

Statistical analysis

Interrater reliability scores for each item were computed
using average pairwise Cohen’s κ values from the 109-block-
face reliability subsample. Audit pairs wherein the imagery
dates for the block face differed were excluded from the reli-
ability analysis (n = 3; 0.5% of pairs). After computing inter-
rater reliability scores, we recoded items in the reliability
subsample for which there was not perfect agreement
among raters (n = 228; 23% of items) for further analysis of
the data. Where possible, the rating selected by the majority
of raters was chosen to be the final rating for the block face;
where raters were evenly split, we chose a response at random
(n = 44; 19% of disagreements, 0.2% of observations over-
all). Because more raters contributed to the final reliability
subsample ratings, ratings may have been somewhat more
valid in this subsample. However, because reliability segments
were chosen randomly and represented a small fraction of the
overall sample, we do not expect this to have substantially
influenced our findings. For interrater reliability analyses,
“cannot tell” responses were considered to be missing re-
sponses and were excluded from analysis (range: from 0%
of pairs for abandoned cars, building conditions, and bars on
windows to 9.7% for beer or liquor bottles).
The internal consistency of the item set for the physical

disorder items was assessed using Cronbach’s α. To assess
a latent level of disorder, all observations were modeled
using an IRT model, in which the log odds of observing
physical disorder for item i on block face j are modeled as
a function of latent level of physical disorder θj, as follows:

log
PðYij ¼ 1jθjÞ

1� PðYij ¼ 1jθjÞ
� �

¼ αiðθj � βiÞ:

When the model is fitted for all observed Yij values, αi repre-
sents item i’s discrimination, βi represents item i’s severity,
and θj represents the latent level of physical disorder on
block face j, which can be derived from the posterior distri-
bution as described by Mislevy (39).
We selected an IRT model allowing for different discrim-

ination levels between items due to an a priori expectation
that items are differentially influenced by factors other than
current conditions of physical disorder (e.g., the presence
of protective bars on windows may reflect a history of neigh-
borhood disorder in addition to current disorder, whereas
graffiti is a more direct reflection of current disorder) and
thus can be expected to have different levels of discrimination
of physical disorder. We also tested a severity-only model,
evaluating the fit of the 2 models using the Bayesian Informa-
tion Criterion, which penalizes model complexity. We com-
puted the internal consistency reliability of the IRT model as

1 – (1/I), where I represents the area under the total informa-
tion curve (40).
To assess spatial autocorrelation of the latent construct

measure estimate, we computed Moran’s I within each city
(41), considering the midpoint of the block to be the point
observed. Next, we applied kriging methods to our data to es-
timate physical disorder scale scores across each city. Kriging
is a geostatistical method that leverages the autocorrelation
structure of spatially located observations to estimate values
at unobserved locations (30, 42, 43). Following the procedure
described by Bader and Ailshire (30), we first derived a semi-
variogram, or a plot measuring the degree to which observa-
tions covary as a function of separation distance, for distances
ranging from 1,000 m to 100,000 m. From this semivario-
gram, we visually fitted an exponential curve with 3 param-
eters, as follows:

γðhÞ ¼ bþ c 1� exp
�h

φ

� �� �
;

where b ¼ bs; h> 0
bm; h ¼ 0

� �
:

In this model, γ(h) represents the variation in disorder as a
function of the separation distance, h, between 2 points.
The “nugget effect,” b, represents the minimum variation
as separation distance approaches zero. This nugget can be
partitioned into bs, the variation at a spatial scale too small
to be captured in the spatial sample (e.g., the variation in dis-
order between 2 block faces on the same block), and bm, var-
iation due to measurement error. The sill—or maximum
variation approached asymptotically at large separation dis-
tances—can be found by the sum of b + c. The range, φ, is
the shape of the curve describing the increasing variation at
larger separation distances, and it can be estimated visually
by identifying where the variogram approaches the sill. Be-
cause the observations with the smallest separation distance
carry the most weight in the kriging process, our judgment of
visual fits emphasized a good fit at the distances under 2 km.
To create maps, we estimated levels of disorder on a raster
surface using 100-m2 pixels across each city.
We used a jackknife resampling cross-validation strategy,

comparing the measured value at each sampled point with es-
timates kriged using all other measured values to obtain an
empirical estimate of kriging error. We assessed the cross-
validation error’s sample characteristics to ensure that mean
error was approximately zero and that the distribution of error
was approximately normal (30).
To assess the construct validity of our interpolated disorder

measure, we assessed the correlation between the average in-
terpolated disorder for all raster surface points falling in each
US Census tract and Census characteristics we expected to be
associated with disorder. We obtained the following charac-
teristics from the 2010 Census and from 2006–2011 5-year
American Community Survey estimates: unemployment
rate (strong positive correlation expected (14)), housing va-
cancy (strong positive correlation expected (10)), population
density (weakly positive correlation expected (17)), and
owner-occupied housing rates (weak negative correlation ex-
pected (14)). We excluded tracts without housing units and
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Philadelphia Census Tract 364, which was 84.2% vacant
due to redevelopment of the Philadelphia State Hospital at
Byberry at the time of the 2010 Census.

Kriged interpolations cannot measure effects of small-scale
variation andmeasurement error, and like all regression-based
estimates, they do not represent the full variance of the esti-
mated characteristic. Estimates that fail to account for this
underrepresentation create an overly smooth estimation of
disorder (30, 44). To account for oversmoothing, we created
10 potential values or “conditional realizations” based on the
observed conditions at sampled locations (specific realiza-
tions are based on both the distance of the interpolated point
from the sampled block face and the distance between sam-
pled block faces). The disorder estimates based on these 10
conditional realizations represent multiple imputations of
the disorder surface (30). We used these values to estimate
the correlation between disorder and Census characteristics
using a multiple-imputation framework (45).

All analyses were performed using R, version 2.15.3
(R Foundation for Statistical Computing, Vienna, Austria).
The “ltm” package (version 0.9-9) was used for construction
of IRTmodels (46), the “geoR” package (version 1.7-4) was
used for spatial analysis and kriging (47), and the “mi”
package (version 0.09-18) was used for estimation across
imputations (48).

RESULTS

Block faces included in the sample

Our sampling process searched 2,060 locations across the
4 cities and selected 1,826 (88.6%) block faces for systematic
audit. Visual inspection of maps generated by the sampling
process to assess selection trends revealed that most grid sam-
ple locations where no auditable block face could be found
were within large parks or industrial areas. Imagery capture
dates for the block faces sampled ranged from July 2007 to
October 2011; elapsed time between image capture and

virtual audit ranged from 10 months to nearly 6 years, with
a median of 3.2 years (Table 1). Imagery was generally
older in Philadelphia and more recent in Detroit and San
Jose. Blocks were shortest both in distance and in number
of distinct images in Philadelphia, while view of the block
face was obstructed (usually by parked cars) more often in
New York than in the other cities, which may have decreased
sensitivity to small-scale items in New York.

Ecometrics and spatial variation of the measure

The final interrater reliability analytical subsample in-
cluded about 600 pairs of observations for each item.
Individual-item average pairwise Cohen’s κ values computed
from the reliability subsample ranged from 0.34 (“fair agree-
ment”) to 0.80 (“substantial agreement”) (49). Table 2 shows
κ values for each item and the number of pairings used to
compute each. In a sensitivity analysis, κ varied between
block faces with high- and low-resolution imagery (Web
Table 1); interrater reliability for the presence of bottles,
graffiti, abandoned cars, burned-out buildings, and bars on
windows was lower on block faces with high-resolution
imagery.

The IRT scale’s internal consistency scores were consis-
tently in the 0.8–0.9 range, suggesting that the scale measures
a coherent construct, and were higher than Cronbach’s α
scores, as expected given varying severities of assessed
items. Bayesian Information Criterion comparison of the
IRT models confirmed that a model in which discrimination
was allowed to vary between items (Bayesian Information
Criterion: 12,712.89) fitted the data better than a model
with fixed discrimination (Bayesian Information Criterion:
12,881.77). These results indicate varying influence of forces
other than physical disorder (including measurement error)
on some items. Item severities ranged from −2.02 (very com-
mon) for the presence of litter to 3.80 for abandoned cars
(very rare), and discrimination ranged from 0.36 (weak) for
bars on windows to 2.45 (strong) for abandoned buildings.

Table 1. Selected Characteristics of 1,826 Block Faces in 4 US Cities Virtually Audited for Neighborhood Physical Disorder Using Google Street

View Imagery Dating From 2007–2011

Characteristic

Location

New York, NY
(n = 532)

Philadelphia, PA
(n = 503)

Detroit, MI
(n = 502)

San Jose, CA
(n = 289)

Overall
(n = 1,826)

% Mean (SD) % Mean (SD) % Mean (SD) % Mean (SD) % Mean (SD)

High-resolution camera 66 42 67 88 64

Imagery recorded in 2009 or later 67 42 98 93 73

Time elapsed between image capture
and block face audit, years

2.5 (1.7) 3.7 (0.8) 3.6 (0.4) 1.8 (0.7) 3.0 (1.3)

No. of Street View vantage points on
block face

17.8 (11.6) 15.3 (12.2) 18.5 (9.8) 20.6 (12.9) 17.7 (11.6)

Proportion of vantage points obstructed 31 17 10 15 19

Distance from start of block face to end
of block face, m

190 (119) 171 (136) 204 (105) 207 (129) 192 (123)

Prevalence of autosampled segments
requiring manual adjustment

11 4 9 8 8

Abbreviations: CA, California; MI, Michigan; NY, New York; PA, Pennsylvania; SD, standard deviation.
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Internal consistency reliability for the scale was 0.93 when
pooling data from all cities, suggesting that a consistent con-
struct underlies the scale. Item characteristic curves for the
2-parameter model, which estimate the probability of finding
each item conditional on a latent level of physical disorder,
are provided in Web Figure 3.
The measure displayed spatial autocorrelation in all cities;

all Moran’s I values were significantly positive (P < 0.001) in
a 2-sided test. Moran’s I values for the measure ranged from
0.030 for San Jose to 0.091 for Philadelphia, indicating that
disorder was more strongly spatially patterned in Philadel-
phia than in San Jose. Detroit and Philadelphia showed the
highest levels of spatial variation overall. Figure 1 presents
the relationship of variance in the disorder measure with dis-
tances between sampled pairs (semivariograms) for each city.
The “nugget effect” (i.e., the distance at which small-scale
variance cannot be detected) was largest in Philadelphia, pos-
sibly reflecting the compact scale of Philadelphia’s urban
grid, and smallest in San Jose, a comparatively sprawling
city. Sills were higher in Philadelphia and Detroit, where
more extreme disorder was present, than in San Jose or
New York. Overall, the median level of disorder was highest
in Detroit and lowest in San Jose (Table 3).

Maps of estimated disorder indicated a spatial variation con-
sistent with our knowledge regarding neighborhood disinvest-
ment in all 4 cities. For example, Figure 2 maps the measure of
physical disorder in Philadelphia, wherein the largest cluster
of disorder is in the “Badlands,” a neighborhood that suffers
from abandonment (50). Jackknife cross-validation showed
error to be approximately normally distributed for all 4 cities
(Web Figure 4), with a mean of −0.002 and variance of 0.42
across all cities (Table 3). Median error was lowest in San Jose
(median absolute deviation, 0.35) and highest in Detroit (me-
dian absolute deviation, 0.53).

Construct validity of the measure

Census measures were generally correlated as expected
with the average estimated level of neighborhood physical
disorder within a census tract across 10 conditional realiza-
tions (Table 4). For example, a scatterplot of the relationship
between neighborhood housing vacancy and average physi-
cal disorder level by census tract in Philadelphia in one con-
ditional realization is displayed in Figure 3 (see Web Figure 5
for scatterplots for the other 9 realizations). Correlations were
closest to our a priori expectations in Philadelphia and most

Table 2. Items Measured on 1,826 Block Faces in 4 US Cities as Part of a Virtual Audit of Neighborhood Physical Disorder Using Google Street

View Imagery Dating From 2007–2011, Including Audit Source and Interrater Reliability Score

Question
Identification,

Including Source
Full Question Categorization

Frequency of
Response

Indicating Disorder
in Overall Sample,%

Average Pairwise
κa Score in
Reliability
Subsample

No. of Pairs
Used to
Compute

Pairwise κb

PHDCN 1 Is there garbage, litter, or
broken glass in the street
or on the sidewalks?

Yes (1) vs. no (0) 89.1 0.35 642

PHDCN 2 Are there empty beer or
liquor bottles visible in
streets, yards, or alleys?

Yes (1) vs. no (0) 13.1 0.34 588

PHDCN 3 Is there graffiti, or evidence
of graffiti that has been
painted over, on
buildings, signs, or
walls?

Yes (1) vs. no (0) 41.1 0.55 626

PHDCN 4 Are there abandoned cars? Yes (1) vs. no (0) 2.3 0.63 651

PHDCN 5 How would you rate the
condition of most of the
buildings on the block
face?

Fair condition or poor/badly
deteriorated condition (1) vs.
very well kept/good condition
or moderately well kept
condition (0)

50.7 0.48 636

PHDCN 6 Do you see burned-out
buildings in the block
face?

Yes (1) vs. no (0) 1.3 0.69 635

PHDCN 7 Do you see boarded-up or
abandoned buildings in
the block face?

Yes (1) vs. no (0) 17.4 0.80 635

PEDS 1.7 Is there vacant or
undeveloped land?

Yes (1) vs. no (0) 22.8 0.55 621

IMI 130 Do any buildings have
windows with bars?

Yes (1) vs. no or not applicable (0) 27.7 0.53 651

Abbreviations: IMI, Irvine-Minnesota Inventory (31); PEDS, Pedestrian Environment Data Scan (13); PHDCN, Project on HumanDevelopment in

Chicago Neighborhoods (10).
a Cohen’s κ value.
b Items with more “cannot tell” responses resulted in fewer pairings.
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different in Detroit and San Jose. Linear regression and cor-
relation coefficients for each measure in each city are dis-
played in Table 4.

DISCUSSION

In this study, we explored the measurement properties of a
scale measuring physical disorder in 4 US cities with data
collected by virtual street audit using Google Street View
and the CANVAS system. Items were generally reliable and
consistent across all cities (per-item κ scores ranged from
0.34 to 0.80, while internal consistency reliability scores
ranged from 0.86 to 0.89 in the 4 cities), and the interpolated
measure covaried as expected when compared with both con-
vergent and divergent census measures.

The interrater reliability of items included in our physical
disorder scale ranged from κ values considered to represent
“fair agreement” (for garbage and empty bottles) to levels

at the top end of “substantial agreement” (for abandoned
buildings) (49). This range of κ scores was comparable to
scores Franzini et al. (6) observed for an in-person audit in
3 cities using similar measures of neighborhood physical dis-
order. Jones et al. (51) also reported on an in-person survey of
physical disorder using similar measures; while the intraclass
correlation coefficients they reported are not directly compa-
rable to κ scores, we note that they did observe higher levels
of agreement for the presence of abandoned buildings and
lower levels for trash and empty bottles (51), generally fol-
lowing the interrater reliability trend we observed. Interrater
reliability was worse on block faces with high-resolution
imagery for most indicators, particularly the presence of bot-
tles, graffiti, and bars on windows. This may be because high-
resolution imagery presents more opportunities for some raters
to detect small-scale items that would be missed by all raters in
lower-resolution imagery. While it is frequently noted that κ
scores trend lower for low-prevalence items (52), we observed
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Figure 1. Variation in a measure of neighborhood physical disorder as related to distance between points (semivariograms) across 4 US cities:
A) New York, New York; B) Philadelphia, Pennsylvania; C) Detroit, Michigan; and D) San Jose, California. The curve on each plot represents the
exponential function visually fitted to that semivariogram. Themeasurewas constructed usingGoogleStreet View imagery that was initially captured
between 2007 and 2011.
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κ values in the “substantial agreement” range (κ = 0.61–0.80)
for our lowest-prevalence items: presence of abandoned cars
(2.3%) and burned-out buildings (1.3%).
Measurement properties of the scale were encouraging.

The internal consistency of the raw measures across all cities
(α = 0.62) was lower than Franzini et al. (6) observed (α =
0.78). However, our IRT scale’s consistency estimate was
high (reliability = 0.93), consistent with prior ecometric mea-
sures of physical disorder using similar items (17, 30). The
low α score of the raw items but high internal consistency re-
liability of the IRT scale may reflect the fact that these items
serve as indicators of a consistent latent construct of physical
disorder across a wide range of latent disorder levels. Indeed,
item severities in the IRT model ranged from −2.0 to 3.8,
suggesting that the scale was able to pick up on variation at
a wide range of latent levels of physical disorder. Previous
IRT scales of neighborhood physical disorder have also
found a wide distribution of item severities (14, 51). The ca-
pacity of physical disorder scales to discern variation across
the continuum of physical disorder is encouraging for the use
of physical disorder in scientific research.
Our measure varied spatially in accordance with our

expectations. Keyes et al. (7) reported a somewhat higher
(Moran’s I = 0.14) level of autocorrelation for a neighbor-
hood disorder measure in Detroit constructed from street
audit measures of abandonment. While Keyes et al. used
a random sample of census blocks, we used a systematic
sample, which can diminish observed autocorrelation (53).T
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Figure 2. Interpolated levels of physical disorder in Philadelphia,
Pennsylvania, constructed using Google Street View imagery that
was initially captured between 2007 and 2011. Lighter areas have
more physical disorder; the large, central cluster of physical disorder
corresponds roughly with North Philadelphia, and the smaller clusters
south and west of it correspond with West Philadelphia and the Gray’s
Ferry and Point Breeze areas of South Philadelphia.
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Cross-validation results showed that errors were unbiased
and normally distributed.

The correlations between our interpolated estimates of
physical disorder, computed using conditional realizations
to minimize bias due to oversmoothing, and US Census mea-
sures of tract-level unemployment, housing vacancy, popula-
tion density, and owner-occupied housing were mostly in the
expected direction. The direction and strength of association
fitted our expectations better in Philadelphia and New York
than in Detroit and San Jose. This was due in part to the fact
that Philadelphia and New York had more variation in disor-
der than Detroit and San Jose and in part to the large-scale
abandonment of some neighborhoods in Detroit, which
creates an inverse association between disorder and popula-
tion density. These differences highlight the different social

processes at work across cities and the value of comparative
research.

Our conclusions are strengthened by the consistency of our
results across 4 cities with diverse spatial and socioeconomic
profiles. Further, our use of geospatial techniques to construct
convergent and divergent validity tests increases our confi-
dence in the measure’s validity not just at the sampled points
but across each of the 4 cities.

Our study also had several important limitations. First,
Google Street View imagery represents a view of a street at
a particular time; some measures (e.g., the presence of litter
or bottles) may be affected by time of day, which we were
unable to assess with this method. Second, we were unable
to assess physically small indicators of physical disorder
that could have increased the precision of the measure (e.g.,
the presence of discarded hypodermic needles or condoms on
the sidewalk). Third, the spatial interpolation procedure we
used assumed that distance was the only driver of covariance
and did not account for barriers (e.g., a river or highway) sep-
arating sampled points. We note, however, that any error due
to diurnal variation, imagery limitations, or failure to account
for barriers was incorporated into the measures used to assess
divergent and convergent construct validity; the relatively
strong correlations we observed somewhat mitigate our con-
cern about these limitations. Fourth, a limitation inherent in
street audits is that auditor or imagery characteristics may af-
fect data integrity: An auditor familiar with a neighborhood
may interpret imagery differently than an auditor to whom
the neighborhood is unknown (54). Most of our raters were
familiar with New York but not the other 3 cities; our consis-
tent results across 4 cities with varied racial and socioeconomic
composition mitigate this concern somewhat. However, in
future research, investigators may consider whether residents
of urban areas differ from suburban- or rural-area residents
in their ratings of urban environments.

In conclusion, neighborhood physical disorder is of con-
siderable interest to epidemiologists and other social scien-
tists but has been expensive and difficult to assess reliably.
Our virtual audit approach has yielded a measure of neigh-
borhood physical disorder with desirable ecometric proper-
ties across multiple cities. Reliable and valid measurement

Table 4. Correlation Coefficients and Slope Estimatesa Comparing Mean Physical Disorder Levels Computed From 1,826 Block Faces in 4 US

Cities (Using Google Street View Imagery Dating From 2007–2011) With Selected 2010 US Census Estimates for Each Tractb

Characteristic
Expected
Correlation

Location

New York, NY
(n = 532)

Philadelphia, PA
(n = 503)

Detroit, MI
(n = 502)

San Jose, CA
(n = 289)

Overall
(n = 1,826)

r β r β r β r β r β

Unemployment rate Strongly positive 0.20c 0.69 0.44c 0.97c 0.23c 0.50c 0.15 1.00 0.43c 1.15c

Housing vacancy rate Strongly positive −0.08c −0.31c 0.71c 1.52c 0.44c 0.96c 0.04 0.12 0.38c 0.99c

Population density Weakly positive 0.19c 0.67c 0.31c 0.69c −0.15c −0.29c 0.22c 1.73 0.09c 0.26c

Owner-occupied
housing

Weakly negative −0.40c −1.43c −0.30c −0.67c −0.03 −0.06 −0.20c −1.15 −0.22c −0.60c

Abbreviations: CA, California; MI, Michigan; NY, New York; PA, Pennsylvania.
a Slope estimates denote the estimated increase in census characteristic z score associated with a 1-unit change in physical disorder score.
b All estimates were computed from 10 conditional realizations using a multiple-imputation framework.
c P < 0.05.
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Figure 3. Average level of physical disorder as related to 2010 US
Census estimates of housing vacancy rates by census tract in Phila-
delphia, Pennsylvania, estimated using Google Street View imagery
dating from 2007–2011.
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is a necessary precursor to investigations of neighborhood
physical disorder’s association with health outcomes.
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