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Abstract

There is growing interest among smartphone users in the ability to determine their precise location

in their environment for a variety of applications related to wayfinding, travel and shopping.

While GPS provides valuable self-localization estimates, its accuracy is limited to approximately

10 meters in most urban locations. This paper focuses on the self-localization needs of blind or

visually impaired travelers, who are faced with the challenge of negotiating street intersections.

These travelers need more precise self-localization to help them align themselves properly to

crosswalks, signal lights and other features such as walk light pushbuttons.

We demonstrate a novel computer vision-based localization approach that is tailored to the street

intersection domain. Unlike most work on computer vision-based localization techniques, which

typically assume the presence of detailed, high-quality 3D models of urban environments, our

technique harnesses the availability of simple, ubiquitous satellite imagery (e.g., Google Maps) to

create simple maps of each intersection. Not only does this technique scale naturally to the great

majority of street intersections in urban areas, but it has the added advantage of incorporating the

specific metric information that blind or visually impaired travelers need, namely, the locations of

intersection features such as crosswalks. Key to our approach is the integration of IMU (inertial

measurement unit) information with geometric information obtained from image panorama

stitchings. Finally, we evaluate the localization performance of our algorithm on a dataset of

intersection panoramas, demonstrating the feasibility of our approach.
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I. Introduction

There is growing interest among smartphone users in the ability to determine their precise

location in their environment, for a variety of applications related to wayfinding, travel and

shopping. While GPS (often integrated with other sensor-based localization information

such as Wi-Fi and cell tower triangulation) provides valuable self-localization estimates, its

accuracy is limited to approximately 10 meters in most urban locations [1].
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Some tasks require better localization accuracy than what GPS-based methods can provide,

including a variety of tasks performed by blind and visually impaired persons. One such

task, which we focus on in this paper, is the task of negotiating street intersections.

Specifically, this task requires the traveler to align him/herself properly to the crosswalk and

other intersection features, which demands localization accuracy that is at least an order of

magnitude more precise than what GPS provides. (In some cases GPS may not even be able

to ascertain which corner of an intersection a traveler is standing at, let alone whether he/she

is properly aligned to the crosswalk corridor [1].) Accurate localization is useful not only for

finding, and approaching, important features such as pedestrian crossing buttons, but can

also enable the detection and recognition of traffic signals such as walk lights.

To achieve superior localization accuracy, we have devised a novel computer vision-based

localization approach that is tailored to the street intersection domain, building on our past

work on the “Crosswatch” system to provide guidance to blind and visually impaired

pedestrians at street intersections [2]. Unlike most work on computer vision-based

localization techniques, which typically assume the presence of detailed, high-quality 3D

models of urban environments [3], [4], our technique harnesses the availability of simple,

ubiquitous satellite imagery (e.g., Google Maps) to create simple maps of each intersection.

Not only does this technique scale naturally to the great majority of street intersections in

urban areas, but it has the added advantage of incorporating the specific metric information

that blind or visually impaired travelers need, namely, the locations of intersection features

such as crosswalks.

A key contribution of our approach is the integration of IMU (inertial measurement unit)

information with geometric information obtained from image panorama stitchings. Such

integration is necessary to combine the information that the IMU contains about the absolute

directions in the world (up, north and east) with the precise relative geometric information

provided by the image panorama (i.e., rotations between different camera views of the

scene, which are necessary for seamless integration of imagery). Finally, we evaluate the

localization performance of our algorithm on a dataset of intersection panoramas,

demonstrating the feasibility of our approach, and its superiority over GPS-based

localization.

II. Related Work

There is a large amount of work on image-based self-localization, but here we mention only

a few key examples of this work that have also been implemented on smartphones. Like our

approach, [3] combines GPS with localization evidence based on panoramic images,

demonstrating impressive localization results in large-scale environments; [5] builds on this

work, incorporating IMU (inertial measurement unit) sensor data to improve localization

results. Work on a related approach [4] focuses on the development of a publicly available

test dataset. These works rely on the use of very accurate and detailed 3D models of the

urban environment, in some cases requiring the use of expensive 3D scanners.

In a different vein, there have been several papers focusing on the detection of important

street intersection features for blind and visually impaired travelers, such as work on
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detecting traffic lights [6] and the Zebralocalize project [7] for locating zebra crosswalks.

Differently from most past work, we view the problem of determining one’s position and

orientation and alignment relative to crosswalks as a 2D localization problem.

One of the challenges posed by computer vision applications intended for blind and visually

impaired persons is the difficulty of taking usable pictures without the ability to examine the

camera viewfinder. To facilitate these kinds of applications, camera-based feedback is

essential; for example, a saliency-based measure is used in [8] to help blind users know

where to aim the camera. Work on the “Crosswatch” project for orienting blind and visually

impaired pedestrians to traffic intersections [2] shows that an appropriate user interface

enables a blind person to take a usable panorama image of an intersection scene (see Sec.

III-B).

Our approach builds on [9]. Relative to that work, we have devised a simple and novel

scheme to integrate IMU readings over multiple images, using detailed information from

stitching. While there is a large body of work in robotics on fusing image and IMU data (for

one example, see [10]), we are unaware of other work that specifically exploits the

geometric relationships among multiple images output by an image stitching algorithm to

reconcile orientation estimates from the IMU and from the images. Finally, we have

evaluated our algorithm quantitatively on an image dataset, and have shown that our

algorithm performs better than GPS.

III. Approach

This section describes our approach to self-localization, beginning with an overview and

continuing with details in subsequent subsections. Fig. 1 depicts a high-level pipeline of the

proposed system.

A. Overview

Our approach to self-localization is based on a simple geometric model of each street

intersection of interest, called an intersection template, which contains crosswalk stripe

segmentations. There is a separate template (see Fig. 5(d)) for each intersection, derived

from satellite imagery and having known orientation (i.e., the bearing of each stripe relative

to north) and known scale (i.e., pixels per meter). This model assumes that the intersection is

flat (which is approximately true, even if the streets adjoining it are sloped). We assume that

the camera is held at a known height from the ground (which is measured for each user and

is fairly uniform over time), and that the camera focal length is known. We also assume that

the user is standing near an intersection and that GPS accuracy is sufficient to identify the

correct intersection. (In our experiments, see Sec. IV, GPS accuracy was always sufficient to

identify the correct intersection that the user was standing at, but not necessarily the specific

corner of the intersection.) Note that GPS is only used by the system to determine which

intersection the user is standing at; it is not used for any other aspect of the localization

process.
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Using a simple smartphone app that we programmed, the user stands in one place and

acquires multiple images while turning from left to right and holding the camera roughly

horizontal. The IMU rotation matrix and GPS readings are recorded for each image.

These images are stitched into a rotational panorama, and an aerial image of the intersection

is computed. The aerial image is computed such that the scale (pixels per meter) matches

that of the template, and the IMU data is used to normalize the bearing of the aerial image

(so that the image columns are roughly aligned to north).

Stripes in the aerial image are then detected by combining two procedures. First, a Haar-type

filter is used to enhance stripe-like features. Second, a modified Hough transform, which is

tailored to the known width of the stripes, is used in conjunction with the Haar-based map to

find the likely stripe locations, encoded as a binary map. Next, the segmented image is

cross-correlated with the template, with the peak correlation indicating the optimal

translation between template and aerial image and thereby determining the user’s location.

The following subsections cover the algorithm in detail and are prefaced by a subsection

describing how blind persons can use the system.

B. Use of system by blind persons

The Crosswatch system was specifically developed for use by blind and visually impaired

persons. Many persons with visual impairments find it challenging to take pictures with a

camera because it is difficult to aim properly without a clear view of the viewfinder, which

most sighted persons use to help compose pictures. However, user interfaces can be devised

to provide real-time guidance to help blind and visually impaired persons take usable

pictures, as in [8], which uses a saliency-based measure to suggest locations of likely

interest in the scene to photograph.

For Crosswatch, we developed a simple user interface [2], [9] to aid blind users in holding

the camera properly, using the smartphone accelerometer to issue a vibration warning

whenever the camera is pitched too far from the horizon or rolled too far from horizontal.

We note that this interface does not require any analysis of the scene, since a usable 360°

panorama requires only that the camera is oriented properly as it is moved from left to right.

Experiments show [2] that blind users are able to use this interface to acquire usable

panoramas, after a brief training session.

While the panoramas in the experiments reported in this paper were acquired by a sighted

user, ongoing work (to be reported in later publications) on Crosswatch is based on

panoramas successfully acquired by blind users. We are currently investigating the

feasibility of narrower (e.g., 180°) panoramas, which require the user to aim the camera in

the general direction of the intersection.

C. Template

We constructed a template of each intersection by downloading satellite images from

Google Maps, cropping the intersection region and manually segmenting the crosswalk

stripes (see Fig. 5(d) for an example). Note that the scale (pixels per meter) is known and
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that the image is normalized so that the up direction in the image points to geographic north.

While the process of constructing a template takes approximately 5–10 minutes per

intersection, in the future it will be possible to create templates for a very large number of

intersections using crowdsourcing techniques such as those available through CrowdFlower

(http://crowdflower.com/), a service that is well suited to complicated labeling tasks. We

hope to make templates freely available online in the future, perhaps in conjunction with the

OpenStreetMap (http://www.openstreetmap.org/) database.

D. Panorama

The smartphone app that we programmed automatically acquired images for a panorama as

the user turned from left to right. The IMU was used to estimate the user’s bearing relative

to magnetic north, and a new image was acquired roughly every 20° of bearing. Each image

was saved to flash memory, along with all current IMU and GPS information for that image.

We used OpenCV to stitch together the images offline into a rotational panorama [11], see

Fig. 5(a) for an example. The primary purpose of assembling a panorama is to facilitate the

construction of an aerial image. However, the panorama also has two important benefits.

First, it removes some moving objects (e.g., pedestrians and vehicles) from the scene, which

would otherwise occlude some of the intersection features. Second, the relative pose

geometry estimated in the creation of the panorama (i.e., how the camera is rotated between

views) is useful for the estimation of the bearing of the aerial image.

E. Aerial image

The aerial image is a reconstruction of an aerial view of the intersection, viewed from a

camera pointed straight down (perpendicular to the ground plane), in which the scale (pixels

per meter) is known. (See Fig. 5(b) for an example.) The aerial view is created, and its

bearing is normalized (so that the up direction in the aerial image points to magnetic north),

to permit matching with a template of the intersection to estimate the (x, y) location of the

camera. Note that the aerial image calculations assume that all points in the scene lie on the

ground plane, which means that objects not lying on the ground plane appear distorted;

however, enough of the scene points of interest lie on the ground plane to make the aerial

image usable. Also note that an aerial view is based on scene points lying within a limited

distance from the camera, and thus typically emcompasses only a small portion of the entire

intersection (e.g., two crosswalks meeting at one corner of the intersection).

Since the panorama stitching algorithm has no access to inertial information such as the

direction of up (defined by gravity), which is required for the creation of the aerial image,

we had to combine inertial information with stitching information to create the aerial image.

We developed three variants of the same approach to creating the aerial image, which we

call Scheme 0, 1 and 2, described as follows. See Fig. 2 for an overview of this approach for

creating reconciled orientation estimates for each image, used to create the aerial image.

Scheme 0 is too simple to be of practical use but helps motivate the descriptions of the

Schemes 1 and 2, which are of practical use. To create the aerial image using Scheme 0, we

simply use the orientation matrix Oi, estimated by the IMU for each image i (ranging from 1
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through N, where N is the total number of images in the panorama) to unwarp image i into

the aerial image. Note that the orientation matrix defines how the camera is rotated relative

to a world coordinate system that is defined by three orthogonal axes: up (in terms of

gravity), magnetic north (specifically, the direction of the earth’s magnetic field projected

onto the horizontal plane), and magnetic east (defined to be perpendicular to the other two

axes). Specifically, the orientation matrix Oi can be interpreted as follows: the third row

equals û, which is the up direction (in camera-centered coordinates); the second row equals

n̂, which is the magnetic north direction; and the first row equals ê, which is the magnetic

east direction.

The unwarping from image i to the aerial image uses Oi, the height of the camera above the

ground, and the camera focal length, resulting in an image that is normalized so that the up

direction in the image points to magnetic north and the scale is known (pixels per meter). If

more than one image contributes to a given pixel in the aerial view, the median of all

contributing intensities is taken as the final pixel value. Finally, the resulting image is

rotated by the magnetic declination so that the final aerial image is aligned to geographic

(rather than magnetic) north, to achieve consistency with the intersection template. The

problem with Scheme 0 is that the orientation matrices Oi are not estimated exactly, and

inconsistencies between them result in a very muddled aerial image, with multiple copies of

single edges, etc. To solve this problem, we devised Scheme 1, which uses rotation matrices

Ri estimated in the OpenCV stitching algorithm to achieve consistency among different

images. In Scheme 1, IMU information is used from just one image, say O1, and the rotation

matrices Ri are used to transform O1 into predicted orientations Ôi for i > 1. (Note that the

matrix  transforms quantities from image i to image j, as described in [12].) The

resulting aerial image (based on O1, Ô2, Ô3, …, ÔN) is far superior to that obtained using

Scheme 0 in that there are almost no inconsistencies among different images.

However, the main flaw of Scheme 1 is that it draws on IMU information only from the first

image, which is clearly sub-optimal. Scheme 2 was devised to incorporate IMU information

from all images, without sacrificing inter-image consistency. It achieves this goal by

normalizing the IMU measurements Oi, for all i > 1, to the first image, resulting in predicted

orientations , which are the value of O1 that would be predicted based on measured value

Oi and the transformation . Then we can average together the  matrices over all i

to produce a more robust estimate of O1 based on all available IMU data. Since the average

of two or more rotation matrices is not guaranteed to be a rotation matrix itself, we then

perform a procedure to determine the closest valid rotation matrix, which we then transform

(as in Scheme 1) into improved orientation estimates for all i, which we refer to as

“reconciled” orientation estimates. These reconciled orientation estimates are consistent

across images and integrate IMU data from all images, resulting in a more seamless aerial

image (see Fig. 3).

We present quantitative data comparing the performance of Schemes 1 and 2 in Sec. IV.

Qualitatively, it is worth noting that distortion in the aerial view (which is due to several

factors, including IMU noise and curvature of the ground surface) is less of a problem with

Scheme 2, whereas in Scheme 1 parallel stripes often appear non-parallel in the aerial view.
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Finally, we point out that the bearing normalization (to make the up direction in the aerial

image point north) is only approximate, because of IMU noise (mostly due to the

magnetometer, which can be distorted by extraneous metal objects such as cars and poles

near the camera). (See Sec. V for discussion.)

F. Stripe detection

For the current version of our algorithm we are specializing to crosswalks with narrow

stripes, as illustrated in Fig. 5(a). These stripes appear in the majority of crosswalks, and it

will be straightforward to apply our approach to other crosswalk patterns such as zebra

stripes. To detect crosswalk stripes, we combine a modified Hough transform with a Haar

filtering method. The main idea of the modified Hough transform is as follows: instead of

using the standard two-dimensional Hough space, (d, θ), which represents all possible lines,

we use a three-dimensional space, (d, θ, w), where w is the width (in pixels) of the stripe we

are looking for. The triple (d, θ, w) specifies two parallel lines, with edges of opposite

polarity, spaced a distance w apart. (Note that w is given by the template, but in practice we

search over a small range of possible w values.)

Voting in the modified Hough space is done using edge pixels determined by a Canny edge

map. Given a candidate pixel a, a search for a “mate” pixel b is conducted by following the

image gradient direction at a (this direction is appropriate for a bright stripe against a dark

background) along a distance w. If a suitable mate pixel is found that lies on an edge and has

an appropriate image gradient direction, then a candidate pair of mates is declared.

Next the pixel location mid-way between the mates is examined to ensure that it is located in

a sufficiently bright local image patch. This is verified by a Haar filtering method, in which

a Haar filter is defined to reward a bright region of pixels (with width corresponding to the

expected value of w) surrounded on both sides by darker pixels. The filter kernel (see Fig.

4(top)) is tuned to a specific orientation, so multiple kernel orientations are evaluated at each

pixel, with the maximum response over orientations recorded at each pixel (Fig. 4(bottom)).

The resulting map is used to verify that a candidate pair of mates is suitable for Hough

voting. Any candidate that passes this test casts a vote in the (d, θ, w) space. Peaks are

located in Hough space, and the pixels that voted for each pixel are identified, thereby

determining a binary stripe edge map (see Fig. 5(c)).

G. Matching aerial image to template

The binary stripe edge map is translated against a Canny edge map of the template, and the

correlation is evaluated at each possible translation. This procedure identifies the most likely

translation, which equates to the localization estimate.

Since the bearing estimate is only approximate, we repeat this procedure over a range of

bearings (the estimate ±15°, in increments of 1°), and at each pixel take the maximum over

all possible bearings.
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IV. Experiments

In this section we describe our experimental procedure and evaluate the results of our

algorithm on a dataset of intersection images.

A. Procedure

We used an unlocked Android Samsung Galaxy 4 smart-phone in our experiments. One of

the authors served as photographer, using our image acquisition app to acquire a total of 19

panoramas, each in a distinct location. The locations were distributed among 3 intersections,

two of which were four-way intersections and one of which was a T-junction intersection.

Another experimenter estimated the photographer’s location for each panorama, making

reference to curbs, crosswalk stripes and other features visible in satellite imagery. (See

discussion of this ground truth procedure below.) 17 of the panoramas were constructed

from 9 images acquired over a range of roughly 180°, and the remaining 2 were each

constructed from 18 images acquired over a range of roughly 360°.

All image analysis was performed offline.

B. Analysis

One of the challenges of this analysis is that it is difficult to obtain precise ground truth

localization measurements. We estimated ground truth by combining knowledge of

intersection features obtained from satellite imagery with visual inspection of the

photographer’s location relative to these features. For instance, most locations were

constrained to lie on the curb (since this is a likely location for a blind person to stand when

approaching an intersection, and which can be verified using a white cane), which is visible

in satellite imagery. We also estimated locations relative to the crosswalk corridor, often

using units of corridor width.

While this procedure is far from perfect, we estimate that our ground truth estimates are off

by no more than 1 to 2 meters from the true locations. Therefore, in evaluating the

performance of an algorithm or sensor, we claim that errors of 1 to 2 meters may not be

significant, whereas errors of 5 meters or more are significant.

Fig. 6 shows a scatter plot of localization error (in meters), with the localization error for

GPS on the x-axis and for our proposed method on the y-axis. Points below the dashed (x =

y) line are points for which GPS localization error is worse than the error for our method.

Note that our method outperforms GPS for all but one case. In addition, we found that our

method was able to determine the correct corner that the user is standing at in all but two

cases. The two gross error cases (error around 16 meters) for our method resulted from

either a severely distorted magnetometer reading or poor segmentation of the aerial image.

Finally, to compare the effectiveness of Scheme 1 and 2, we manually estimated the bearing

error (how misaligned to north the aerial image was) for both schemes, as shown in Fig. 7.

The histograms demonstrate that the bearing error is lower for Scheme 2, but that the error is

still large (over 20°) in several cases.

Fusco et al. Page 8

Proc Conf Comput Robot Vis. Author manuscript; available in PMC 2014 September 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



V. Discussion

One of the biggest challenges we encountered in our work is the collection of reliable

ground truth. We plan to devise a systematic approach to obtaining more precise ground

truth in order to perform a quantitative analysis on a larger number of intersections.

We also observe that large localization errors in our experiments are usually associated with

either a distorted magnetometer reading (e.g., due to a large metal object near the

smartphone) or a segmentation error (e.g., a false positive or false negative crosswalk stripe

segmentation). However, since collecting the data for our experiments, we subsequently

discovered that we are now able to consistently avoid gross magnetometer distortions by

simply launching the Crosswatch smartphone app well before the panoramas are acquired,

on the sidewalk in a location far from the curb (where metal objects are likely to appear).

We hypothesize that this improvement arises for the following reason: The IMU orientation

estimates fuse information from the magnetometer, accelerometer and gyroscope and

integrate them over time, so that the orientation estimates are more robust against

momentary distortions of any component sensor. This integration requires sufficient time to

produce reliable orientation estimates, which can be facilitated by letting the Crosswatch app

run for a longer time.

We also tried using GPS as an additional form of location information, which would

augment the computer vision-based localization information. However, we found that

significant GPS errors often occurred (and the magnitude of the error was not necessarily

well correlated with the GPS uncertainty reported by the GPS sensor). The GPS errors were

never great enough to misidentify the current intersection, but were large enough to prevent

the GPS information from improving the estimates based on our computer vision algorithm.

In the future we will experiment with the use of other location evidence in addition to GPS,

including Wi-Fi/cell tower triangulation, etc.

In the future we will focus on improving the crosswalk stripe detection algorithm, to reduce

the incidence of false positive and false negative detections. Empirically, most of the false

positives we encounter are objects such as fire hydrants, poles and other vertical objects

(even the pants leg of a pedestrian), which violate the ground plane assumption used to

create the aerial view image, and which appear roughly stripe-like in the aerial view. We

will experiment with a stripe hypothesis verification stage that analyzes each stripe

hypothesis in the original image (or panorama) in which it appears, where it should be

straightforward to distinguish a crosswalk stripe from most false positives.

VI. Conclusion

We have demonstrated a novel image-based self-localization technique for use in the

“Crosswatch” project previously conceived by the authors, for providing guidance to blind

and visually impaired pedestrians at street intersections. We have quantitatively evaluated

our algorithm’s performance on a dataset of image panoramas and have found that our

method performs significantly better than GPS.
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In future work, we plan to adapt our approach to other types of crosswalks, including zebra

crosswalks, and to test our system extensively with blind and visually impaired users. We

will explore the possibility of incorporating other localization information such as Wi-Fi/cell

tower triangulation. It might be useful to incorporate features (e.g., SIFT) from Google

Streetview imagery; while this imagery is limited in the kind of 3D information it provides

(for instance, parallax information is severely limited by the fact that the imagery is only

acquired by a camera mounted on a car traveling in the street), it might add some useful 3D

information. Finally, we will implement the system as an app running entirely on the

smartphone, perhaps offloading some calculations to a remote server.
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Figure 1.
Pipeline of the proposed system. Note that GPS is only used by the system to determine

which intersection the user is standing at; it is not used for any other aspect of the

localization process. Details can be found in Section III.
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Figure 2.
Schematic illustrating our novel algorithm for correcting IMU orientation estimates with

rotational information from image stitching (Scheme 2). The IMU estimates an orientation

matrix Oi for each image i that goes into the panorama, and each Oi provides an orientation

estimate relative to absolute world coordinates (defined by magnetic north and gravity), but

with too much noise to be solely relied upon to create an aerial view. The image panorama

algorithm independently furnishes rotation estimates Ri for each image, but these are not

calibrated with respect to absolute world coordinates. However, the rotation estimates can be

combined to create highly accurate rotations between image pairs, so that  transforms

quantities from image i to image j. These inter-image rotations are combined with the IMU

data to produce reconciled orientation estimates (see text).
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Figure 3.
Example of composite aerial view using Scheme 0 (top) and Scheme 2 (bottom). Notice how

multiple versions of the same stripe features appear using Scheme 0, which makes the image

difficult to intrepret. Scheme 2 results in an aerial view that is much better stitched.
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Figure 4.
(Top) Haar filter kernel used as intensity-based evidence for stripes in modified Hough

transform. (Bottom) Result of the correlation of Haar-like filters with image in Fig. 3

(bottom): stripe features are enhanced (in red).

Fusco et al. Page 14

Proc Conf Comput Robot Vis. Author manuscript; available in PMC 2014 September 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5.
From top to bottom: (a) Sample panorama. (b) Corresponding aerial view (white space in

center corresponds to points below the camera’s field of view); (c) Binary stripe edge map

showing estimated locations of stripe edge pixels. (d) Final result superimposed on template

of intersection: green circle shows ground truth location, and red square shows location

estimated by our algorithm.
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Figure 6.
Scatter plot of localization error (in meters), with the localization error for GPS on the x-axis

and for our proposed method on the y-axis. Note that our method outperforms GPS for all

but one case.
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Figure 7.
Histograms of the absolute value of bearing estimation error, shown for Scheme 1 (top) and

Scheme 2 (bottom). Note that the error is lower for Scheme 2 than for Scheme 1.
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