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Abstract

There are currently no molecular targeted approaches to treat small-cell lung cancer (SCLC) similar to those used
successfully against non-small-cell lung cancer. This failure is attributable to our inability to identify clinically-relevant
subtypes of this disease. Thus, a more systematic approach to drug discovery for SCLC is needed. In this regard, two
comprehensive studies recently published in Nature, the Cancer Cell Line Encyclopedia and the Cancer Genome Project,
provide a wealth of data regarding the drug sensitivity and genomic profiles of many different types of cancer cells. In the
present study we have mined these two studies for new therapeutic agents for SCLC and identified heat shock proteins,
cyclin-dependent kinases and polo-like kinases (PLK) as attractive molecular targets with little current clinical trial activity in
SCLC. Remarkably, our analyses demonstrated that most SCLC cell lines clustered into a single, predominant subgroup by
either gene expression or CNV analyses, leading us to take a pharmacogenomic approach to identify subgroups of drug-
sensitive SCLC cells. Using PLK inhibitors as an example, we identified and validated a gene signature for drug sensitivity in
SCLC cell lines. This gene signature could distinguish subpopulations among human SCLC tumors, suggesting its potential
clinical utility. Finally, circos plots were constructed to yield a comprehensive view of how transcriptional, copy number and
mutational elements affect PLK sensitivity in SCLC cell lines. Taken together, this study outlines an approach to predict drug
sensitivity in SCLC to novel targeted therapeutics.
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Introduction

Small cell lung cancer (SCLC) represents 15% of all lung

carcinomas and is typically diagnosed when the disease has

metastasized [1,2]. Unfortunately there have been only minor

improvements in the standard of care for SCLC over the past

three decades [3–5]. There are currently no molecular targeted

approaches to treat SCLC similar to those used successfully against

non-small-cell lung cancer (NSCLC), such as erlotinib targeting of

mutant EGFR or crizotinib targeting of EML4-ALK fusion

proteins [6,7]. Surgery is rarely performed in this disease (only 1%

of cases), limiting the availability of tumor tissue for comprehensive

genomic analyses. Furthermore, the two seminal genomics studies

recently published on SCLC have yielded little therapeutic insight

into this disease and have mainly analyzed the rare form of SCLC

amenable to surgery, which does not represent the classic, widely

metastatic SCLC seen in everyday clinical practice [8,9].

A different approach to drug discovery for SCLC is needed and

may lie in mining available databases on the drug sensitivities of

SCLC cell lines. That is, as most SCLC cells are derived from

metastatic sites or pleural effusions, they may be representative of

extensive disease SCLC and its associated drug vulnerabilities. In

this regard, two comprehensive drug-screening studies recently

published in Nature, the Cancer Cell Line Encyclopedia (CCLE)

[10] and the Cancer Genome Project (CGP) [11], examined the

drug sensitivity of cancer cell lines, including lung, and attempted

to link these to genomic profiles. The genomic profiles included

DNA mutational status, gene expression and copy number

variation (CNV) data.

In the present study we have specifically extracted the data on

SCLC cell lines from these two studies and outline a bioinformatic

approach to identify new therapeutics for SCLC using polo-like

kinase (PLK) inhibitors as an example.

Results

Initially we sought a global view of SCLC drug sensitivity in the

CCLE [10] and CGP [11] studies. There were 53 and 31 SCLC

cell lines tested for growth inhibition by 24 and 92 drugs in these

studies, respectively. The results are shown in Figures 1 (CGP) and

S1 (CCLE) as boxplots. A table of the numerical data for drug

efficacy, as well as the outlier cell lines, is also given in Tables S1
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(CGP) and S2 (CCLE). This graphical analysis allowed us to

identify drugs that were broadly effective against most SCLC cells.

We defined ‘effective’ drugs as those that induce growth inhibition

in most cells at low doses (median IC50#1 mM), represented by

paclitaxel. ‘Ineffective’ drugs, represented by erlotinib and

sunitinib, produced no growth inhibition in most SCLC cells

(IC50$8 mM), although ‘outliers’ may be present. ‘Selective’ drugs,

represented by rapamycin, demonstrated a long boxplot and can

be considered effective for only a subset of SCLC cell lines.

As shown in Table 1, drugs classified as ‘effective’ for most

SCLC cells include CGP-60474, a CDK inhibitor; BI-2536 and

GW-843682X, both PLK inhibitors; bortezomib, a proteasome

inhibitor; and elesclomol, an HSP70 inhibitor. In addition, several

drugs targeting the PI3K-AKT-MTOR pathway fall within this

category, including A-443654, temsirolimus and NVP-BEZ235.

Two drugs with a median IC50 just outside 1 mM include AZD-

7762, a CHK inhibitor; and JW-7-52-1, an MTOR inhibitor.

HSP90 (17-AAG) and HDAC (panobinostat) inhibitors may also

represent ‘effective’ drugs, although their efficacy varied among

the two studies. ‘Effective’ drugs likely carry the best translational

potential.

Gene array data has been used extensively in cancer research to

identify expression ‘signatures’ that may be either prognostic or

predictive of tumor behavior. Therefore, we examined if gene

expression clustering could be used to identify subgroups of drug-

sensitive SCLC cell lines, particularly for drugs that demonstrated

a broad efficacy range against SCLC cells in Figure 1. We used

data from the CGP study because it contained the largest amount

of drug sensitivity data. Unsupervised consensus clustering of gene

expression data demonstrated that three clusters of SCLC cells

were optimal (Figure 2). There were 1006 significant genes that

defined the gene expression subtypes (Kruskal-Wallis test p-value

,0.05, listed in Table S3. We then visualized the effect of gene

expression clustering on drug efficacy using a mosaic plot

(Figure 3). In this plot we used a color scale that divided drug

sensitivity into six groups. Drugs, listed on the y-axis, were

grouped together according to target molecules. Cells, listed on the

x-axis, were grouped using the same order as that obtained by

unsupervised clustering of their gene expression. There did not

appear to be any correlation of drug sensitivity to gene expression

clustering, however, as drug sensitivity appeared to be randomly

distributed across all cell lines for any given drug. This graphical

analysis did highlight several targeted agents with exceptional

broad-based efficacy against SCLC cell lines. These drugs

included bortezomib, BI-2536 and GW-843682X, as well as the

HSP inhibitor elesclomol and the CDK inhibitor CGP-60474,

albeit with lower efficacy. These drugs are identical to those

highlighted in Table 1.

We next determined if CNV clustering could be used to identify

subgroups of drug-sensitive SCLC cell lines. Three clusters were

again identified using all 426 interrogated genes (Figure 4);

however there did not appear to be any correlation between the

gene expression and CNV clustering. Rearrangement of the

mosaic plot in Figure 3 by CNV clustering also did not reveal any

apparent correlations (Figure S2). Taken together, these results

demonstrate that drug-sensitive SCLC cells did not cluster into

subgroups by either gene expression or CNV. We therefore

decided to use a pharmacogenomic approach to characterize

subgroups of SCLC cells.

Our analyses identified PLK inhibition to have promising

efficacy and little clinical trial activity in SCLC. Therefore, we

used PLK inhibition as an example of how to use the CGP

datasets to develop a genomic profile of SCLC drug sensitivity.

First we sought to validate the efficacy of PLK inhibitors in SCLC.

In these validation experiments we used SCLC cell lines, as well as

inhibitors, that were different from those used in the original

studies to highlight the efficacy of these new therapeutic agents.

The SCLC cell lines used were H1048, H1688, SW1271 and

Figure 1. Boxplot of drug sensitivity in SCLC cells using the CGP dataset. There are 31 cell lines for small cell lung cancer. The boxplots
show drugs listed on the x-axis and the corresponding IC50 values (in mM) listed on the y-axis. The ‘ceiling’ for drug efficacy was set at 8 mM; if the IC50

of all tested cells was above this concentration a single line would appear at the top of the graph. This represents an ineffective drug. By contrast, if
all tested cells were sensitive to a given drug, a narrow box and whisker plot would appear at the bottom of the graph. The line within individual
boxes represents the median IC50 value of all tested cells and the circles represent ‘outlier’ cells whose IC50 values do not fall within the 25–75%
quantile of all IC50 values measured for that drug (represented by the box).
doi:10.1371/journal.pone.0106784.g001

Pharmacogenomic Targeting of Small-Cell Lung Cancer

PLOS ONE | www.plosone.org 2 September 2014 | Volume 9 | Issue 9 | e106784



Table 1. ‘Effective’ drugs on SCLC cells.

Quantile (mM)

Drug 25% 50% 75% Target

CCLE:

17-AAG* 0.042 0.19 0.5 HSP90

Panobinostat 0.02 0.05 0.07 HDAC

CGP:

CGP.60474 0.2 0.39 1.77 CDK1/2/5/7/9

BI-2536 0.13 0.46 2.64 PLK1/2/3

Bortezomib 0.01 0.04 0.35 PSMB5

Elesclomol 0.04 0.28 1.98 HSP70

NVP.BEZ235 0.09 0.43 1.43 PI3K or MTORC1/2

A.443654 0.49 0.75 6.25 AKT1/2/3

GW843682X 0.07 0.33 6.39 PLK1

Temsirolimus 0.08 0.52 6.31 MTOR

AZD7762 0.64 1.15 4.33 CHK1/2

X17.AAG* 0.62 2.11 4.94 HSP90

JW.7.52.1 0.49 1.19 8 MTOR

MS.275 1.16 2.61 8 HDAC

Vorinostat 20.5 2.32 6.43 HDAC

*overlapping drug between two studies
doi:10.1371/journal.pone.0106784.t001

Figure 2. Unsupervised clustering of SCLC cells by gene expression using the CGP dataset. Unsupervised consensus clustering was
performed using all 31 cell lines (only 27 had gene expression data available; 3 of them are duplicates and the average values were obtained for
further analysis) and showed that 3 clusters was optimal for this dataset. With this assignment, non-parametric one way ANOVA (Kruskal-Wallis test p-
value,0.05) was performed on these 3 clusters and 1006 significant genes were obtained. The heatmap was generated with these significant genes.
doi:10.1371/journal.pone.0106784.g002
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DMS454. PLK inhibitors included BI-6727 (volasertib) and ON-

01910 (rigosertib). In these experiments irinotecan served as a

positive control while erlotinib served as a negative control. The

results are shown in Figure 5. It is clear that the IC50 values for the

PLK inhibitors in most cell lines is between 10-100 nM,

supporting our hypothesis that SCLC cells are broadly sensitive

to PLK inhibitors.

Initially, we sought to identify a gene signature that might

predict sensitivity to PLK inhibitors in patient cohorts, as not all

SCLC cells demonstrated equal sensitivity. We compared the gene

expression data for the five most sensitive SCLC cells (H82, H446,

H526, COR L88, IST SL1) with that for the five least sensitive

SCLC cell lines (DMS114, H64, DMS79, H2171, IST SL2); as

defined in the CGP by their BI-2536 IC50 values. We identified a

list of 185 genes that were significantly differentially expressed

between these two groups (listed in Table S4). These 185 genes

were used to perform unsupervised clustering of all the SCLC cell

lines, resulting in the heatmap shown in Figure 6. Notably, the five

least (green top box) and most (red top box) sensitive cell lines

clustered at opposite ends of the heatmap while all the other cells

(yellow boxes indicating intermediate sensitivity and grey boxes

indicating unknown sensitivity) clustered in the middle. We next

performed leave-one-out analysis of the PLK gene signature with

the 26 available cell lines. From this analysis we generated 26

heatmaps, where in each heatmap the sensitive and resistant cells

remained clustered together except in three heatmaps; in which

one or two sensitive cell lines were misclassified. Resistant cells

always clustered together. Hence, we believe that this PLK gene

signature is robust in categorizing sensitive and resistant SCLC cell

lines.

To validate that the PLK gene signature does, in fact, predict

sensitivity to PLK inhibitors, we determined the efficacy of the

PLK inhibitor BI-6727 in a cell line, H1092, which had gene

expression data but no PLK sensitivity data in the CGP study,

represented by a grey box at the top of Figure 6. As controls, we

used one resistant cell line, DMS79 (green box), and two sensitive

cell lines, H82 and H526 (red boxes). These cells were chosen

because they all grew in suspension and could be subjected to

identical drug treatment protocols. The results, shown in Figure 7,

demonstrated that H82 and H526 cells were sensitive to the PLK

inhibitor BI-6727 whereas DMS79 cells were not, similar to the

results reported for BI-2536. Furthermore, it demonstrated that

the H1092 cells, with unknown PLK sensitivity, were mostly

resistant to BI-6727 like DMS79 cells, as predicted by the

heatmap.

It was of interest to determine whether the PLK gene signature

was present in patient tumors and could potentially be used to

predict tumor sensitivity to PLK inhibitors. The largest study of

SCLC tumor gene expression is that of Rudin et al. [8], who

analyzed 30 primary tumors by RNAseq. We therefore extracted

the count data for the 185 probes present in our PLK signature

(representing 173 genes; only 169 genes were found and used from

the Rudin dataset) and standard normalized to create surrogate

PLK gene expression arrays for these tumors. This normalized

data was then subjected to unsupervised clustering to generate the

heatmap shown in Figure 8. We also included in this analysis the

Figure 3. Mosaic plot of drug sensitivity using gene expression clustering of SCLC cells. Drug sensitivity was color-coded according to the
legend at the bottom. Drugs are grouped along the y-axis according to their target molecule. Cells are arranged along the x-axis identical to their
gene expression clustering identified in Figure 2.
doi:10.1371/journal.pone.0106784.g003

Figure 4. Unsupervised clustering of SCLC cells by copy number variation using the CGP dataset. Unsupervised consensus clustering
was performed using all 30 cell lines with 426 gene copy numbers, and 3 clusters were shown to be optimal for this dataset. All of these 426 genes
were used to generate the heatmap. CNV data was re-coded according to the following rule: 0-complete loss; 1-partial loss; 2-no change; 3,7-partial
gain; greater or equal to 8-complete gain.
doi:10.1371/journal.pone.0106784.g004
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H82 SCLC cell line that had RNAseq data from the Rudin study

and was also validated by us in Figure 7 as being sensitive to the

PLK inhibitor BI-6727. The results demonstrate two important

points: first, subtypes of SCLC tumors can be identified using the

PLK gene signature, and second, the H82 cell line data clustered

among a subset of eight primary tumors. Taken together, these

results suggest that the PLK gene signature generated using SCLC

cell line data may be useful in predicting the sensitivity of specific

tumors to PLK inhibitors.

Finally, we used circos plots [12], shown condensed in Figure 9

and full-view in Figure S3, to visualize the genomic differences

between SCLC cell lines sensitive and resistant to the PLK

inhibitor BI-2536. Remarkably, the circos plots demonstrate that

all resistant cells possessed nonsense or frameshift mutations in

either TP53 or RB1, and sometimes both genes, whereas all

sensitive cells displayed mutations of unknown protein significance

(intronic and missense), typically in only one of these genes. All but

one of the gene mutations was homozygous, indicating that

resistant cells likely have no functional RB1 or TP53 protein. All

sensitive cells display MYC (H82, H446), MYCN (H526, IST SL1)

or MYCL (CORL88) amplification, whereas only one resistant cell

line displays MYC amplification (H2171). There also seems to be

little or no CNV on the X chromosome in sensitive cells relative to

resistant cells, which typically display some CNV loss. Genes on

chromosome 13 are generally upregulated in PLK sensitive cells

and downregulated in PLK resistant cells, whereas genes located

on chromosome 19 are generally downregulated in PLK sensitive

cells and upregulated in PLK resistant cells. Taken together, these

results suggest that gene expression, CNV and mutational status

may all contribute to the sensitivity of SCLC cells to PLK

inhibition.

Discussion

Small-cell lung cancer is a disease in urgent need of new drug

therapies. Unfortunately, the limited availability of tumor tissue

hinders the acquisition of complete genomic analyses required for

the identification and validation of new drugable targets in this

cancer. Thus, alternative drug discovery strategies need to be

developed until our understanding of the genomics driving SCLC

can begin to approximate that of NSCLC, which benefits from

comprehensive analyses of large cohorts of patient tumors, such as

the The Cancer Genome Atlas (TCGA).

In this report we have taken a bioinformatic approach to drug

discovery for SCLC by data mining two large drug screening

studies in cultured cell lines, the CCLE [10] and CGP [11]. As a

model system, SCLC cell lines retain gene mutation profiles

(COSMIC) and copy number changes [13,14] similar to human

SCLC. Therefore, we have extracted and analyzed datasets for

SCLC cell lines in order to identify drug sensitivities specific to this

disease, as this was not the intention of the original studies, which

was to pool data across a multitude of cell lines in order to identify

genomic determinants of drug sensitivity. We identified polo-like

kinases as attractive molecular targets with little current clinical

trial experience in SCLC. Growth inhibition by PLK inhibitors

was validated in our study, addressing concerns raised in a recent

report about inconsistency in drug response data in large drug

screening studies [15]. The translational potential of PLK

inhibitors in treating SCLC is supported by our demonstration

Figure 5. Validation of efficacy of PLK inhibitors in SCLC cells. Adherent cells were incubated with the indicated concentrations of drugs for
24 h. The cell culture medium was replaced and cell viability was measured by a DNA assay after 48 h incubation. Each drug concentration was
assayed utilizing five replicates. Results are representative of at least 2 experiments.
doi:10.1371/journal.pone.0106784.g005
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that the drug sensitivity profile of the SCLC cell lines reflects what

is observed clinically for metastatic SCLC tumors [16]. That is,

most cells were extremely sensitive to topoisomerase and

microtubule inhibitors, chemotherapeutic agents that have activity

against chemo-naı̈ve SCLC; by contrast, many tyrosine kinase

inhibitors were ineffective.

The CGP study also identified drug sensitivities that tended to

cluster across all cell lines (see Supplement Table 1 in reference

11) and the drug sensitivity profile for SCLC cells, as shown in

Table 1, is very similar to cluster 4 of the CGP study [cluster 4 =

GW-843682X (PLK1), BI-2536 (PLK1/2/3), A-443654 (AKT1/

2/3), Epothilone B (microtubules), CGP-60474 (CDK1/2/5/7/9),

Paclitaxel (microtubules) and MS-275 (HDAC)]. While it is

currently unclear if these drug clusters indicate a common

targeted pathway(s) leading to growth inhibition, these clusters

may provide a practical starting point to test combinatorial drug

therapies for synergistic activity in SCLC. Indeed, our own

preliminary data shows synergism between PLK and CDK

inhibitors.

We have developed a highly integrated analysis of PLK

sensitivity in SCLC cell lines, graphically depicted in Figure 9 as

circos plots, that incorporates gene expression, CNV and gene

mutation data. An analysis of this depth has never been previously

applied to SCLC, and demonstrates what can be achieved

interrogating a single cell lineage and drug class in the CCLE

and CGP datasets. Furthermore, our finding that the PLK gene

signature for SCLC cell lines was dispersed among SCLC tumor

specimen expression profiles (Figure 8) clearly demonstrates that

these cells retain tumor phenotypes. Features in the circos plots

such as the double mutation of both TP53 and RB1 in PLK

resistant cells, as well as the reciprocal expression of PLK signature

genes on chromosomes 13 and 19, are readily apparent and must

be examined in larger cohorts to determine their individual

contribution to overall PLK inhibitor sensitivity. Taken together,

this type of analysis may help to identify upstream genomic events

that correlate with downstream phenotypes such as PLK

sensitivity.

It was recently reported that mutations in the PLK1 gene itself

were primarily responsible for acquired resistance to BI2536 in a

cultured human colon cancer cell line [17]. This is unlikely to be a

resistance mechanism in SCLC cell lines because the CCLE lists

only four cell lines with a single PLK mutation among all four

PLK family members (PLK1-4) and 53 SCLC cell lines examined.

None of these PLK mutated cell lines were included in our study.

Our PLK gene signature does, however, include genes on

chromosomes typically deleted (4q, 13q) and amplified (19p) in

SCLC [9,13,14], although our circos plots reveal no obvious

correlation between the two. Interestingly, chromosome Xq,

which is not typically viewed as an important region of CNV in

SCLC, was home to several of the most significant differentially-

expressed genes that comprise the PLK gene signature- all were

members of the MAGE-A, or melanoma-associated antigen-A,

subfamily. This subfamily of genes is located on chromosome

Xq28 and is only expressed in testis germ cells and tumor cells

Figure 6. Unsupervised clustering of SCLC cells using the PLK gene signature. The five SCLC cell lines demonstrating the most (H2171, H64,
IST-SL2, DMS-114, DMS-79) and least (IST-SL1, COR-L88, H526, H446, H82) resistance to the PLK inhibitor BI-2536 in the CGP study were used as
standards to identify a gene signature for PLK sensitivity. All SCLC cell lines in the CGP study that contained gene expression data were then
subjected to unsupervised clustering. The heatmap shows the result of this analysis. The colored boxes on the top of the heatmap indicate the CGP
BI-2536 sensitivity. Green = resistant cell, red = sensitive cell, yellow = cell of intermediate, but known, sensitivity, grey = cell of untested sensitivity
but with gene expression data.
doi:10.1371/journal.pone.0106784.g006
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[18]. Although their biologic function is unclear, they represent a

class of tumor antigens that are being actively investigated as a

target for immunotherapy [19,20]. The MAGE-A genes were

upregulated in PLK-sensitive cell lines relative to PLK-insensitive

cell lines. Furthermore, these expression patterns may correlate

with CNV, as sensitive cells demonstrated little CNV on

chromosome X, whereas most resistant cells demonstrated some

CNV loss. We are currently testing the importance of this gene

family as a biomarker of PLK sensitivity.

During our study a report by Sos et al. [21] was published in

PNAS that specifically surveyed only SCLC cell lines (44 total) for

drug sensitivity. Of the 267 compounds tested in this study, only

13 were also examined in the CCLE and/or CGP studies.

Interestingly, when Sos et al. looked for drug sensitivity specifically

in MYC-amplified cell lines, they also found the PLK inhibitor BI-

2536 to be active, similar to our results, but did not pursue it

further. They also showed that the majority of cells sensitive to the

Aurora kinase inhibitor VX-680 demonstrated MYC-amplifica-

tion. Interestingly, the CGP also included two Aurora kinase

inhibitors (VX-680 and ZM-447439) in their study; however, it did

not find any significant clustering of PLK with Aurora kinase

inhibitors, indicating no link between these two classes of

inhibitors when analyzed in the general population of cancer cell

lines.

In the present study we consistently identified three subtypes of

SCLC cell lines using unsupervised clustering of either gene

expression or CNV datasets from the CGP or CCLE (Figure S4

and Table S3) studies. Remarkably, there was little concordance

between these two analyses except that a great majority of cells

clustered into one predominant subtype, while the remaining cells

divided unequally between two minor subtypes. Gene expression

and CNV subtypes also did not align with drug sensitivity in

Figure 7. Validation of PLK efficacy in SCLC cells predicted by PLK gene signature. Suspension cells were continuously incubated with the
indicated concentrations of drugs for 72 h, when cell viability was measured by the MTS assay. Each drug concentration was assayed utilizing five
replicates. Results are representative of 2 experiments.
doi:10.1371/journal.pone.0106784.g007
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general (see Figures 3 and S2) or PLK sensitivity in particular.

This suggests that a comprehensive genomics approach, such as

circos plot analysis, is required to identify critical determinants of

drug sensitivity and other phenotypes in SCLC. This integrated

approach may help to select SCLC patients that would benefit

most from single agent use of drugs such as HDAC [22] and PLK

[23] inhibitors that are broadly effective across SCLC cell lines but

demonstrate limited activity in clinical trials.

Other unique approaches have been taken to identify new and

effective therapies for SCLC. Jahchan et al. identified a surprising

sensitivity of SCLC cells to tricyclic antidepressants in a drug

repositioning study, which used bioinformatics to find drugs that

induced changes in gene expression opposite to the gene

expression profile of SCLC cells [24]. Reverse-phase protein

arrays (RPPA) were used to identify PARP1 and EZH2 as

potential therapeutic targets in SCLC [25]. Ultimately, there is a

need to reveal the underlying biology of SCLC if we hope to make

any improvements in the treatment of this disease similar to

NSCLC. Unfortunately, only about fifty SCLC tumors have

undergone comprehensive genomic analysis to date- the majority

being from primary, early stage disease [8,9]. Therefore,

immediate therapeutic progress in this field will depend upon

discovery in model systems, such as the one outlined here, followed

by validation in patient cohorts.

Materials and Methods

Cell culture and growth inhibition studies
All cells were obtained from the ATCC and grown in their

recommended medium. Cell proliferation was determined quan-

titatively by fluorescent DNA assay [26] for adherent cells or MTS

assay using the CellTiter 96 AQueous One Solution Cell

Proliferation Assay Kit from Promega Corp. (Fitchburg, WI) for

suspension cells. Cells were added to a 96-well plate in 100 ml of

complete medium. Drug containing medium was added at the

indicated concentrations one day after seeding. Irinotecan was

obtained from Sigma Chemical Co. (St. Louis, MO) while all other

drugs were obtained from Selleck Chemicals (Houston, TX). After

incubation for three days at 37uC, the assay was performed

following the manufacturer’s instructions. For the DNA assay,

fluorescence was measured using 355/460 nm excitation/emission

filters while absorbance for the MTS assay was measured at

490 nm. Both assays were measured with a 96-well plate reader.

Each experimental condition was assayed utilizing five replicates.

Drug containing medium was removed from adherent cells after

24 h of incubation and replaced with 100 ml of complete medium,

while suspension cells were grown in the continuous presence of

drug for 72 h.

Datasets
The publically available CCLE and CGP drug sensitivity (IC50),

gene expression, CNV, and mutation data was downloaded from

http://broadinstitute.org/ccle (CCLE) and http://cancerrxgene.

org (CGP) [10,11]. The RNAseq data obtained in the study by

Rudin et al. [8] was downloaded from the European Genome

database. All data manipulation and statistical analyses were

performed using SAS version 9.3 (SAS Institute Inc., Cary, NC) or

R 2.15.3 (http://www.r-project.org/).

IC50 data analysis
For SCLC only, 24 drugs and 53 cell lines were included in the

CCLE, while 92 drugs and 31 cell lines were included in the CGP.

All IC50 greater than 8 mM in the CGP were thresholded at 8 mM.

Figure 8. Supervised clustering of SCLC tumors and H82 cell line using the PLK gene signature. RNAseq data from Rudin et al. [8] was
transformed to count data. Data for genes that comprised the PLK gene expression signature were extracted and used in unsupervised consensus
clustering of SCLC tumors and the H82 cell line. The red colored box on the top of the heatmap indicates the location of the H82 cell line, which was a
CGP cell line validated as PLK sensitive.
doi:10.1371/journal.pone.0106784.g008
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Boxplots were drawn for the IC50 from the two datasets

respectively using R (http://www.r-project.org/). Mosaic plots

were drawn using proc sgrender in SAS version 9.3 (SAS Institute

Inc., Cary, NC).

Gene expression data analysis
Normalization of gene expression data (Affymetrix U133 Plus

2.0 for CCLE, Affymetrix U133A for CGP) involved four steps: 1)

raw data were normalized via the robust multi-array average

(RMA) method; 2) probes without a gene name were removed; 3)

gene level data was obtained by averaging the probe value within

each gene and 4) the gene level data was then standard normalized

by gene. For the gene expression data, the CCLE included 51 cell

lines, while the CGP included 30 cell lines, among which three cell

lines had duplicate measurements. Averaging the duplicates

generated 27 unique cell lines for the CGP. Unsupervised

consensus clustering was performed on the normalized gene level

data with the R package ‘‘Consensus Cluster Plus’’; parameters

were set as default except maxK was set at 10. The Kruskal-Wallis

test was used to assess expression differences between subtypes

based on the consensus clustering results. Unsupervised hierarchi-

cal clustering was then performed using the significant genes only

(p value ,0.05) and visualized using heatmaps via the R package

‘‘gplots’’.

Gene copy number data analysis
Copy number data was obtained for the CGP data only for 426

genes [11]. Generation of subtypes based on the raw copy number

data was performed using unsupervised consensus clustering.

CNV raw data from CGP was re-coded according to the following

rule: 0 complete loss; 1 partial loss; 2 no change; 3,7 partial gain;

greater or equal to 8 complete gain. Visualization via heatmaps

was performed with transformed copy number data using the

same algorithms as described in the gene expression data analysis

section.

RNAseq analysis
The fastq data was aligned with tophat 2.0.9 [27], followed by

HTseq 0.5.4 [28] in order to obtain the count data. The count

data was then standard normalized by gene for tumor data or cell

line data, respectively. The initial PLK gene signature analysis

identified 185 probes in 173 genes; only 169 of the genes were

found in the Rudin RNAseq data. Unsupervised clustering using

Figure 9. Circos plots of SCLC cells. Circos plots are shown (left to right, in listed order) for the five most sensitive (H82, H446, H526, COR-L88, IST-
SL1) and most resistant (DMS-114, H64, DMS-79, H2171, IST-SL2) SCLC cells to BI-2536 growth inhibition, as defined in the CGP study. The outer black
ring designates the chromosome location; the next inner ring indicates expression level of PLK signature genes; and the inner most ring indicates
CNV. CNV data was re-coded according to the following rule: 0 complete loss; 1 partial loss; 2 no change; 3,7 partial gain; greater or equal to 8
complete gain. At the center is the mutation status of genes (open triangle: intronic SNP, black circle: missense SNP, black square: nonsense SNP, red
triangle: frame-shift insertion, green triangle: frame-shift deletion). All mutations were homozygous except for the frame-shift insertion.
doi:10.1371/journal.pone.0106784.g009
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this set of 169 genes was performed on the combined tumor and

H82 cell line data.

Supporting Information

Figure S1 Boxplot of drug sensitivity in SCLC cells
using the CCLE dataset. There are 53 cell lines for small cell

lung cancer. The boxplots show drugs listed on the x-axis and the

corresponding IC50 values (in mM) listed on the y-axis, similar to

Figure 1.

(PDF)

Figure S2 Mosaic plot of drug sensitivity using CNV
clustering of SCLC cells. Drug sensitivity was color-coded

according to the legend at the bottom. Drugs are grouped along

the y-axis according to their target molecule. Cells are arranged

along the x-axis identical to their gene expression clustering

identified in Figure 4.

(TIF)

Figure S3 Full-size circos plots of SCLC cells. Circos plots

are shown full-size as individual panels for all the SCLC cell lines

shown in collectively Figure 9. The drug sensitivity (PLK sensitive

vs resistant) of the individual cells is indicated on the left, along

with the legend. The gene mutation symbols are identical to those

described for Figure 9.

(PPTX)

Figure S4 Unsupervised clustering of SCLC cells by
gene expression using the CCLE dataset. Unsupervised

consensus clustering was performed using the all 53 cell lines (only

51 gene expression available) and showed that 3 clusters was

optimal for this dataset. With this assignment, we performed non-

parametric one way ANOVA (Kruskal-Wallis) test on those 3

clusters and obtained 4749 significant genes. We then generated

the heatmap with those significant genes.

(TIF)

Table S1 Numerical data for drug efficacy determined
in the CGP study. The 25%, 50% and 75% quantiles for all 92

drugs used to construct the boxplot in Figure 1 are listed. The

outlier cell lines with IC50s ,4 mM are listed to the right (IC50s of

outliers in parentheses in mM).

(DOC)

Table S2 Numerical data for drug efficacy determined
in the CCLE study. The 25%, 50% and 75% quantiles for all

24 drugs used to construct the boxplot in Figure S1 are listed. The

outlier cell lines with IC50s ,4 mM are listed to the right (IC50s of

outliers in parentheses in mM).

(DOC)

Table S3 Significant genes used in CGP and CCLE gene
expression clustering. The 1006 and 4749 significant genes

used to cluster SCLC cell lines in the CGP (Figure 2) and CCLE

(Figure S4) datasets, respectively, are highlighted along with their

corresponding p-values.

(XLS)

Table S4 Significant genes used in PLK gene expression
clustering. The 185 significant genes used to cluster SCLC cell

lines based upon their sensitivity to BI-2536 (Figure 6) using the

CGP dataset are highlighted along with their corresponding p-

values.

(XLS)
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