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Abstract

Two non-pigmented, motile, Gram-negative marine bacteria designated R9SW1" and A3d10" were isolated from sea water
samples collected from Chazhma Bay, Gulf of Peter the Great, Sea of Japan, Pacific Ocean, Russia and St. Kilda Beach, Port
Phillip Bay, the Tasman Sea, Pacific Ocean, respectively. Both organisms were found to grow between 4°C and 40°C,
between pH 6 to 9, and are moderately halophilic, tolerating up to 20% (w/v) NaCl. Both strains were found to be able to
degrade Tween 40 and 80, but only strain ROSW1" was found to be able to degrade starch. The major fatty acids were
characteristic for the genus Marinobacter including Cq6.9, Ci6.1@w7¢, Cig.109¢ and C;g.;w7¢. The G+C content of the DNA for
strains ROSW1" and A3d10" were determined to be 57.1 mol% and 57.6 mol%, respectively. The two new strains share 97.6%
of their 16S rRNA gene sequences, with 82.3% similarity in the average nucleotide identity (ANI), 19.8% similarity in the in
silico genome-to-genome distance (GGD), 68.1% similarity in the average amino acid identity (AAl) of all conserved protein-
coding genes, and 31 of the Karlin’s genomic signature dissimilarity. A phylogenetic analysis showed that ROSW1" clusters
with M. algicola DG893" sharing 99.40%, and A3d10" clusters with M. sediminum R65" sharing 99.53% of 16S rRNA gene
sequence similarities. The results of the genomic and polyphasic taxonomic study, including genomic, genetic, phenotypic,
chemotaxonomic and phylogenetic analyses based on the 16S rRNA, gyrB and rpoD gene sequence similarities, the analysis
of the protein profiles generated using MALDI-TOF mass spectrometry, and DNA-DNA relatedness data, indicated that
strains ROSW1" and A3d10" represent two novel species of the genus Marinobacter. The names Marinobacter salarius sp.
nov., with the type strain ROSW1" (= LMG 27497 = JCM 19399 = CIP 110588" = KMM 7502") and Marinobacter similis sp.
nov., with the type strain A3d10" (= JCM 19398" = CIP 110589" = KMM 7501"), are proposed.
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Introduction

The genus Marinobacter (family Alteromonadaceae, order
Alteromonadales, class Gammaproteobacteria) was created by
Gauthier et al. for a hydrocarbon degrading bacterium. At the
time of writing, the genus comprises 33 validly described species,
http://www.bacterio.net/marinobacter.html [1], which accom-
modates Gram-negative, chemoheterotrophic and halophilic, rod-
shaped bacteria [2,3]. The important role played by Marinobacter
spp. in metabolizing hydrocarbons has long been noted, with M.
hydrocarbonoclasticus [2], M. aquaeolei [4,5], M. maritimus [6],
and M. algicola [7] having been characterized as being able to
utilise aromatic and aliphatic hydrocarbons as their sole carbon
and energy sources. It was also shown that bacteria of the genus
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Marinobacter are one of the dominant bacterial community
groups constantly recovered from hydrocarbon polluted sites [8—
10]. For example, it was recently demonstrated that M. vinifirmus
was able to effectively degrade toluene, benzene, ethylbenzene,
and p-xylene [11].

The objectives of this study were to classify two newly isolated
marine bacteria; strain ROSW1T, which was derived from a water
sample collected from Chazhma Bay (Gulf of Peter the Great, Sea
of Japan, Pacific Ocean) during taxonomic studies of microbial
communities developed in sea water contaminated by radionu-
clides [12]; and strain A3d10", which was isolated from Port Philip
Bay (the Tasman Sea, Pacific Ocean) during the course of polymer
biodegradation studies [13]. The comparative taxonomic investi-
gations of these bacteria, together with their close relatives,
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Table 1. GenBank/EMBL/DDBJ accession numbers of 165 rDNA, gyrB, rpoD and whole genome sequences for strains R9SW1’,
A3d10" and phylogenetically related type strains and type species of the genus Marinobacter.

Species name

GenBank/EMBL/DDBJ accession numbers

16S rDNA gyrB rpoD whole genome

Strain ROSW1T KJ547705 KF811464 KF811478 CP007152

Strain A3d10" KJ547704 KF811465 KF811471 CP007151

M. algicola LMG 23835" AY258110* KF811463 KF811474 -

M. sediminum LMG 23833" AJ609270* KF811466 KF811477 =

M. adhaerens CIP 1101417 AY241552* KF811467 KF811473 NC_017506*

M. flavimaris CIP 108615" AY517632* KF811468 KF811475 =

M. salsuginis CIP 1098937 EF028328* KF811469 KF811476 -

M. hydrocarbonoclasticus SP.17" X67022* KF811470 KF811472 NC_017067*

*Accession numbers from previous publications.
doi:10.1371/journal.pone.0106514.t001

revealed their distinct taxonomic standing. This suggests that
strain ROSW17T and strain A3d10" represent two novel species of
the genus Marinobacter.

Materials and Methods

Isolation procedures, bacterial strains, and growth
conditions

Strain ROSW17 was isolated from a sea water sample collected
from Chazhma Bay in the Sea of Japan, Pacific Ocean, in 2000.
Water sample collection was within the research program funded
by the Federal Agency for Science of the Ministry of Education
and Science of the Russian Federation, grant 2-2.16 and by the
Russian Foundation for Basic Research and grant ‘Molecular and
Cell Biology’ from the Presidium of the Russian Academy of
Sciences, grant 02-04-48211". The specific location of the studies
(GPS coordinates) was 42°53'38" N 132°22'02" E. The permit
issued by the Department of Marine Expeditions, Ministry of
Education and Science of the Russian Federation. Strain A3d10"
was isolated from a sea water sample collected one metre below
the water surface in Port Philip Bay, the Tasman Sea, Pacific
Ocean, in 2008. Sea water collected from St Kilda Beach which is
a publicly accessible beach area in Melbourne, not part of any
protected area of land or sea. Furthermore, the field studies did
not involve endangered or protected species. The specific location
of the studies (GPS coordinates) was 37°51'50"S 144°58'55"E.
The sample handling and isolation procedures used were as
previously described [12,13]. Samples were plated on marine agar
2216 (BD, USA) and incubated aerobically at approximately 22—
25°Ci for 5, 7 or 10 days. The isolation and purification procedure
has been described elsewhere [14,15]. Ten type strains of the
Marinobacter species were obtained from various culture collec-
tions and used as the reference strains; M. lipolyticus CIP
107627", M. gudaonensis CIP 109534", M. adhaerens CIP
110141%, M. salsuginis CIP 109893" and M. flavimaris CIP
108615" were obtained from Collection de IInstitut Pasteur (CIP)
culture collection, M. algicola LMG 23835", M. guineae LMG
24048" and M. sediminum LMG 23833" were obtained from The
Belgian Co-ordinated Collections of Micro-organisms (BCCM/
LMG), M. goseongensis KCTC 12515" was obtained from
Korean Collection for Type Cultures (KCTC) and M. xestospon-
giae JCM 174697 was obtained from RIKEN BRC-Japan
Collection of Microorganisms (JCM). The type species of the
genus, M. hydrocarbonoclasticus SP. 17" was kindly provided by
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Dr. Stan-Lotter. Strains were stored at —80°C in marine broth
2216 (BD, USA) that had been supplemented with 20% (v/v)
glycerol.

16S rDNA, gyrB, rpoD sequencing and phylogenetic
analysis

Genomic DNAs were isolated using a Wizard Genomic DNA
Purification Kit (Promega, USA) according to the manufacturer’s
specifications. The 16S rRNA gene sequences for strains ROSW1T
and A3d10" were extracted from the whole genome sequences
[16] while gyrB and rpoD genes were amplified using primers (see
Supporting Information, Table S1 in File S1) that have been
previously described [17,18]. The 16S rRNA gene sequences of
validly described Marinobacter species were retrieved from
GenBank and aligned using the CLUSTAL W program [19].
Evolutionary phylogenetic trees were constructed using the
neighbour-joining (NJ) [20], maximum-likelihood (ML) [21] and
maximum-parsimony (MP) [22] algorithms. Genetic distances
were calculated using Kimura’s two-parameter model [23] by
using the MEGA 5 software [24]. The GenBank/EMBL/DDB]
accession numbers of 16S rRNA gene, gyrB, rpoD and whole
genome sequences were presented as in Table 1.

MALDI-TOF MS analysis

The sample preparation and MALDI-TOF MS analysis was
carried out according to the techniques described elsewhere [25].
Briefly, 5 pL of the cultures grown overnight were transferred into
microcentrifuge tubes and subjected to ethanol and formic acid
protein extraction. One pL aliquots of the supernatant were
transferred onto the MALDI target plate and air dried at room
temperature, followed by the addition of 1 pL of matrix solution,
then air dried. Samples were then subjected to analysis using a
Microflex MALDI-TOF mass spectrometer (Bruker Daltonik
GmbH, Leipzig, Germany) equipped with a 60 Hz nitrogen laser.
Spectra were recorded in the positive linear mode for the mass
range of 2,000 to 20,000 Da at the maximum laser frequency. The
raw spectra were then analysed using the MALDI Biotyper 3.0
software package (Bruker Daltonik GmbH, Bremen, Germany)
under the default settings. Measurements were performed via the
automatic mode, without any user intervention.

GC content and DNA-DNA hybridization

The GC content of strains ROSW1T and A3d10" was calculated
on the basis of their whole genome sequences [16,26], and these
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have been deposited at GenBank/EMBL/DDBJ] under the
accession number of CP007152 and CP007151, respectively.
The DNA-DNA hybridizations between strain ROSW1' and M.
algicola TMG 23835", and strain A3d10" and M. sediminum
LMG 23833" were performed by the Deutsche Sammlung von
Mikroorganismen und Zellkulturen (DSMZ) identification service,
where cells were initially disrupted using a Constant Systems T'S
0.75 KW (IUL Instruments, Germany), followed by purification of
the extracted DNA in the crude lysate form by chromatography
on hydroxyapatite as described by Cashion et. al. (1977) [27].
DNA-DNA hybridization was carried out in duplicate using a 2x
saline sodium citrate (SSC) buffer with 5% formamide as described
by De Ley et al. [28], with consideration of the modifications
described by Huss et. al. (1983) [29], using a model Cary 100 Bio
UV/VIS-spectrophotometer equipped with a Peltier-thermostat-
ted 6 x6 multi-cell changer and a temperature controller with an
in-situ temperature probe (Varian).

Genome comparison and genomic signatures analyses

Complete genome sequences for only two validly described
species of Marinobacter, M. hydrocarbonoclasticus ATCC 49840"
[30] and M. adhaerens HP15" [31], which have previously been
assembled, were used in this study for genomic analysis. The fully
sequenced and assembled genomes of both these species were
retrieved from GenBank, and compared to those of ROSW 1T and
A3d10". Genome comparison between strains RIOSW1T, A3d10",
M. adhaerens HP15" and M. hydrocarbonoclasticus ATCC
49840" was carried out using reciprocal BLAST analysis,
according to the method described by Goris et al. [32]. A map
of the percentage identity between cach of M. adhaerens HP15™,
RISWI1T and A3d10" to the type species was generated using the
BLAST Ring Image Generator (BRIG) software [33]. The in-silico
genome-to-genome distance (GGD) between the four strains was
also calculated using the genome-to-genome distance calculator
2.0 (GGDC) provided by DSMZ, http://ggdc.dsmz.de [34,35].
The average amino acid identity (AAI) of all conserved protein-
coding genes was calculated as previously described [36]. The
conserved genes between a pair of genomes were determined by
whole-genome pairwise sequence comparison using the BLAST
algorithm release 2.2.5 [37] using a minimum cut-off of 40%
identity and 70% of the length of the query gene. The difference in
genome signature between two individual sequences is expressed
in terms of the Karlin’s genomic signature dissimilarity (6*), which
was calculated by dividing the genomic dinucleotide frequencies
with the corresponding mononucleotide content using the
equation described by Karlin et al. [38]. Phylogenomic relation-
ship between the four strains were also elucidated using Mauve
multiple alignment software (v2.3.1) [39] and ClonalFrame
software v1.2 [40], with Alteromonas sp. DE [41] used as an
outgroup.

Genotype to phenotype analyses of a few distinctive phenotypes
were also carried using the whole genome sequences of strains
ROSWI1T, A3d10T, M. hydrocarbonoclasticus ATC.C 49840" and
M. adhaerens HP15" using the methods as previously described
[42].

Physiological and biochemical analysis

Six reference type strains, along with strains RISW1T and
A3d10", were used for the phenotypic and biochemical tests
(Table 2). The cell morphology and motility were determined
using scanning electron and light microscopies. Gram stain
reaction, catalase (5% HyOy) and starch hydrolysis analyses were
performed according to the method described by Smibert and
Krieg (1994) [43]. Determination of the oxidase activity was
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performed using Bactident oxidase strips (Merck Millipore,
Germany). The capacity of the strains to oxidize and to ferment
p-glucose and lactose was carried out according to the method
described by Smibert and Krieg (1994) [43], using a modified
semi-solid medium containing: 9.4 ¢ L' O/F medium (Oxoid,
UK), 20 g L' Sea Salt (Sigma-Aldrich, USA) and 1% carbohy-
drate. The strains were incubated at 30°C and the results were
obtained after 48 hours. The temperature and pH tolerance
ranges were determined via marine agar growth tests subjected to
different temperature (4, 10, 15, 20, 25, 30, 37, 40, 45 and 50°C)
and pH (4, 6, 7, 8, 9 and 11, adjusting the pH with HCI and
NaOH) conditions. The NaCl tolerance was determined using
different concentrations of NaCl (0, 0.5, 1, 3, 6, 10, 15, 20 and
25%) in modified salinity agar (SA) containing: 5 g ™' peptone,
l1g L' yeast extract, 0.1 ¢ L™ ferric citrate, 3.24 g L™
magnesium sulphate (MgSOy,), 0.55 ¢ L™ " dipotassium phosphate
(KoHPO,), 15 g L™ " agar, and the respective NaCl concentration,
each at a pH of 7.6%0.2. Plates were incubated under optimal
temperature conditions and the results were recorded daily for 7
days.

The susceptibility of the bacteria to antibiotics was tested using
modified media containing: 21 g L™" Mueller-Hinton medium
(Oxoid, UK); 7.5% Sea salt and 15 g L.”! bacteriological agar
(Agar No. 1, Oxoid, UK). The antibiotics tested were penicillin G
(10 ug), chloramphenicol (30 pg), streptomycin (10 pg), tetracy-
cline (30 pg), ampicillin (10 pg) and oxacillin (1 pg). The strains
were incubated under optimal temperature conditions and results
were obtained after 24 hours of incubation.

The ability of the strains to oxidise a range of organic substrates
was investigated using a 96-well Biolog GN2 microplate (Biolog,
USA), in triplicate. Inoculates were prepared by suspending
culture that had been grown overnight into 3% (w/v) saline
solution, then adjusting the density of the suspension to McFarland
standard no. 1, followed by pipetting 150 puL aliquots of the
suspension into each well. All the plates were incubated at 30°C
and results were manually obtained after 24 h and 48 h.
Enzymatic tests were performed using API ZYM test strips
(bioMérieux, France) in two individual experiments. Inoculations
were prepared by suspending culture that had been grown
overnight into 3% (w/v) saline solution and adjusting the density
to McFarland standard no. 5. A Microbact 24E Gram-negative
identification system (Oxoid, UK) was also used to test other
biochemical reactions, namely: lysine and ornithine decarboxylase;
HyS production; glucose, mannitol and xylose fermentation;
hydrolysis of o-nitrophenyl--p-galactopyranoside (ONPG); indole
production; urea hydrolysis; acetoin production (Voges-Proskatier
reaction); citrate utilisation; production of indolepyruvate; gelatin
liquefaction; malonate inhibition; inositol, sorbitol, rhamnose,
sucrose, lactose, arabinose, adonitol, raffinose and salicin fermen-
tation; and arginine dihydrolase. All tests were carried out
according to the manufacturer’s specifications unless otherwise
stated.

Fatty acids analysis

Fatty acid (FA) methyl esters were prepared as described
elsewhere [44]. The resulting fatty acid methyl esters were
analysed using a Shimadzu GC-14A gas chromatograph with a
flame ionization detector, using both a nonpolar SPB-5 fused-silica
column (30 mx0.25 mm i.d.) at 210°C and a polar Supelcowax-
10 fused-silica column (30 mx0.25 mm 1.d.) at 200°C.
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Results and Discussion

Analysis of the complete 16S rRNA gene sequences of strains
RISW1™ and A3d10" revealed that both strains are grouped with
species of the genus Marinobacter, with the sequence similarity
between strains RISW1T, A3d10" and all validly described
Marinobacter species being in the range of 93.84-99.40% and
93.91-99.53%, respectively. The two new strains, ROSW1" and
A3d10" shared 97.6% of their 16S rRNA gene sequences,
however, phylogenetic analysis showed that they cluster separately
forming two different clusters, one with M. algicola DG893" and
another with M. sediminum R65, where both clusters were
supported by the bootstrap value of 99% and 100% in both the NJ
and ML methods (Figure 1A and Figure S1 in File S1). The
highest 16S rRNA gene sequence similarity between strain
RISWI1T and M. algicola DG893T was found to be 99.40% (M.
algicola DG8I3Y), whilst strain A3d10" displays the highest 16S
rRNA gene sequence similarity with M. sediminum R65"
(99.53%).

Due to the high 16S rRNA gene sequence similarity between
strains ROSW1" and M. algicola DG893", and between A3d10"
and M. sediminum R65", an extended phylogenetic analysis based
on gyrB and rpoD genes was carried out. The use of housekeeping
genes in phylogenetic analysis can be beneficial, in that it
overcomes the possibility of the presence of nucleotide polymor-
phisms in the 16S rRNA gene [45,46]. Two genes, gyrB and rpoD,
were selected, since they have been previously reported to be
excellent marker genes and sufficient for the identification and
classification of various groups of microorganism [25,47-49]. M.

78%+X
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sediminum LMG 23833", M. salsuginis CIP 109893", M. algicola
LMG 23835", M. adhaerens CIP 110141", and M. flavimaris
CIP 108615" were selected, as they are phylogenetically close to
strains ROSW1T and A3d10T according to their 16S rRNA gene
sequences. M. hydrocarbonoclasticus SP.17" was also included as
representing the type species of the genus. A phylogenetic analysis
of the gyrB and rpoD gene sequence similarities reconfirmed the
clustering of strain ROSW1" with M. algicola LMG 23835", and
strain A3d10" with M. sediminum LMG 23833", both of which
were supported with 100% bootstrap values (Figure 1(B) and (C)).
The gyrB and rpoD sequence similarities for strains ROISW 1%
A3d10" and their phylogenetically related species was also
determined and found to be in the range of 77.8-94.3%
(ROSWI1™, gyrB), 80.0-93.5% (A3d10", gyrB), and 78.6-93.8%
(ROSW1T, rpoD), 78.6-96.2% (A3d10", rpoD), respectively
(Table 3). The gene sequence similarity for gyrB and rpoD
between the previously described sister species of Marinobacter,
i.e., M. adhaerens CIP 1101417 and M. flavimaris CIP 108615"
was found to be 99.0% and 98.4% respectively (Table 3), which is
higher than that found for strains ROSW1T, A3d10" and their
respective closest phylogenetic relatives. The sequence similarities
of the gyrB gene of 94.3% and 93.5% for strains R9SWI1T,
A3d10" with their closest relatives were also lower than the
previously proposed gyrB sequence similarity cut-off’ value of
98.95% for genus Amycolatopsis [50] and 98.22% for genus
Kribbella [51]. Also, the data reported for the two Vibrio species,
V. gigantis LGP 18" and V. crassostreae LGP 7", were 98% for
gyrB and 97% for rpoD [52], which again showed higher similarity

-M. bryozoorum 50-11T (AJ609271)

M. segnicrescens SS011B1-4T (EF157832)

M. lacisalsi FP2.5T (EU047505)

M. zhanjiangensis JISM 0781207 (FJ425903)

54%

M. daqi is YCSA40T (FJ984869)
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M. lipolyticus SM19T (AY147906)
M. goseongensis En6* (EF660754)

M. maritimus CK47T (AJ704395)
70%+
] W@Hm’rﬁms ZS2-30" (F1196022)
61%+X -M. psychrophilus 200417 (DQ060402)

M algicola DG893" (AY258110)
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Figure 1. Neighbour-joining phylogenetic tree showing the taxonomic position of strains ROSW1" and A3d10" according to their
(A) 16S rRNA, (B) gyrBand (C) rpoD gene sequences. Numbers at branching points are percentage bootstrap values based on 1000 replications,
with only values above 50% are shown. Scale bar represents 0.005/0.02 substitutions per nucleotide position. The Maximume-likelihood (ML) and
maximum Parsimony (MP) algorithms were also used for tree construction, where branches in agreement with ML and MP methods were marked
with + and X respectively.

doi:10.1371/journal.pone.0106514.9001
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values than the gyrB and rpoD sequence similarities of strains
RISWI1T, A3d10" and their closest relatives. The sequence
similarities for gyrB and rpoD between strains RISWI1" and
A3d10" were significantly lower than the values mentioned above,
e, 81.6% for gyrB and 78.2% for rpoD, suggesting distinct
standing of new strains on the species level.

In order to further assess the taxonomic affiliation of the two
new bacteria, a comparative analysis of the total protein profiles
was performed using MALDI-TOF mass spectrometry (Figure 2).
The results are in agreement with the phylogenetic analyses,
clearly indicating that strain ROSW1' is clustering with M.
algicola LMG 23835", and strain A3d10" is clustering with M.
sediminum LMG 23833" with a critical distance level below 500.
As suggested in the previously reported studies, clustering below
the distance level of 500 can be considered as reliable clustering
[53,54], which was also in agreement with the recent studies on
Alteromonas spp., where the clustering within the distance level of
500 was shown to be able to differentiate the closely related
Alteromonas species [25,55]. Hence, the results of this study
confirmed the confident clustering of the two new isolates within
other species of the genus Marinobacter. Also, the clusters of both
strains ROSW1" and A3d10" with their nearest neighbour were
stable, but exceeded the minimum differences between existing
species, e.g., the distance level between species in both clusters
were greater than those within a cluster that contained M.
gudaonensis CIP 109534, M. adhaerens CIP 1101417, M.
salsuginis CIP 109893, and M. flavimaris CIP 108615"; so does
the position of strains ROSW1T and A3d10" resulting in different
clusters in the MALDI dendrogram, provide evidence of the
distinctive standing of two new bacteria.

In order to confirm the separate species standing of these two
strains, a DNA-DNA hybridization experiment was conducted.
DNA-DNA relatedness between strain ROSW1T and M. algicola
LMG 238357 was found to be 63.05+1.85%, and between strain
A3d10" and M. sediminum TLMG 23833" was found to be
67.60%1.3%. Both of these relatedness values are below the 70%
cut-off value generally recommended for species differentiation
[56]. Recently, information of whole genome sequences have been
recommended to be integrated into bacterial systematics [57-59].
In this study, whole genome sequences of strains RISW1T,
A3d10", M. adhaerens HP15" and M. hydrocarbonoclasticus
ATCC 49840" were visually compared using BLAST (Figure S2
in File S1) and the average nucleotide identity (ANI), genome-to-
genome distance (GGD), average amino acid identity (AAI), and
the Karlin’s genomic signature dissimilarity (6%) between the four
strains were calculated, the results of which are presented in
Table 4. Due to the lack of the availability of the assembled, whole
genome sequences for validly named Marinobacter species,
genomic signatures between strains ROSW1", A3d10" and validly
described Marinobacter species can only be performed using those
of M. adhaerens HP15" [31] and M. hydrocarbonoclasticus ATCC
49840" [30]. As can be seen from the information presented in
Table 4, the ANIs between the four strains were in the range of
82.3-83.3%, which is significantly lower than the suggested
threshold range of 95-96% [58,60]; the GGDs were calculated to
be in the range of 19.8-20.7% which is lower than the cur-off
value of 70% [61]; the AAI and Karlin signature dissimilarity
values for the four strains were in the range of 68.1-77.6% and
31-36 respectively, each of which fall outside the range to be
consider as same species [42,61]; and thus again indicating that
strains ROSW1" and A3d10" can be considered as two novel
species of the genus Marinobacter. The distinct standing of strains
RISW1™ and A3d10" can also be confirmed by the phylogenomic
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Table 3. The gyrB and rpoD gene sequence similarities of strains R9SW17, A3d10" and phylogenetically related type strains and type species of the genus Marinobacter.

Marinobacter salarius sp. nov. and Marinobacter similis sp. nov.

Similarity of gyrB/rpoD genes (%)

100/100

100/100
81.6/78.2

100/100
93.5/96.2
81.9/78.6

100/100

85.8/84.0
84.7/84.1
78.0/80.6

100/100

80.8/80.0
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Marinobacter salarius sp. nov. and Marinobacter similis sp. nov.
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Figure 2. Main spectra library (MSP) dendrogram of MALDI-TOF mass spectral profiles of strains ROSW1", A3d10" and closely
related Marinobacter species. The dendrogram was generated by MALDI Biotyper 3.0 software with distance is displayed in relative units.

doi:10.1371/journal.pone.0106514.g002

relationship analysis using the core proteome of the genomes from
the four strains (Figure 3).

The major features of the genomes of strains ROSW1T and
A3d10" were identified as described elsewhere [16]. Briefly, they
are 4,616,532 bp and 3,975,896 bp in size, composed of 99 and
29 contigs, both have 3 rRNAs, and 44 and 46 tRNAs, for strains
RISWI' and A3d10", respectively. The DNA G+C content of
strains ROSW1" and A3d10" were found to be 57.1 and 57.6
mol%, respectively (Table 2), the values which are consistent with
those of the genus Marinobacter.

Both bacteria were found to be Gram-negative, aerobic, motile
by means of a single flagellum and rod-shaped with the size of 1.9
3.2x0.40-0.72 um for strain ROSWI1T and 1.3-2.1x0.40-
0.45 um for strain A3d10" (Figure S3 in File S1). The catalase
and oxidase tests were found to be positive, HoS and indole tests
were found to be negative. It can be seen that strain ROSW1" can
be clearly differentiated from M. algicola TMG 23835" by its
inability to reduce nitrate and nitrite, its ability to utilise mono-

49840".

methyl succinate and -serine, its inability to utilise |-phenylala-
nine and the absence of lipase (C14); while strain A3d10" can be
clearly differentiated from M. sediminum LMG 23833T by its
nability to reduce nitrite, its ability to utilise glycogen, y-hydroxy-
butyric acid and p-glutamic acid, and its weak activities for valine
arylamidase and cystine arylamidase. The major phenotypic
difference between strains ROSW1T and A3d10" are nitrate
reduction, hydrolysis of starch, fermentation of p-glucose, and
their utilisation of dextrin, p-fructose, maltose, acetic acid,
propionic acid, succinic acid, p-serine and glycerol. Other
phenotypic characteristics which differentiate the two novel strains
from each other and their closest phylogenetic neighbours are
shown in Table 2, Table S2 in File S1, and in their respective
species descriptions. Both strains were found to be sensitive to
penicillin G (10 pg), chloramphenicol (30 pg), and ampicillin
(10 ug), and resistant to streptomycin (10 pg) and tetracycline
(30 ug). The fatty acid composition of strains RISW1' and
A3d10" are shown in Table S3 in File S1, where the predominant

Table 4. The genomic signatures between strains ROSW17, A3d10", M. adhaerens HP15" and M. hydrocarbonoclasticus ATCC

Genomic signatures

1 2 3 4
1. M. hydrocarbonoclasticus ATCC 498407 20.1/35 20/31 19.8/32
2. M. adhaerens HP15" 83.1/74.5 20.2/36 20.7/35
3. Strain ROSW1T 82.3/69.5 82.7/72.6 19.8/31
4, Strain A3d10" 82.5/72.7 83.3/77.6 82.3/68.1

doi:10.1371/journal.pone.0106514.t004
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Data in the lower triangular corresponds to ANI/AAI (%) and data in the upper triangular corresponds to GGD (%)/Karlin signature.
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Marinobacter salarius sp. nov. and Marinobacter similis sp. nov.

36 Strain A3d10"
EM hydrocarbonoclasticus ATCC 498407
28 M. adhaerens HP 157

Strain ROSW1T

—
0.5

Alteromonas sp. DE

Figure 3. Phylogenomic tree of strains ROSW1", A3d10", M. hydrocarbonoclasticus ATCC 49840 and M. adhaerens HP15" constructed
using concatenated sequence of the core proteome (544,643 bp) of the genomes. Alteromonas sp. DE was used as outgroup.

doi:10.1371/journal.pone.0106514.g003

fatty acids were identified as being Cig.9, Ci6.107¢, Cig.109c and
Clgzlw7C.

The genotype to phenotype analyses were also carried out based
on the whole genome sequences of the four strains, the results of
which are presented in Table 5. It can be seen that of the results of
physiological and biochemical tests match when comparing the in
stlico results, however a few discrepancies are noted. A similar level
of deviation previously reported in the case of Vibrio species and it
was suggested that expression of certain genes may be restricted by
stop codon, repressor genes, regulatory proteins, global regulators,
genome coverage or sequencing errors [42].

In summary, the comparative genomic and phylogenetic
analysis based on the full-length of 16S rRINA gene sequence
similarities, pheno- and chemotaxonomic properties revealed that
strains ROSW1T and A3d10"7 can be affiliated to the genus
Marinobacter. A further dual-locus sequence analysis based on
gyrB and rpoD gene sequence similarities, the comparative
analysis of whole cells protein profiles based on MALDI-TOF
mass spectrometry analysis, their phenotypic characteristics and
their DNA-DNA hybridization values below 70% confirmed that
strains ROSW1T and A3d10" should be classified as two novel
species of the genus Marinobacter for which the name Marino-
bacter salarius sp. nov. and Marinobacter similis sp. nov. are
proposed.

Description of Marinobacter salarius sp. nov.

Marinobacter salarius (sa.la'ri.us, L. masc. adj., salarius, of

or belonging to salt, pertaining to salt tolerance)

Cells are Gram-negative rods (approximately 1.9-3.2x0.40—
0.72 um). Motile by means of a single polar flagellum. Colonies on
marine agar are semi-translucent, non-pigmented, circular to
slightly irregular (0.8-1.0 mm) and smooth after 48 hours of
incubation. Colonies turn to creamy in colour with increasing
incubation time. Growth occurs at 4°C—40°C (optimum, 25°C—
30°C), between pH 6-9 (optimum, pH 7.5) and in the presence of
0.5-20% (w/v) NaCl. No growth was observed at 0 or 25% (w/v)
NaCl. Catalase and oxidase tests are positive. Starch, Tween 40
and 80 are positive, while nitrate and nitrite reduction are
negative. Indole, lysine decarboxylase, ornithine decarboxylase, f-
galactosidase, tryptophan deaminase, gelatinase, arginine dihy-
drolase, acetoin, urea and HyS are not produced. Acid is not
produced from glucose, mannitol, xylose, inositol, sorbitol,
rhamnose, sucrose, lactose, arabinose, adonitol, raffinose and
salicin. According to API ZYM, strain ROSW1" is positive for
alkaline phosphatase, esterase (C4), esterase lipase (C8), leucine
arylamidase, valine arylamidase, cystine arylamidase and N-
acetyl-f-glucosaminidase; weakly positive for acid phosphatase,
naphthol-AS-BlI-phosphohydrolase and o-glucosidase; negative for
lipase (C14), trypsin, a-chymotrypsin, o-galactosidase, f-galactosi-
dase, f-glucuronidase, f-glucosidase, a-mannosidase and o-fucosi-
dase. Positive for the utilization of dextrin, glycogen, p-fructose,
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maltose, methyl-pyruvate, mono-methyl-succinate, acetic acid, f-
hydroxybutyric acid, y-hydroxybutyric acid, py -lactic acid, propionic
acid, succinic acid, -glutamic acid, y-proline, 1 -serine and glycerol;
weakly positive for the utilization of |-alaninamide, p-alanine, |-
alanine and -leucine; negative for the utilization of a-cyclodextrin,
N-acetyl-p-galactosamine, N-acetyl-p-glucosamine, adonitol, -
arabinose, p-arabitol, p-cellobiose, i-erythritol, | -fucose, p-galactose,
gentiobiose, o-p-glucose, m-inositol, o-p-lactose, lactulose, p-manni-
tol, p-mannose, p-melibiose, f-methyl-p-glucoside, p-psicose, p-
raffinose, 1-rhamnose, p-sorbitol, sucrose, p-trehalose, turanose,
xylitol, ¢is-aconitic acid, citric acid, formic acid, p-galactonic acid
lactone, p-galacturonic acid, p-gluconic acid, p-glucosaminic acid,
p-glucuronic acid, a-hydroxybutyric acid, p-hydroxyphenylacetic
acid, itaconic acid, o-ketoglutaric acid, o-ketobutyric acid, o-
ketovaleric acid, malonic acid, quinic acid, p-saccharic acid, sebacic
acid, bromosuccinic acid, succinamic acid, glucuronamide, j -alanyl-
glycine, | -asparagine, | -aspartic acid, glycyl- -aspartic acid, glycyl-; -
glutamic acid, 1 -histidine, hydroxyl-; -proline, j -ornithine, | -phenyl-
alanine, 1-pyroglutamic acid, p-serine, r-threonine, pr-carnitine, y-
aminobutyric acid, urocanic acid, inosine, uridine, thymidine,
phenyethylamine, putrescine, 2-aminoethanol, 2,3-butanediol, py -
a-glycerol, glucose-1-phosphate and glucose-6-phosphate as the sole
carbon and energy source. The main cellular fatty acids are Cjg,0,
Ci6.107c, Cig1m9c and Cig,jw7c. The G+C content of the type
strain is 57.1 mol%. The type strain is ROSW1T (= LMG 27497" =
JCM 19399" = CIP 1105887 = KMM 75021, isolated from sea
water from Chazhma Bay in the Sea of Japan, Pacific Ocean. The
accession number for the whole genome sequence of strain ROSW 1"
is GP007152.

Description of Marinobacter similis sp. nov.

Marinobacter similis (s'mi.lis, L. masc. adj., similis, like,
resembling, similar, pertaining to close similarity with
other species)

Cells are Gram-negative rods (approximately 1.3 - 2.1x0.40 -
0.45 pm). Motile by means of a single polar flagellum. Colonies on
marine agar are semi-translucent, non-pigmented, circular to slightly
irregular (0.5 — 1.0 mm) and smooth after 48 hours of incubation.
Colonies turn to creamy in colour with increasing incubation time.
Growth occurs at 4°C - 40°C (optimum, 25°C - 30°C), between
pH 6 to 9 (optimum, pH 7.5) and in the presence of 0.5-20% (w/v)
NaCl. No growth was observed at 0 or 25% w/v NaCl. Catalase and
oxidase tests are positive. T'ween 40 and 80 are positive, while starch
is not. Nitrate is reduced but not nitrite. Indole, lysine decarboxylase,
ornithine decarboxylase, f-galactosidase, tryptophan deaminase,
gelatinase, arginine dihydrolase, acetoin, urea and HyS are not
produced. Acid is not produced from glucose, mannitol, xylose,
inositol, sorbitol, rhamnose, sucrose, lactose, arabinose, adonitol,
raffinose and salicin. According to API ZYM, strain A3d107 is
positive for alkaline phosphatase, esterase (C4), esterase lipase (C8),
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leucine arylamidase, naphthol-AS-Bl-phosphohydrolase, and N-
acetyl-f-glucosaminidase; weakly positive for lipase (C14), valine
arylamidase, cystine arylamidase and acid phosphatase; negative for
trypsin, a-chymotrypsin, o-galactosidase, f-galactosidase, f-glucu-
ronidase, f-glucosidase, a-glucosidase, o-mannosidase and o-fucosi-
dase. Positive for the utilization of, glycogen, methyl-pyruvate,
mono-methyl-succinate, f-hydroxybutyric acid, y-hydroxybutyric
acid, pr-lactic acid, p-alanine, p-alanine, p-glutamic acid and -
proline; negative for the utilization of o-cyclodextrin, dextrin, N-
acetyl-p-galactosamine, N-acetyl-p-glucosamine, adonitol, |-arabi-
nose, p-arabitol, p-cellobiose, i-erythritol, p-fructose, r-fucose, p-
galactose, gentiobiose, a-p-glucose, m-inositol, a-p-lactose, lactulose,
maltose, p-mannitol, p-mannose, p-melibiose, f-methyl-p-glucoside,
p-psicose, p-raffinose, -rhamnose, p-sorbitol, sucrose, p-trehalose,
turanose, xylitol, acetic acid, ¢is-aconitic acid, citric acid, formic acid,
p-galactonic acid lactone, p-galacturonic acid, p-gluconic acid, -
glucosaminic acid, p-glucuronic acid, o-hydroxybutyric acid, p-
hydroxyphenylacetic acid, itaconic acid, o-ketoglutaric acid,
o-ketobutyric acid, a-ketovaleric acid, malonic acid, propionic acid,
quinic acid, p-saccharic acid, sebacic acid, succinic acid, bromo-
succinic acid, succinamic acid, glucuronamide, p-alaninamide, |-
alanyl-glycine, [-asparagine, p-aspartic acid, glycyl-r-aspartic acid,
glycyl- -glutamic acid, 1-histidine, hydroxyl-y -proline, 1 -leucine, p-
ornithine, | -phenylalanine, |-pyroglutamic acid, p-serine, |-serine,
-threonine, pj-carnitine, y-aminobutyric acid, urocanic acid,
inosine, uridine, thymidine, phenyethylamine, putrescine, 2-ami-
nocthanol, 2,3-butanediol, glycerol, py-o-glycerol, glucose-1-phos-
phate and glucose-6-phosphate as the sole carbon and energy source.
The main cellular fatty acids are Cig0, Cig107¢, Cig10w9c and
Cigw7c. The G+C content of the type strain is 57.6 mol%. The
type strain is A3d10T (= JCM 19398" = CIP 110589" = KMM
75017, isolated from sea water from Port Philip Bay of the Tasman
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