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Abstract

Perennial forms of Gossypium hirsutum are classified under seven races. Five Mesoamerican races would have been derived
from the wild race ‘yucatanense’ from northern Yucatán. ‘Marie-Galante’, the main race in the Caribbean, would have
developed from introgression with G. barbadense. The racial status of coastal populations from the Caribbean has not been
clearly defined. We combined Ecological Niche Modeling with an analysis of SSR marker diversity, to elucidate the
relationships among cultivated, feral and wild populations of perennial cottons. Out of 954 records of occurrence in
Mesoamerica and the Caribbean, 630 were classified into four categories cultivated, feral (disturbed and secondary habitats),
wild/feral (protected habitats), and truly wild cotton (TWC) populations. The widely distributed three first categories cannot
be differentiated on ecological grounds, indicating they mostly belong to the domesticated pool. In contrast, TWC are
restricted to the driest and hottest littoral habitats, in northern Yucatán and in the Caribbean (from Venezuela to Florida), as
confirmed by their climatic envelope in the factorial analysis. Extrapolating this TWC climatic model to South America and
the Pacific Ocean points towards places where other wild representatives of tetraploid Gossypium species have been
encountered. The genetic analysis sample comprised 42 TWC accessions from 12 sites and 68 feral accessions from 18 sites;
at nine sites, wild and feral accessions were collected in close vicinity. Principal coordinate analysis, neighbor joining, and
STRUCTURE consistently showed a primary divergence between TWC and feral cottons, and a secondary divergence
separating ‘Marie-Galante’ from all other feral accessions. This strong genetic structure contrasts strikingly with the absence
of geographic differentiation. Our results show that TWC populations of Mesoamerica and the Caribbean constitute a
homogenous gene pool. Furthermore, the relatively low genetic divergence between the Mesoamerican and Caribbean
domesticated pools supports the hypothesis of domestication of G. hirsutum in northern Yucatán.
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Introduction

Cotton (Gossypium spp.) is unique among crop plants in that

four species have been independently domesticated in four

different regions of the world: two tetraploids, G. hirsutum L. in

Mesoamerica, G. barbadense L. in South America, and two

diploids, G. herbaceum L. in Arabia and Syria and G. arboreum L.

in the Indus Valley of India and Pakistan [1]. In the process, they

were transformed from photoperiod-sensitive perennial sprawling

or upright shrubs into short, compact, annualized day-length-

neutral plants; and their small impermeable seeds sparsely covered

by coarse, poorly differentiated hairs became larger and covered

with abundant and long, white lint. Simultaneously, their seeds lost

their impermeability and dormancy. The wide diversity of cotton

results from the successive waves of agronomic improvement and

human-mediated germplasm diffusion [1,2].

Phylogenetic investigations in Gossypium distinguish 45 modern

diploid species distributed among three major geographic lineages

and eight genomes. The American tetraploid lineage originated

within the last 1–2 million years from a single hybridization event

between a maternal African A and an American D genome [1]. It

diversified into five species, three wild endemic species, G.
darwinii Watt native to the Galapagos, G. tomentosum Nutt. ex

Seem. from the Hawaiian Islands, G. mustelinum Miers ex Watt

restricted to Northeastern Brazil, and the two cultivated species G.
barbadense and G. hirsutum. The latter provides over 90% of the

world cotton, spreading North and South to subtropical and

temperate latitudes well over 30u as an annual crop. Its indigenous

(preindustrial) range encompasses most of Mesoamerica and the

Caribbean, with two centers of morphological and genetic

diversity, one in Southern Mexico-Guatemala, considered a
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primary center of diversity, and one in the Caribbean, where some

introgression took place with G. barbadense [2–5].

In these two regions, G. hirsutum exhibits a diverse array of

perennial forms, which Hutchinson [6] classified into seven

geographical races. The primitive and highly variable race

‘punctatum’ is mostly found in Yucatán and round the coasts

and islands of the Gulf of Mexico. Race ‘latifolium’ has a center of

diversity in Guatemala and southern Mexico, but its range extends

from most of Mexico to El Salvador and Nicaragua. Race ‘Marie-

Galante’ is distinct both geographically and morphologically, with

its pronounced apical dominance and tree-like habit. Its range

includes the Antilles and Central America, South from El Salvador

into northern to northeastern South America. Its origin and

diffusion seems to be closely related to human migrations that

would have resulted in the introduction of G. barbadense into

Central America and the Antilles and its introgression with G.
hirsutum in these areas [2,3,7,8]. Together, these three most

widespread races, ‘latifolium’, ‘punctatum’ and ‘Marie-Galante’,

encompass most of the morphological variation in G. hirsutum.

The remaining four races present a more restricted geographic

distribution, with race ‘palmeri’ in the Mexican states of Oaxaca

and Guerrero, race ‘morrilli’ in the central Mexican plateau, race

‘richmondi’ along the Pacific side of the Isthmus of Tehuantepec,

and race ‘yucatanense’ limited to the northern coast of Yucatán.

The latter is known only as a small, highly branched, sprawling

shrub forming a dominant constituent of undisturbed beach strand

vegetation. Hutchinson [6] considered race ‘yucatanense’ an

extreme case of feral populations derived from primitive

‘punctatum’ landraces.

The persistence of wild populations of G. hirsutum has been the

subject of considerable debate. On one hand, most germplasm

collections came from man-made habitats, such as field plots and

house yards, or highly disturbed habitats, such as roadsides and

secondary vegetation, indicating that spontaneous cotton plants

were escapes from cultivation. Furthermore, morphological

differentiation appears similar and parallel for both landraces

and feral plants [6,9,10]. Testing materials from Yucatán,

Hutchinson [6] observed no differences between progenies of

‘punctatum’ from plants cultivated in dooryards and plants

established in natural vegetation. On the other hand, Sauer [11]

observed that the northern Yucatán wild cottons are negatively

associated with human settlements and form a dominant

constituent of ‘‘a complex vegetation type occupying a coherent

and extensive area with natural and edaphic and climatic

boundaries.’’ He maintained this interpretation in his study of

the Cayman Islands shoreline vegetation [12].

In a study of the effects of domestication in G. hirsutum,

Stephens [9] extended the question to the seemingly wild

populations of race ‘punctatum’ observed on the dry leeward

sides of some of the Greater Antilles, on Florida Cays [6,13], along

the coasts of the Gulf of Mexico as well as in Venezuela. For a long

time, he could not rule out the possibility that these forms are feral

relics of pre-Columbian or early post-Columbian cultivation

[9,14], even though they have retained their small impermeable

seeds with an impressive capacity for long distance dispersal

[14,15]. Only from 1967 did he abandon the views of Hutchinson

et al. [16] and refer without restriction to coastal populations in

the Caribbean and the Gulf of Mexico as wild [3,7]. In their

extensive collecting travels, Ano et al. [17], Ano and Schwendi-

man [18], and Schwendiman et al. [19] went even further in

underlining the similarity of these cotton populations with those of

northern Yucatán shores, relating their distribution to sea currents,

and classifying them in the same race ‘yucatanense’.

Long-range seed dispersal also explains the presence of G.
hirsutum in the Pacific Ocean. Fryxell and Moran [20] described a

truly wild small ‘punctatum’ population in Socorro, an island of

the Revillagigedo archipelago, some 600 km West of Mexico.

Similar wild forms have diffused to even more distant Pacific

islands (Tahiti, Marquesas, Samoa, Fiji, and Wake islands) [20–

22]. Indeed, Fryxell [23] suggested a close relationship between

the evolutionary history of the tetraploid cotton species and their

particular adaptation to strand habitats along marine beaches,

underlining the importance of oceanic seed diffusion and citing a

dozen cases of such populations, eight of which concerned G.
hirsutum. He presented a hypothesis relating this coastal

adaptation and capacity for diffusion via ocean currents to the

significant mobility of shorelines during the Pleistocene. In 1979,

Fryxell further developed his views in his monograph on the

Malvaceae [24], adding to his arguments those of Sauer [11].

Since then, the question of the natural dispersion of G. hirsutum
has been further complicated by the recent description of wild

populations of G. hirsutum in Paraguay [25], confirming an

intuition of Stephens [7].

Despite its importance for cotton genetics and breeding, the

question of truly wild cottons has spawned relatively few genetic

studies. In their RFLP study, Brubaker and Wendel [8] observed

three groups: (1) races ‘yucatanense’ and ‘punctatum’, (2) races

‘latifolium’ and ‘palmeri’, and (3) race ‘Marie-Galante’. They

refuted Hutchinson’s views on the regressive status of race

‘yucatanense’, and proposed a model where ‘‘the morphological

intergradation, geographical proximity, and genetic similarity of

race ‘yucatanense’ to inland ‘punctatum’ populations – of Yucatán

– reflects a relationship between the first domesticated form of G.
hirsutum and its wild progenitor.’’ Thus, the initial stages of cotton

(G. hirsutum) domestication would have taken place in northern

Yucatán and the human-mediated transfer of the first ‘punctatum’

cottons out of the species’ natural range would have triggered the

process of concomitant differentiation into new and improved

races, agronomic developments, and long range germplasm

diffusion. This process would explain the current distribution of

G. hirsutum diversity. The SSR study of Lacape et al. [26]

supported the racial classification [6], and the interracial relations

appeared consistent with the model of progressive domestication,

diffusion and differentiation proposed by Brubaker and Wendel

[8], except for the geographically more distant ‘Marie-Galante’,

which appeared closely related to ‘punctatum’. Their three

‘yucatanense’ accessions from Guadeloupe (as classified by Ano

et al. [27]) exhibited a high number of unique alleles. Similarly, in

the study of Liu et al. [28], the unique representative of race

‘yucatanense’, from Yucatán, appeared highly divergent from the

other accessions.

The views of Brubaker and Wendel [8], which explain the pre-

Columbian G. hirsutum diversity by successive waves of diffusion

of genetic and agronomic developments, from northern Yucatán

to inland Yucatán (race ‘punctatum’), then to southern Mexico

and Guatemala (race ‘latifolium’), and finally to all Mesoamerica

and the Caribbean, imply an early cotton domestication. This is

consistent with the contributions of historical linguistics and

archaeology. Thus, words for cotton can be reconstructed in

Proto-Otomangue, a language that was spoken in Central Mexico

at least 6500 BP [29,30]. According to Smith and Stephens [31],

the oldest remains of Mesoamerican cotton, found in the

Tehuacán Valley and dated 5500 to 4300 BP, represent fully

domesticated introductions, being comparable in form and size to

the landraces currently existing in the same area.

The domestication and diffusion scenario proposed by Brubaker

and Wendel [8] for G. hirsutum has been generally accepted and it
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is found practically unchanged in the most recent syntheses [1,32].

The fact that it is based on only one wild population (from

northern Yucatán) has not been challenged, and alternative

scenarios have been overlooked. Nevertheless, as stated by Sauer

[11], ‘‘if lint bearing cottons were naturally present in the New

World as sea dispersed pioneers, they were not likely to be

confined to Yucatán… The lint may have been widely gathered

and perhaps traded long before regular cultivation began; the

process of domestication may have been diffuse in space and time,

involving wild cottons from Caribbean and Pacific coasts, as well

as Yucatán.’’ Indeed, if G. hirsutum is a perennial whose regressive

forms thrive in disturbed human habitats and xerophytic

secondary vegetation, domestication was not necessarily a linear

process, moving from littoral strands to the agricultural field

through the dooryard. Wendel et al. [4] questioned ‘‘whether G.
hirsutum achieved widespread distribution and regional differen-

tiation as a wild plant prior to domestication, or if it was widely

distributed as a perennial semi-domestic by the pre-Columbian

people from a much smaller native range’’. Casas et al. [33] have

described how Mesoamerican societies have improved more than

200 plant species, through management practices that integrate

cultivated areas, agroforestry systems and gathering from the wild,

with or without conscious selection. As documented from many

studies of cactus fruit species [34–36], the result of this in situ
domestication process is a mosaic of habitats and useful plant

populations with particular morphological, genetic, and even

reproductive characteristics, according to management intensity.

Similar management practices may have been used for cotton.

Stephens [9] cites several accounts, from the first voyage of

Columbus to much later periods in colonial times, mentioning the

simultaneous exploitation of cultivated, feral and wild cottons,

according to the quality objective.

If we recognize that Caribbean wild cotton populations may

have been involved in the domestication process, we must also

question the distinction between a primary centre of diversity in

Mesoamerica and a secondary centre in the Caribbean. The

strong dominance of race ‘Marie-Galante’ in the latter region, as

well as in southern Central America and northern South America,

poses the question of its origin and even of its possible separate

domestication [7,32].

The question of the natural distribution of G. hirsutum is not

only crucial for understanding the biogeography of tetraploid

cottons, and their evolution and diffusion under domestication, but

also for the continuation of the domestication process. Further

improvement of the crop requires both a better exploitation of the

available germplasm and better genetic tools to manipulate

important economic traits [32]. For example, studies on the

effects of domestication on such essential traits as fiber develop-

ment [37] and the corresponding genetic transformations, with an

altered expression of about 25% of the genes at transcriptome level

[38], depend on the comparison of well-defined and representative

samples of wild and domesticated germplasm.

We present here a double approach to investigate this question,

combining Ecoclimatic Niche Modeling (ENM) and neutral

genetic markers to assess whether coastal cotton populations are

‘‘truly wild,’’ and investigate their relationship with inland

perennial cottons. ENM methods derive an envelope for the

environmental requirements of a taxon from a set of its occurrence

localities. They have provided a powerful tool for investigating the

ecology and distribution of both plant and animal species. An

ENM study on G. hirsutum was recently published by Wegier et al.

[39] aiming to understand not only the distribution of ‘‘wild’’

cotton populations from Mexico, but also the spatial organization

of genetic diversity and potential gene flow from genetically

modified cultivars using molecular markers. However, as com-

pared to the wild cotton studies cited above, Wegier et al. [39]

used much more permissive criteria to distinguish feral and wild

cottons. In our approach, we have used ENM to document the

relationship between perennial cotton domestication and distribu-

tion in Mesoamerica, the Caribbean and the Gulf of Mexico, by

mapping and comparing the potential tropical/subtropical distri-

butions of domesticated G. hirsutum populations, feral cotton

(escaped from cultivation), and presumably or truly wild popula-

tions of races ‘yucatanense’ and ‘punctatum’. Potential distribution

of G. hirsutum was predicted for modern climatic conditions as

well as for climatic parameters modeled for the Last Glacial

Maximum (LGM). The underlying idea is that the original

distribution of wild cotton in the early Holocene was necessarily

related to its distribution during the Pleistocene, following an

approach validated by several studies [40,41]. The identification of

potential climatic refuges for the species should help in

distinguishing natural and human factors in its dispersal.

As the ENM study confirmed the particular ecology and ‘‘truly

wild’’ status of a number of coastal cotton populations, SSR

neutral genetic markers were then used to characterize them and

investigate their relationship with neighboring feral cottons.

Materials and Methods

Climatic modeling and analysis
Our ENM study focused on the centers of diversity of G.

hirsutum, i.e., Mexico, Central America, and the Eastern

Caribbean (from the coasts of Venezuela to Florida through the

Antilles). From now on, we will collectively refer to this region as

Mesoamerica and the Caribbean. Geographical and ecological

information was extracted from the CIRAD cotton germplasm

database and records [17–19,27,42,43] and related collecting

reports by French and US scientists (collections in the 80s under

the aegis of the former IBPGR), the scientific literature on wild

cotton, regional floras, herbarium-label and germplasm-passport

data obtained from the Global Biodiversity Information Facility

(GBIF) portal, the Mexican Red Mundial de Información sobre

Biodiversidad (REMIB), and relevant Mexican administrative

documents. All geographic coordinates have been assigned or

verified against associated geographic information with gazetteers

(mostly Google Earth and Geonames). Incomplete or imprecise

records were discarded, as were redundant data (dataset available

upon request).

Figure 1. Distribution and climate model of perennial forms of G. hirsutum in Mesoamerica and the Caribbean. A. Distribution of 954
categorized datapoints for perennial forms of G. hirsutum in Mesoamerica and the Caribbean ‘truly wild’ (TWC) specimens/populations are
represented by red dots, ‘wild/feral’ by purple dots, ‘feral’ (disturbed habitats) by blue dots, ‘cultivated’ by brown triangles, and unclassified plants by
grey triangles. B. Climate model for distribution of both cultivated and spontaneous G. hirsutum in Mesoamerica and the Caribbean (complete set as
presented in Figure 1A). Climate suitability is indicated by background color from unfavorable (no color) to marginal (dark green) or increasingly
favorable (light green and warmer colors). C. Localization of the populations from categories TWC and ‘wild/feral’ and climate model for TWC
populations. Red dots represent the datapoints used for the distribution model (TWC populations), whereas purple dots represent ‘wild/feral’
populations of uncertain status (truly or secondarily wild). Climate suitability is indicated as in Fig. 1B. Three dotted frames refer to map limits as
magnified in Figure 2.
doi:10.1371/journal.pone.0107458.g001
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The information associated with the collections/observations

was also used to classify cotton occurrences according to their

status on a wild to cultivated scale, using four categories:

‘cultivated’ (fields and dooryards), ‘feral’ (plants found in disturbed

habitats, such as roadsides and secondary vegetation), ‘wild/feral’

(plants found in preserved habitats and/or forming persistent

populations), and ‘truly wild’ (populations described as such by

experts, based on ecological and morphological grounds). This

categorization is partially analogous to that used by Stephens [9],

whose ‘‘wild forms’’ would include both our ‘truly wild’ and ‘wild/

feral’ categories, whereas Stephens’ ‘‘semiferal’’ and ‘‘commensal/

cultivated’’ forms correspond to our ‘feral’ category and cultivated

categories, respectively. The objective was also analogous:

Stephens tested his categories on domestication traits (fiber and

seeds) while we aimed at testing them on eco-climatic grounds.

For each occurrence record, 19 bioclimatic variables were

extracted from WorldClim, a package consisting of global surfaces

of climate, with a 29300 grid resolution (corresponding roughly to

4.464.6 km) [44]. These variables are: 1) annual mean temper-

ature; 2) mean diurnal range (mean of monthly (max temp - min

temp); 3) isothermality (Bio2/Bio7); 4) temperature seasonality; 5)

maximal temperature of warmest month; 6) minimal temperature

of coldest month; 7) temperature annual range; 8) mean

temperature of wettest quarter; 9) mean temperature of driest

quarter; 10) mean temperature of warmest quarter; 11) mean

temperature of coldest quarter; 12) annual precipitation; 13)

precipitation of wettest month; 14) precipitation of driest month;

15) precipitation seasonality; 16) precipitation of wettest quarter;

17) precipitation of driest quarter; 18) precipitation of warmest

quarter; and 19) precipitation of coldest quarter.

For ENM, we chose the widely used Maxent machine learning

method. It estimates the probability distribution of maximum

entropy (i.e. closest to uniform) subject to the constraint that the

expected value of each environmental variable (or its transform

and/or interactions) under this estimated distribution matches its

empirical average [45]. Maxent was run twice, firstly on the whole

dataset, and secondly only on points in the ‘truly wild’ category. A

logistic threshold value equivalent to the 10 percentile training

presence was retained to separate climatically favorable areas from

marginally fit areas. Maxent output provides measures of the

contribution of each bioclimatic variable (percent contribution and

permutation importance) and proposes a jackknife test to quantify

the contribution of each variable from the gain when it is used in

isolation and the gain loss when it is omitted from the model.

However, the strong correlations among bioclimatic variables do

not allow an easy interpretation of their relative importance.

Therefore, we performed a principal component analysis (PCA) to

characterize and compare the climatic envelopes of our categories

of G. hirsutum observations, discarding those variables whose

contribution appeared marginal. The factors with an eigenvalue

above 1 were retained and a normalized varimax rotation was

applied to maximize the sum of the variances of the squared

loadings, simplifying the interpretation of the results. The different

categories of populations were then plotted on the principal

components plane to visualize and compare their ecoclimatic

range.

To predict the potential distribution of G. hirsutum at LGM, the

MIROC climatic model [46] derived from the PMIP2 database

Paleoclimate Modelling Intercomparison Project Phase II for

21,000 BP was downloaded from the Worldclim website (http://

www.worldclim.org/) and used on a dataset restricted to the ‘truly

wild’ category.

Genetic analyses
The panel of accessions of perennial G. hirsutum cotton

populations used for SSR genotyping comprised 110 feral and

wild accessions supplemented by a modern cultivar, ‘FM966’

(Table 1). One hundred and eight accessions originated from the

CIRAD seed bank, and three from USDA. Twenty-nine

countries/provinces of Mesoamerica and the Caribbean were

represented (Table 1). Particular attention was paid to geographic

locations where both truly wild and feral populations could be

identified in close proximity (such as for the populations of Pointe

des Châteaux in Guadeloupe), or slightly more distant (such as for

the populations from Yucatán sea-shores versus inland). Such sites

with both truly wild and nearby feral specimens were identified in

nine cases (Mexico/Yucatán, Jamaica, Dominican Republic,

Puerto Rico, St Kitts & Nevis, Guadeloupe, Venezuela, Bonaire,

and Curaçao). Three localities were represented only by wild

specimens, Florida (one feral specimen discarded due to missing

data), Antigua, and Socorro Islands of Mexico; and 18 additional

localities were only represented by feral populations. A few

additional locations where truly wild cotton (further abbreviated as

TWC) populations had been reported (visible as red dots in

Figure 1) could not be included in the genetic study due to lack of

plant material, such as in Cuba, the western coast of the Gulf of

Mexico (Tamaulipas), Bahamas and Grand Cayman. Detailed

geographic information of the 110 accessions is available in Table

S1; Figure S1 presents their localizations on the sites with TWC

populations.

Five seeds per accession were sown in small pots in the

greenhouse in Montpellier and DNA was extracted from pooled

samples (1–3 different plants) of young leaves using the MATAB

protocol [47]. Thirty-seven SSR markers were selected for

genotyping based on previous experience [26], in order to

optimize information and quality. They were mostly derived from

non-coding genomic DNA sequences (majority from series ‘BNL’

and ‘CIR’), preferably to the more frequent EST-derived SSRs,

with presumptive neutrality (no evidence of having been targeted

during domestication). They had shown in previous experiments

the amplification of a single PCR product in tetraploid cotton, thus

avoiding the ambiguity generated by homoeolog loci. SSRs were

genotyped in multiplex panels of 8 SSRs (four dyes and two SSRs

per dye). Simultaneous PCR amplifications in a final volume of

10 ml contained 5 ng of genomic DNA, 200 mM of each dNTP,

0.5 mM MgCl2, 1 U Taq polymerase, 0.08 mM of M13-tailed ‘F’

primer, 0.1 mM of both the ‘R’ primer and of an M13

oligonucleotide tailed with the ad hoc fluorochrome. PCR

reactions were performed on an Eppendorf microcycler (Eppen-

dorf, Madison, WI)) using the following profile, a hot start of 94uC
for 5 min, 35 cycles of 30 sec at 94uC, 1 min at 55uC and 1 min at

72uC, and a final extension step of 30 min at 72uC. PCR products

were pooled with 10 ml of GeneScan 600-LIZ size standard. PCR

products were denaturated and size fractionated using capillary

electrophoresis on an ABI 3500 Genetic Analyzer (Applied

Biosystems). Subsequently, GeneMapper 4.1 (Applied Biosystems)

software was used for allele size estimation.

Twenty-six SSRs showing strict and unambiguous bi-allelic

patterns (coded as homozygote when a single peak/allele and

heterozygote with 2 peaks/alleles) were selected. The 26 SSRs

were mapped on 18 of the 26 chromosomes (Table S2). Expected

heterozygosity at each locus was calculated as He = 12Spi2 where

pi is the frequency of the ith allele.

The data matrix of bi-allelic codings for the 26 SSRs and 111

genotypes was imported into the DARWin5 software [48] to

calculate genetic dissimilarities. Bootstrap dissimilarity matrices

were calculated by drawing 10 000 entries. A Principal Coordi-
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nate Analysis based on the similarity matrix was conducted also

with DARWin package. In complement to this factorial analysis,

unweighted trees without topological constraints were constructed

using a neighbor joining (NJ) approach [49] to represent individual

relations. Lastly, the methods implemented in the STRUCTURE

software [50] were used to infer population clusters and estimate

admixture (quantitative clustering). The number of clusters, K,

was chosen based on 20 independent runs for K values ranging

between 1 and 5 with a burn-in length of 500,000 followed by

750,000 MCMC iterations. The DK method [51] was then

applied using Structure Harvester [52], and estimated member-

ship for each genotype, in each cluster, was read from the

STRUCTURE output.

Results and Discussion

Dataset composition and distribution for climatic
modeling

A total of 954 datapoints were gathered, of which 630 could be

ascribed to our four categories (Table 2). Figure 1A shows no clear

differences in the distributions of the different categories, except

for ‘truly wild’ cotton (TWC) populations, which only occur along

the coasts of the Eastern Caribbean and the Gulf of Mexico. The

sample is well balanced between Central America and Mesoamer-

ica, on one hand, and the islands and shores from the Eastern

Caribbean to Florida on the other hand. Feral and wild specimens

are better represented than cultivated germplasm, which can be

explained by a collecting bias of botanists, most often interested by

spontaneous plants, and germplasm collectors, motivated by the

rusticity expected from primitive and spontaneous materials. The

poor representation of ‘cultivated’ cotton also reflects the decline

of its cultivation in Mexico [10] and in the Caribbean [18].

Among the 544 datapoints from Central and Mesoamerica, few

have been assigned to a geographical race: 2 for race ‘morrilli’

(state of Guerrero), 8 for ‘palmeri’ (Guerrero), 5 for ‘richmondi’

(Oaxaca), 41 for ‘punctatum’ (Yucatán peninsula and Socorro

Island), and 32 for ‘yucatanense’ (state of Yucatán). Albeit poor,

this information is consistent with their original description by

Hutchinson [6] and, with the exception of ‘yucatanense’, all races

are found in both ‘cultivated’ and ‘feral’ categories, illustrating the

absence of morphological differentiation between cotton landraces

and feral cottons within a same region, as reported by several

collectors [9,10,24]. ‘Punctatum’ is the only race with important

spontaneous populations classified as ‘wild/feral’, one in the state

of Yucatán, around Celestún, and several ones on the southern

coast of Campeche state, between Champotón and Isla del

Carmen. The only ‘truly wild’ Mexican population of race

‘punctatum’ is the one described by Fryxell and Moran [20] in the

Socorro Island (Revillagigedo archipelago).

For the Eastern Caribbean (410 accessions from Venezuela to

Florida), most observations were from breeders, so the racial

composition is much better documented. It shows a strong

dominance of race ‘Marie-Galante’ (278 acc.). The only other

identified race is ‘punctatum’, ascribed to the TWC category (64

datapoints) or, exceptionally, to the ‘wild/feral’ category (one

datapoint). In our dataset, these TWC are classified as ‘puncta-

tum’, following the early views of Hutchinson [13], author of the

original classification, although the same materials collected by

Ano et al. [27] and Schwendiman et al. [19] were later reclassified

under race ‘yucatanense’.

Ecoclimatic niche models for cultivated, feral, and wild G.
hirsutum

Figure 1B presents the potential distribution extrapolated by the

Maxent software for the whole dataset. Along the coasts of

Mexico, climatically favorable lowland areas correspond to those

identified by Wegier et al. [39], i.e., the Yucatán peninsula, the

regions of Veracruz and Tamaulipas along the western shores of

the Gulf of Mexico, and the tropical Pacific coast. The latter area

appears particularly favorable. The state of Tabasco (southern

shores of the Gulf of Mexico) is better represented than in the

study of Wegier et al. [39]. Other favorable areas are found much

further inland.

Given the relative over-representation of wild and feral

materials in our sample, Figure 1B gives a likely picture of the

Mesoamerican distribution of perennial G. hirsutum for the last

three millennia at least, i.e. a period of very active agricultural

development, during which modern climatic conditions were

already established [53]. The distribution of favorable areas

corresponds quite well with those areas where several of

Hutchinson’s geographic races were developed: Yucatán to

Mexican shores of the Gulf of Mexico for race ‘punctatum’,

Yucatán to Guatemala for race ‘latifolium’, Pacific regions and the

southern side of the isthmus of Tehuantepec for races ‘palmeri’

and ‘morrilli’, and even regions of the central Mexican plateau for

race ‘richmondi’. In Central America, the pre-Columbian

distribution of G. hirsutum appears related to the diffusion of

race ‘Marie-Galante’, as the favorable areas close to the

Guatemalan-Salvadoran border and in western Nicaragua show

good correspondence with the distribution of this race, presented

by Stephens [7]. As suggested by this author, these races probably

differentiated under relative geographical, ecological and cultural

isolation, the latter term covering ‘‘the combined effects of human

selection, migration and diffusion.’’

Figure 1C presents the geographical distribution of ‘wild/feral’

and TWC populations, together with a distribution model based

only on ‘truly wild’ populations (100 datapoints). The areas

suitable for TWC populations (Figure 1C) cover a very small part

of the favorable areas for the whole sample (Figure 1B). They are

mostly found in three sub-regions: (i) Gulf of Mexico and northern

Yucatán, (ii) Florida and western Greater Antilles and (iii)

Venezuela and eastern Caribbean, as detailed in Figures 2A, B

and C, respectively.

Table 2. Dataset composition and distribution among domestication status categories of perennial G. hirsutum as defined for the
present study.

Total Uncategorized cultivated feral wild/feral truly wild

Meso- & Central America 544 308 61 80 59 36

Eastern Caribbean to Florida 410 16 96 188 46 64

Total 954 324 157 268 105 100

doi:10.1371/journal.pone.0107458.t002
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The great majority of ‘wild/feral’ populations (purple dots on

Figure 1C) fall in areas that are marginal (dark green areas) or

unsuitable for TWC populations, validating our a priori catego-

rization.

The ‘yucatanense’ population along the northern coast of

Yucatán (Figure 2A), certainly constitutes the most extensive

TWC population [43,54]. Our model confirms that its distribution

is clearly limited by ecological parameters, as stated by Sauer [11].

Within this well-delimited area, a few specimens classified as

‘wild/feral’ are very probably incompletely documented represen-

tatives of race ‘yucatanense’. Extensive spontaneous populations

also exist on the western coast of the Yucatán peninsula, but we

have found no indications that these are ‘truly wild’. On the

contrary, the model indicates that they have developed under

climatic conditions that are not even marginally fit for TWC

populations. West of the Gulf of Mexico, along the coast of

Tamaulipas, ‘truly wild’ G. hirsutum was observed by Lukefahr

cited in Stephens [7]. However, favorable areas are small and

sparse in this region, and we could trace only three specimens

whose labels mention that they were parts of natural coastal

vegetation. Confirming the statement of Stephens [7], no

population that could be classified as TWC has been documented

for the Pacific coast of Mexico, where a very few small coastal

areas appear climatically marginal for sustaining such populations.

Thus, while the model confirms highly favorable climatic

conditions in the Revillagigedo Islands, it gives no clear indication

about areas where wild G. hirsutum could have developed on the

western coast of Mexico before diffusing to islands in the Pacific

Ocean.

In northern South-America and the southern Caribbean

(Figure 2C), TWC populations are scattered along the coasts of

Venezuela, between the Gulf of Venezuela (Saco de Maracaibo;

state of Falcón) and the North of the state of Sucre, and on the

shores of many islands along these coasts: Curaçao, Bonaire, Isla

de Piritú. We have found only ambiguous information for the

Chacachacaré Island. Mentions of colonial cotton plantation cast

doubt on the only report of wild cotton populations in this area by

Stephens [9]. On the other hand, the surroundings of Chacacha-

caré village in the Island of Margarita offer excellent conditions for

TWC populations, suggesting that the homonymy of these

neighbor sites may have created confusion. To the West, the

shores of Colombia only offer marginal conditions for TWC

(Figure 1C), which explains why Stephens [9] was not successful in

his search for wild cotton in this area. To the Northeast of

Venezuela, there seems to be another gap in the natural

distribution of G. hirsutum, as no TWC populations have been

identified in Trinidad and Tobago or in the southern half of the

Lesser Antilles (Figure 2C), which is consistent with the descrip-

tions of Hutchinson [13,55]. In the northern Lesser Antilles

(Figure 2C), only three TWC populations have been described, in

Guadeloupe [27], in Antigua and in Saint Kitts [9,18,19], and the

model confirms favorable climatic conditions at these sites.

In the Greater Antilles (Figure 2B and 2C), the modeled

distribution also agrees well with the wealth of previous reports of

TWC populations of race ‘punctatum’, indicating favorable

climatic conditions for the ‘‘algodón brujo’’ of southern Puerto

Rico [9,13,19], for the populations around the Yaquı́ Valley of the

Dominican Republic [9,19,56], in Haiti [13], Jamaica [19,57,58]

and in the Cayman Islands [12,59,60]. In southern Cuba, similar

Figure 2. Localization of the truly wild cotton (TWC) populations and corresponding climate model. Map frames indicated as rectangles
in Figure 1C. Climate suitability as indicated in Fig. 1. A. Gulf of Mexico. B. Florida and western Greater Antilles. C. Venezuela and eastern Caribbean.
doi:10.1371/journal.pone.0107458.g002
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populations exist around Guantánamo (specimen labels refer to

the morphological type described by Britton in 1908 [57]). Further

North, the modeled distribution is consistent with the observations

of TWC in Florida [19,23] and in the Bahamas [61,62]. For

Bermudas, much further North, the model indicates unfavorable

conditions for TWC, which is consistent with the statement by

Britton [63] about the absence of native cotton in these islands.

Climatic requirements of cultivated, feral and wild
populations of perennial cotton

Seven variables were discarded for PCA on climatic variables,

because of their poor specific contribution to the Maxent model

obtained from the whole sample: isothermality (Bio3), maximal

temperature of the warmest period (Bio5), precipitation of the

wettest and driest periods (Bio13 and Bio14), precipitation

seasonality (Bio15), and precipitation of the driest and warmest

quarters (Bio17 and Bio 18).

The analysis on the remaining twelve variables produced three

factors with an eigenvalue superior to 1 (Table 3). The first one is

strongly associated with mean temperatures at all periods of the

year (Bio1, and Bio8-11), with correlations between 0.82 and 0.95;

the second one is associated with precipitation (Bio12, 16 and 19),

with correlations between 0.80 and 0.95; and the third one is

associated with variables related to latitude (Bio2-7: diurnal

temperature range, temperature seasonality, minimal temperature

of coldest period and temperature annual range). The third factor

shows no clear differences among our categories, which is

consistent with their similar latitudinal dispersion, from tropical

Venezuela to subtropical northern Mexico and Florida. In

contrast, the categories and origins present different patterns of

dispersion in the plane formed by the two first principal

component factors (Figure 3). On the continent (Central and

Mesoamerica, Figure 3A), part of the observations come from

cooler regions (along the x-axis of factor 1, to the left) or from

wetter regions (along the y-axis of factor 2, upwards), while cotton-

associated climates appear more uniform in the eastern Caribbean

(Figure 3B). G. hirsutum was not observed in regions that are both

cooler and wetter (upper left area in Figure 3), which gives the

general shape of an inverted ‘L’ to the Mesoamerican dot cloud.

When considering domestication status, no clear distinction can

be made between ‘cultivated’, ‘feral’, and ‘wild/feral’ materials

(Figure 3C), as these categories share the same general inverted ‘L’

pattern of dispersion in the principal components plane. In

contrast, TWC populations are clearly characterized by very

uniform climatic conditions; thus the environment of both

‘yucatanense’ and truly wild ‘punctatum’ (Figure 3D) is clearly

among the hottest and driest in our sample. The best represented

geographical race, ‘Marie-Galante’, which is highly dominant

throughout the Antilles, logically presents the same climatic

dispersion as the general Caribbean sample, with occurrences

under extremely arid conditions too (not shown). Indeed, several

reports mention spontaneous ‘Marie-Galante’ populations in the

vicinity of TWC populations, as in Puerto Rico [13], Saint Kitts

[18], and Guadeloupe [27].

Potential distribution of native G. hirsutum in America
and the Pacific

Both the ENM and factorial analyses clearly show that TWC

populations of G. hirsutum present an exceptional combination of

a narrow environmental niche and a highly geographically

scattered distribution. Stephens [64] has related the capability

for long distance dispersal of tetraploid cotton seeds to their

buoyancy and tolerance to prolonged immersion in salt water. It is

therefore interesting to extend the TWC climatic model derived

from occurrences in Mesoamerica and the Caribbean to a larger

area in South America and the Pacific. Figure 4 presents the

results of this extrapolation in South America. Four areas offer

favorable climatic conditions, two inland areas, Bolivia/Paraguay

and Northeastern Brazil, and two coastal areas, Ecuador/Peru

and Pacific islands. Strikingly, all of them are validated by the

existence of wild populations of tetraploid cottons. The favorable

area in Bolivia and Paraguay was suggested long ago by Stephens

[7] and, indeed, a wild form of G. hirsutum has been reported

there recently [25]. Its inland situation renews the question of

tetraploid cotton dispersal, as it implies non-oceanic diffusion. A

bird-related mechanism is the likely explanation [15]. The other

potential inland area, in Northeastern Brazil, corresponds well to

the distribution of G. mustelinum, a wild tetraploid endemic to the

region [65–67]. The third area, in the arid coastal regions of

southern Ecuador and northern Peru and in the Galapagos

Islands, corresponds with the distribution of 2 other wild tetraploid

Gossypium species: (i) the wild populations of G. barbadense (North

and South of the Guayas estuary) and (ii) the wild tetraploid

species G. darwinii, a close relative of G. barbadense, endemic to

the Galapagos islands [68].

In the fourth favorable area (not shown), further west into the

Pacific, Worldclim coverage is incomplete, particularly for small

atolls, so all climatically suitable sites could not be detected.

Among those cases where the extrapolation results can be

compared to data from the literature, worth mentioning are the

Hawaiian Islands (with marginal climatic conditions in leeward

coastal areas of Honolulu, Lana’i, Kaua’i and Hawai’i), Wake

Island, the Republic of Kiribati, Fiji, Samoa, and French

Polynesia. Indeed, Hawaiian Islands are home of the endemic

wild tetraploid G. tomentosum, while an unusual wild form of G.
hirsutum is locally common in Wake Island [21,69]. The

information available on the presence of wild cotton in Kiribati

is less clear, with mentions of G. tomentosum [70–72], and/or

another Gossypium species (probably G. hirsutum) [73]. Among

the Pacific islands cited for wild populations of G. hirsutum, only

Fiji and Samoa do not appear climatically fit for this species

according to our extrapolation; however, this can be related to the

rarity of G. hirsutum var. taitense Roberty in both archipelagos

[74].

The excellent correspondence between areas potentially favor-

able to wild forms of G. hirsutum and the actual distributions of

wild tetraploid species (G. hirsutum itself, G. mustelinum, G.
barbadense, G. darwinii and G. tomentosum) provides a very

interesting example of ecological niche conservatism in evolution

[75]. In the present case, it constitutes a further confirmation that

the model derived from our Caribbean and TWC population

sample is accurate, and indicates that the main driver of tetraploid

cotton radiation was geographic isolation, not environmental

specialization.

Potential distribution of Gossypium hirsutum in
Mesoamerica and the Caribbean at the Last Glacial
Maximum

Figure 5 presents the potential distribution of ‘truly wild’ G.
hirsutum for LGM climates, i.e. about 21,000BP. Sea level was ca.

125 m lower at that time, and rose markedly from 17,000 to 7,000

BP [76]. According to the MIROC model, most areas where ‘truly

wild’ cotton populations are found under modern climates were

only slightly less favorable at LGM. A few very small favorable

areas, such as the one along the shores of Tamaulipas, were at best

marginally fit for G. hirsutum. In contrast, three areas show a

considerable extension at LGM, with many more favorable
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Figure 3. Principal component analysis of G. hirsutum climatic envelope. Climate variables are listed in Table 3. Comparison of different
subsamples in Mesoamerica, the Eastern Caribbean and Florida, according to origin (A, B) and domestication status (C, D).
doi:10.1371/journal.pone.0107458.g003

Table 3. Principal component analysis (Varimax normalized rotation) on a set of bioclimatic variables retained for their
contribution to the Maxent ecoclimatic model of distribution: factor loadings (values higher than 0.70 in bold characters).

Variable Factor 1 Factor 2 Factor 3

1-Annual mean temperature 0.93 0.04 0.33

2- mean diurnal range 20.06 0.04 20.82

4- temperature seasonality 20.01 20.29 20.80

6- minimal temperature of coldest month 0.54 0.12 0.83

7- temperature annual range 20.07 20.09 20.97

8- mean temperature of wettest quarter 0.90 20.18 20.03

9- mean temperature of driest quarter 0.82 0.17 0.37

10- mean temperature of warmest quarter 0.95 20.11 20.15

11- mean temperature of coldest quarter 0.68 0.18 0.63

12- annual precipitation 20.07 0.95 0.14

16- precipitation of wettest quarter 20.00 0.95 20.03

19- precipitation of coldest quarter 0.02 0.80 0.21

Proportion of total variance 0.34 0.22 0.31

doi:10.1371/journal.pone.0107458.t003
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emerged lands: (i) northern Yucatán, (ii) southern Florida, the

Bahamas and Virgin Islands, and (iii) the western shore of

Venezuela and a small area on the northeastern Colombian

shores. On the whole, G. hirsutum distribution was probably much

more extended in the Caribbean and in the Gulf of Mexico during

late Pleistocene and early Holocene. The main picture is consistent

with the hypothesis of Fryxell [24] that Pleistocene shoreline

movements were decisive in the evolution and adaptation of

tetraploid cottons.

Further south, in equatorial and southern America, LGM

climatically favorable areas appear essentially similar to modern

ones, except for the Brazilian Northeast, which was less favorable

Figure 4. Potential distribution of truly wild G. hirsutum in South America. Distribution as extrapolated from the climate model presented in
Figures 1C and 2.
doi:10.1371/journal.pone.0107458.g004

Figure 5. Potential distribution of G. hirsutum during the Last Glacial Maximum (21,000 BP). Potential distribution of G. hirsutum in the
Caribbean and in the Gulf of Mexico, extrapolated according to the MIROC climatic model for LGM. (Note that sea level differences at LGM explain
variation with modern sea shore delimitation).
doi:10.1371/journal.pone.0107458.g005
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(Figure S2) than in modern times (Figure 4). A few marginally

favorable areas may have existed along the Mexican Pacific shores

(Figure 5). In the Pacific Ocean, the situation appears similar to

the modern one (not shown).

Genetic characterization of ‘truly wild’ cotton and their
feral neighbors

The 42 TWC accessions from 11 different (2 for Mexico alone)

countries (Figure 6, Table 1 and Table S1, Figure S1) ensure a

good representation of the geographical range of truly wild G.
hirsutum populations as described above; although several similar

populations could not be sampled. It appeared very early in the

analysis that these TWC populations, including the ‘yucatanense’

population of Yucatán as well as those from diverse places in the

Caribbean, showed no racial or geographic differentiation, so we

have pooled them in the following presentation. In our sample the

‘feral’ group was represented by 53 ‘Marie-Galante’ accessions of

northern South America and the Caribbean and by 15 other

accessions (‘punctatum’ from Yucatán, other races from Mesoa-

merica, and un-ascribed material, Table 1).

SSR statistics are detailed in Table S2. In total, 204 alleles were

coded over the 111 accessions and 26 SSR markers, ranging

between 3 (HAU2861) and 19 (BNL3103) alleles per SSR. He
values varied among markers, confirming previous results [26].

Unique alleles amounted to 37 in the feral ‘Marie-Galante’ group

(53 accessions) and 43 in the TWC group (42 accessions). He
shows only limited differences between the different races/

categories (Table S3); globally it averages 24.2%, more than

usually observed in cultivated cotton (between 5 and 15% under

field conditions, but nil in the case of our cultivated control). He is

slightly higher in wild accessions (28.2%) as compared to feral ones

(22.0%). The genetic dissimilarity was also higher within the TWC

group (D = 0.51) than within the feral group (D = 0.38) (Table S4).

Both distance-based methods implemented with DARwin, NJ

classification (Figure S3) and principal coordinate analysis

(Figure 7), separate TWC from feral accessions (first axis in the

PCA, Figure 7, and basal branching in NJtree, Figure S3). Within

the feral group the analyses further distinguished two subgroups.

The first one includes 48 of the 53 accessions of race ‘Marie-

Galante’ and the second one includes 17 accessions, 10 of race

‘punctatum’ from Mexico/Yucatán, 6 others (from races ‘morrilli’,

‘palmeri’ and ‘richmondi’ and 3 unassigned), as well as the modern

cultivar. Thus, this clustering, which suffers only few exceptions,

appears essentially to reflect domestication status (wild vs. feral),

and secondarily race. In the nine locations that could be sampled

for both feral and TWC accessions (Figure 6), the different

analyses clearly indicated that wild/feral status was better than

geographical distribution in determining genetic proximity among

Figure 6. Distribution of the populations of perennial G. hirsutum sampled for the SSR-based genetic analysis. Samples include truly
wild (TWC) and feral perennial populations in Mesoamerica and the Caribbean. TWC populations are shown as red dots and feral populations are
shown as purple dots. Twelve locations where TWC were identified are labeled in red frame. All except USA/Florida, Antigua and Socorro Islands, are
also represented by feral specimens, while 18 additional locations had only feral specimens. See Table S1 and Figures S1 for details and precise
localizations of the accessions in the 11 sites with TWC populations (Socorro Islands not shown).
doi:10.1371/journal.pone.0107458.g006
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samples. For example, the TWC from the Atlantic shores of

the Lesser Antilles (Guadeloupe, St Kitts and Antigua) were

genetically much closer to TWC from northwestern Yucatán,

distant by over 2,000 miles, than they were to the feral cottons of

the same islands. The genetic relationship among feral cottons is

not determined by geographical proximity either: for example, the

six ‘Marie-Galante’ accessions from the island of Guadeloupe are

not grouped in the same ‘Marie Galante’ branch of the

dendrogram (Figure S3B).

The STRUCTURE analysis and DK method of Evanno [51]

were fully consistent with the two previous ones, clustering the 111

accessions into either two or three clusters, both with high DK

values (.1000) (Figure S4). Using K = 2 separated TWC from

feral cottons (not shown). Using K = 3 further partitioned the feral

group in two sub-groups. In Figure 8, we have organized our

sample according to the same criteria inferred from both PCA and

NJ analyses, but based on field observations: ‘truly wild’ vs. feral,

and feral accessions assigned to ‘Marie-Galante’ vs. other feral

accessions.

The 42 accessions from TWC populations form a fairly

homogenous group (Figures 8 and S3) with an average 67%

membership. Only few discrepancies were observed, whereby

three accessions had very low (,5%) likelihood of membership to

this cluster: W30 (acc. AS0340) from Venezuela, W102 (acc.

BPS1240) and W103 (acc. BPS1247) from Puerto-Rico. These

accessions were probably wrongly assigned due to an error in

collection (although passport data are unambiguous) or a mixture

at some stage of multiplication. For a few other TWC assignations,

the possibility of in situ hybridization cannot be dismissed, as they

show an important level of admixture (,50% membership to

TWC): W105 (acc. INC035) from Socorro Island, W58 (acc.

AS0653) from Yucatán, W86 (acc. BPS1157) from Bonaire, W148

(acc. BPS1239) from Puerto Rico, and W95 (acc. BPS1225) from

Dominican Republic. For the latter, the collector mentioned a

‘‘different’’ phenotype with orange pollen and yellow petals [19].

The 53 accessions (22 countries) of race ‘Marie-Galante’ have

an average membership of over 81%. This group encompasses the

same geographical distribution as the TWC group except for

Mexico (Figure 6). Four ‘Marie-Galante’ accessions present higher

membership to the other feral group, probably because of wrong

race assignation: W153 (acc. CR2000A) from Costa-Rica, W65

(acc. Texas184) from Guatemala, W150 (acc. BPS1243) from

Puerto Rico, and W27 (acc. AS0335) from Venezuela. Two

‘Marie-Galante’ accessions, W98 (acc. BPS1230) from Puerto Rico

and W59 (acc. AS0681) from St Kitts and Nevis, show high levels

of admixture with the TWC cluster and both present unusually

high rates of heterozygote SSR, of 64% and 58% respectively; they

probably result from an hybridization. Of the two accessions

sampled in Colombia, one (W32, acc. AS0435) presents 98%

membership to the ‘Marie Galante’ cluster while the other one

(W33, acc. AS0437) presents some admixture. It is noteworthy

that the latter, W33, belongs to a series of ‘Marie-Galante’ from

Northern Colombia, near Barraquilla, described by Ano and

Schwendiman [42] as ‘‘hı́brido nativo; offspring of ancient

deliberate crossings between local spontaneous ‘Marie-Galante’

and commercial varieties of G. hirsutum or G. barbadense.’’

Lastly, the mostly ‘punctatum’ branch of feral cottons presents

the lowest level of admixture (.97% membership). With 16

accessions, this group includes 12 ‘punctatum’ accessions [9 from

inland-Yucatán (as opposed to TWC from the northern shores of

Yucatán, - 1 from Maldives in the Indian Ocean (W181, acc.

KLM1872), - 2 from Pacific islands (W157, acc. TX-0997 from

Guam, W108 acc. TX-1295 from Samoa)], one representative of

Mexican races, ‘morrilli’, ‘richmondi’ and ‘palmeri’, and the

modern cultivar (FM966) from Australia. The homogeneity of this

group indicates that the genetic differentiation among Mexican

races [26] is negligible as compared to their divergence from both

‘Marie-Galante’ and TWC populations.

Figure 7. Principal coordinates analysis (PCA) on SSR data in truly wild (TWC) and feral G. hirsutum. PCA based on the similarity matrix
for 26 SSR markers and 111 accessions represented according to their racial assignation. Factor 1 separates TWC from feral cottons and Factor 2
separates race ‘Marie-Galante’ from other feral cottons.
doi:10.1371/journal.pone.0107458.g007
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Distinctiveness of wild and feral populations
The genetic structure observed in a broad collection of cottons

representing a vast region of Mesoamerica, Central America, the

eastern Caribbean, and even Pacific islands (110 accessions, from

29 different countries or islands) demonstrates that the major

driver organizing this collection is the status, feral or wild, of the

cotton population, rather than any geographical factor. Thus,

ENM and genetic analyses converge in discriminating TWC

populations from feral populations, as assessed in our categoriza-

tion exercise. We can conclude definitively that, not only do ‘truly

wild’ populations of G. hirsutum still exist, but they are ecologically

and genetically distinct, occupying a narrow and well defined

habitat. Their genetic distinctiveness and homogeneity invalidate

any racial or specific distinction among TWC populations of G.
hirsutum, such as their classification into race ‘yucatanense’ in

northern Yucatán and into race ‘punctatum’ in the Caribbean. A
fortiori, our results do not support any particular status for the wild

perennial cottons from the Dominican Republic, which were the

most ‘inland’ collections among our TWC samples (see Figure S1).

These wild cottons had been given racial status (G hirsutum race

‘ekmanianum’) or specific status, as G. ekmanianum Wittmack

[56,77], and they had even been proposed as a new species by

Wendel [78], and other authors, of genome AD6 (other 5

tetraploid species being denoted as AD1 to AD5). Our results do

not support such proposals as these specimens fall within the

overall range of TWC accessions (Figure S3B). Instead, they

Figure 8. STRUCTURE plot of 111 perennial cottons of Gossypium hirsutum with K = 3 clusters. The y-axis shows the proportion
membership to the cluster (three clusters depicted in light purple, deep purple and red). Each horizontal bar represents a single accession. The
accessions are arranged according to their domestication status and, for feral accessions, their racial assignation, and then alphabetically per country
of origin. Fourteen questionable cases (membership to cluster ,33%) are indicated with their ‘W’ accession numbers as detailed in Table S1 (see also
comments in the main text). Within cluster ‘feral cotton/punctatum’, MO, RI, PA, and Var refer to ‘morrilli’, ‘richmondi’, ‘palmeri’ and modern cultivar,
respectively.
doi:10.1371/journal.pone.0107458.g008
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unambiguously validate the opinion of Schwendiman and

colleagues [19,27] who recognized their morphological unity,

from Yucatán to Florida, the Antilles and Venezuela, grouping

them under race ‘yucatanense’.

The genetic and ecological divergence between race ‘yucata-

nense’ sensu Schwendiman and feral populations is clearly

stronger than the splitting of the latter into two clusters

corresponding to (i) races of pure G. hirsutum from Mesoamerica,

and (ii) the Caribbean and Central American representatives of

race ‘Marie-Galante’ resulting from an introgression with G.
barbadense. This comparison indicates that domestication resulted

in a major infraspecific division in G. hirsutum. In any case, the

low level of admixture between neighboring TWC and feral

populations shows the effects of surprisingly strong reproductive

barriers and/or very strict ecological adaptation, resulting in very

limited gene flow, despite their geographical proximity.

Distribution and domestication status in Gossypium
hirsutum

The much stronger differentiation of TWC populations is

reminiscent of the study of Stephens [9] who used a similar

categorization approach to evaluate the effects of domestication on

seed and fiber properties of perennial cottons, well before he

formally admitted the existence of ‘truly wild’ populations of

tetraploid cottons. As in our ecological and genetic analyses, his

‘‘wild’’ category was clearly the most distinct. Thus, there were

highly significant differences in seed grade, seed index and lint

index between the wild and feral categories, whereas differences

among feral and cultivated categories were much less marked. The

morphological, genetic, and ecological proximity between culti-

vated and feral cottons can be easily explained if they are closely

related, i.e. if the latter are still part of the domesticated genepool.

This is first suggested by the fact that feral plants show the same

geographic patterns of morphological differentiation as cultivated

materials [6,9,10]. Second, the correlation between the occurrence

of feral populations and the cultivation of perennial cotton has

been reported by most experts, including Ulloa et al. [10] who

observed that feral populations are getting rarer as the cultivation

of cotton declines in Mexico. This indicates that most feral

populations depend on cultivation of ancient landraces for their

perpetuation, following a sink-source dynamics model; in ecolog-

ical terms, their realized niche is wider than their fundamental

niche [79]. This double dependence on man, for their man-made

habitat and for their reproduction from cultivated plants, contrasts

with the long-term permanency of wild coastal populations of G.
hirsutum. For example, the wild population of Portland Point in

Jamaica was mentioned by Britton in 1908 [57], Schwendiman

et al. in 1986 [19] and Stoddart and Fosberg in 1991 [58]. Such

cases provide excellent illustrations of the fact that, in its original

condition, G. hirsutum is a pioneer plant colonizing disturbed

coastal habitats, but that ‘‘this (habitat) instability is in itself highly

stable’’ and very ancient, so ‘‘that the pioneers are simultaneously

old residents’’, as Fryxell [24] put it. The relationship between

extreme aridity and the occurrence of wild cotton is obviously

related to the fact that very few other plant species can compete

under such conditions, suggesting that our TWC-specific climatic

model is fairly representative of its realized niche. Indeed, as stated

by Hutchinson [80], even the most mesophytic members of

Gossypium are intolerant to competition, particularly at the

seedling stage. Contrary to feral cotton, the realized niche of

TWC populations is narrower than their fundamental niche.

Thus, the present study provides an opportunity to analyze the

effect of domestication on the distribution of cultivated perennials,

a rarely studied aspect of domestication. Miller and Knouft [81]

have analyzed the case of the jocote or purple mombin (Spondias
purpurea L.), a small fruit tree native from the dry forests of

southern Mexico and Central America, and cultivated for its fruit

and/or as a fence. They found that the climatic envelope of the

wild populations is nested in that of the cultivated forms. In other

words, domestication and cultivation mostly expanded the range

of the species. Miller and Knouft [81] attributed this expansion to

genetic adaptation, discarding the effect of tending cultivated trees,

and, more surprisingly, neglecting the effect of the domestication

syndrome itself. Indeed, the domesticated purple mombin

produces mostly sterile fruits, so it is essentially reproduced from

cuttings that grow much faster than seedlings [82], under much

less intense competition.

As compared to purple mombin and the majority of perennial

fruit crops, G. hirsutum differs in its relatively high level of

autogamy and endogamy [83]. Domestication has considerably

increased the diversity of the species [6,26] and apparently

extended its ecoclimatic range (Figure 3C and D), well beyond the

most peripheral and arid habitats of TWC populations. Thus the

question remains fundamentally the same: have domestication and

selection under cultivation widened the fundamental ecoclimatic

envelope of perennial G. hirsutum through selection and genetic

adaptation? As this envelope is common to feral and cultivated

populations, and the feral populations depend on the permanent

contribution of cultivated cotton, the most likely answer is that the

much wider distribution of these two categories is essentially

related to the reduction of competition in cultivated and

neighboring disturbed habitats, not to a genetic effect. Further-

more, as the domestication syndrome involves seed characteristics

(e.g. seed permeability, hardseededness, dormancy) that are

essential for the survival of wild populations, most feral cottons

are unable to re-colonize, and persist in, the original habitat of the

species. Thus, the apparent paradox is that, although the

geographical distribution of perennial G. hirsutum has been

considerably widened by domestication and cultivation, its niche

has been reduced by the loss of reproductive capacity in its natural

habitat. In fact, there would have been a true paradox if

cultivation, while reducing exposure to both extreme aridity and

competition, had increased the competitive potential of G.
hirsutum in secondary habitats.

Domestication of Gossypium hirsutum
Among the important reasons to study the natural distribution

of perennial G. hirsutum in Mesoamerica and the Caribbean are

the identification of potential areas for the early domestication

processes and the comparative characterization of domesticated

versus wild cottons. Our distribution maps do not contradict the

hypothesis of Brubaker and Wendel [8] of an initial domestication

of G. hirsutum in northern Yucatán, as this region, home of the

most extensive wild populations, indeed corresponds to the largest

favorable area (Figure 2A). This has been true not only for the last

three millennia under modern climates [53] but very likely also for

all the Holocene and even earlier, during the late Pleistocene

(Figure 5). On the other hand, our maps also support the views of

Sauer [11] on a more diffuse process in space and time, with early

lint gathering and even trade preceding regular cultivation. Such a

process is consistent with the descriptions of multiform exploitation

of different cotton populations by Caribbean natives in early

colonial chronicles [9], reminiscent of the domestication processes

described by Casas et al. [33]. Clearly, G. hirsutum lends itself

particularly well to such practices. It is naturally restricted to

marginal habitats, where it does not suffer much from competi-

tion, but as a pioneer species it could have responded very fast and

positively to disturbance by man. Its propensity to cross the
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boundaries between wild, disturbed and cultivated habitats is still

obvious today. We can easily imagine how cotton may have

invaded spontaneously the surroundings of fishing communities

living close to a natural population. Some basic selection in this

new habitat would have steadily brought some improvement,

progressively providing the genetic basis for more intense

management under managed cultivation, and thereby triggering

the domestication process. Once the domestication syndrome was

acquired, cultivated forms could not revert to the ‘truly wild’

condition, favoring spatial isolation between the two forms, and in

turn further strengthening selection and domestication processes.

However, while the process described above may have taken

place both in Mesoamerica and the Caribbean, our genetic data

do not favor domestication in the latter area, as Caribbean feral

populations appear more closely related to Mesoamerican

cultivated and feral cottons than to local TWC populations. Thus,

the most likely hypothesis remains that of Brubaker and Wendel

[8], with a very early domestication of G. hirsutum in northern

Yucatán, followed by its progressive diffusion and racial differen-

tiation in all Mesoamerica, then Central America and northern

South America. There, race ‘Marie-Galante’ would have devel-

oped through introgression with domesticated forms of G.
barbadense, as hypothesized by Stephens [7], before reaching the

Caribbean.

Conservation of the genetic diversity of G. hirsutum and
potential interest of wild perennial cottons for breeding

Strategies for the conservation of cotton genetic resources must

take into account the relationship between cultivated, feral and

wild populations, and the risks of genetic erosion. In the case of the

domesticated gene pool, Ulloa et al. [10] have underlined that in

southern Mexico G. hirsutum perennial cottons survive only as

curiosities in garden plots or dooryards, or as occasional feral

plants; while attempts at commercial cotton production have been

abandoned. In the case of wild cottons, their very ancient habitat is

being increasingly threatened, as international tourism covets the

same sea-and-sun ecoclimatic niche of dry tropical coasts [19].This

point is important in considering the long term in situ conservation

of perennial cotton G. hirsutum populations. Although not

considered in this study, the cases of endangered wild G.
barbadense populations of southern Ecuador/northern Peru, as

well as of G. mustelinum from northeastern Brazil [84], are similar

in ecology and climatic conditions. Only G. darwinii from

Galapagos is not threatened [85]. The conservation and further

plant exploration of wild cottons is important. As highlighted by

the results of Liu et al. [28] and Lacape et al. [26], these cottons

may have up to 70% unique alleles.

The ecological niche where these wild cotton populations are

encountered in Mesoamerica clearly indicates that they represent

a great reservoir for genes and alleles related to tolerance to abiotic

stresses (water, high temperature or saline stresses). Even though

these wild cottons are excellent sources for widening the genetic

base for breeding because of their complete interfertility with

modern cultivars of G. hirsutum [86], this type of material has so

far been poorly characterized for its physiological and eco-

physiological adaptive traits [87,88] and rarely exploited in

breeding programs [89,90].

Lastly, a further understanding of the domestication process,

through the comparison of the domesticated and wild pools of G
hirsutum, for example at the transcriptome level [38], as well as for

the identification of valuable phenotypic traits [91,92], can only

benefit from an ad hoc categorization as attempted in the present

study.

Conclusions

Ocean diffusion and ecological constraints, related to extreme

aridity and low levels of competition, best explain the past and

current distribution of truly wild populations of G. hirsutum
restricted to littoral or related habitats, on the shores of the

Caribbean Sea and the Gulf of Mexico from Venezuela to Florida,

and even as far as Polynesian islands in the Pacific Ocean. The

obvious niche conservatism expressed in the strong similarity of

the natural habitats of all five allotetraploid species shows that

their speciation was essentially driven by the geographic, rather

than ecological, isolation of their highly scattered populations.

Our ecological and genetic data consistently support the

hypothesis of Brubaker and Wendel [8], indicating that upland

cotton domestication was very probably initiated in its largest

native population, in northern Yucatán. Cultivated forms then

diffused progressively to all the Mesoamerican cultural area,

differentiating progressively into the five Mesoamerican races,

following a process of geographical and cultural isolation [7]. The

diffusion of both New World domesticated cottons, G. hirsutum
and G. barbadense, would have allowed genetic introgression in

southern Central America and/or northern South America,

resulting in the development of race ‘Marie-Galante’. The close

genetic relatedness between ‘Marie-Galante’ and the Mesoamer-

ican domesticated races shows that the introgression process was

anterior to the diffusion of domesticated G. hirsutum to the

Antilles.

Even where domesticated and TWC forms grow in close

proximity, they hybridize only sporadically. As a result, the level of

genetic divergence between them overwhelms differentiation

among domesticated races and/or geographic regions.

Our understanding of plant evolution under domestication is

more limited for perennial plants than for seed-propagated annual

crops [93]. With their evolution from geographically limited wild

populations and their concomitant diffusion and racial differen-

tiation, allowing their establishment under warm temperate

climates, the two cultivated tetraploid cottons present interesting

parallels with the evolution and adaptation of maize in prehistoric

and historic times. The persistence of truly wild populations of

both species further increases their interest as unique models for

understanding how the genomes of perennials respond to selection

pressures operating on the relatively short time scale of the

domestication process. The existence of three closely related wild

species allows situating this process in the general context of the

evolution of allotetraploid cottons from a unique hybridization

event, 1–2 million years ago [94].

Wild forms of G. hirsutum, with seeds only sparsely covered

with short fibers but with adaptation to extreme environmental

conditions, contrast with cultivated cotton, with its highly valued

long-fibered seeds but adaptation to less demanding ecologies.

Owing to the advances of genomics and genome sequencing and

the ability to scan the genomes of wild species for new and useful

genes, we may now be in a position to unlock the genetic potential

of the wild germplasm resources of crop plants [91,92], including

cotton. The sequences of the two diploid species with genomes

closest to the constitutive genomes of tetraploid cottons, the

genome D of G. raimondii and the genome A of G. arboreum,

have already been published [95,96]; and the sequencing of the

AD genomes of G. hirsutum and G. barbadense is underway. It

should be a relatively easy step now to systematically scan wild

germplasm for useful genetic variants. However, this presupposes

that ex situ collections are adequate, accessible and safe, and that

in situ preservation efforts are effective in safeguarding material

not yet in gene banks, and still evolving in the field. This work
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should facilitate the development not only of efficient strategies for

exploiting cotton diversity for crop improvement, but also of

strategies for its long-term conservation.
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l’origine possible des cotonniers tétraploides du Nouveau Monde. Cot Fib Trop:

327–332.

28. Liu S, Cantrell RG, Mc Carty JCJ, Stewart JM (2000) Simple sequence repeat-

based assessment of genetic diversity in cotton race stock accessions. Crop Sc 40:

1459–1469.

29. Rensch CR (1976) Comparative Otomanguean Phonology. Indiana University

Publications (Language science monographs. Vol. 14). Bloomington.

Wild, Feral, and Cultivated Upland Cotton

PLOS ONE | www.plosone.org 17 September 2014 | Volume 9 | Issue 9 | e107458



30. Kaufman S (1990) Early Otomanguean homeland and cultures: Some
premature hypotheses. University of Pittsburgh Working Papers in Linguistics

1. pp. 91–136.

31. Smith CE, Stephens SG (1971) Critical identification of Mexican archaeological

cotton remains. Economic botany 25: 160–168.

32. Lubbers EL, Chee PW (2009) The worldwide gene pool of G. hirsutum and its

improvement. In: Paterson AH, editor. Genetics and genomics of cotton:
Springer. pp. 23–52.

33. Casas A, Otero-Arnaiz A, Perez-Negron E, Valiente-Banuet A (2007) In situ
management and domestication of plants in Mesoamerica. Ann Bot 100: 1101–

1115.

34. Ortiz F, Stoner KE, Perrez-Negron E, Casas A (2010) Pollination biology of

Myrtillocactus schenckii (Cactaceae) in wild and managed populations of the
Tehuacan Valley, Mexico. J Arid Env 74: 897–904.

35. Parra F, Casas A, Penaloza-Ramirez JM, Cortez-Palomec AC, Rocha-Ramirez
V, et al. (2010) Evolution under domestication: ongoing artificial selection and

divergence of wild and managed Stenocereus pruinosus (Cactaceae) populations
in the Tehuacan Valley. Ann Bot 106: 483–496.

36. Guillen S, Terrazas T, la Barrera E, Casas A (2011) Germination differentiation
patterns of wild and domesticated columnar cacti in a gradient of artificial

selection intensity. Genet Resour Crop Evol 58: 409–423.

37. Butterworth KM, Adams DC, Horner HT, Wendel JF (2009) Initiation and

early development of fiber in wild and cultivated cotton. Int J Plant Sci 170:

564–574.

38. Rapp RA, Haigler CH, Flagel L, Hovav RH, Udall JA, et al. (2010) Gene

expression in developing fibers of Upland cotton (Gossypium hirsutum L.) was
massively altered by domestication. BMC Biol 8: 139.

39. Wegier A, Pinero-Nelson A, Alarcon J, Galvez-Mariscal A, Alvarez-Buylla ER,

et al. (2011) Recent long-distance transgene flow into wild populations conforms

to historical patterns of gene flow in cotton (Gossypium hirsutum) at its centre of
origin. Mol Ecol 20: 4182–4194.

40. Waltari E, Hijmans RJ, Peterson AT, Nyari AS, Perkins SL, et al. (2007)
Locating pleistocene refugia: comparing phylogeographic and ecological niche

model predictions. PLoS ONE 2: e563.

41. Martı́nez-Meyer E, Peterson AT (2006) Conservatism of ecological niche

characteristics in North American plant species over the Pleistocene-to-Recent
transition. Journal of Biogeography 33: 1779–1789.

42. Ano G, Schwendiman J (1981) Rapport de mission en Guyane française -
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